Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/14553
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Silva, Carla Cristina da | |
dc.date.accessioned | 2023-12-22T03:03:06Z | - |
dc.date.available | 2023-12-22T03:03:06Z | - |
dc.date.issued | 2018-08-15 | |
dc.identifier.citation | SILVA, Carla Cristina da. Síntese e atividade antibacteriana de aminoderivados da 1,4-naftoquinona. 2018. 86 f. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/14553 | - |
dc.description.abstract | As bactérias são seres unicelulares que podem ser encontradas sozinhas ou em colônias. No século XIX, cientistas começaram a associar algumas doenças à determinadas espécies de bactérias. Desde então os pesquisadores buscam compostos capazes de atuarem sobre essas espécies de bactérias e minimizar os efeitos de processos infecciosos causados por algumas delas e considerados graves. Foram descobertas diversas classes de compostos ao longo do século XX capazes de inibir o crescimento ou até mesmo de causar a morte de bactérias patogênicas. Porém, a grande capacidade destas bactérias de sofrer mutação levou ao surgimento de cepas resistentes a estas substâncias. Assim, o desenvolvimento de novos compostos com potencial antibacteriano é necessário. Diversos grupos de pesquisa tem desenvolvido novos protótipos à fármacos antibacterianos a partir de produtos naturais que já apresentam atividade biológica satisfatória, como as quinonas. Neste trabalho de dissertação foram sintetizados 11 compostos a partir da reação da 1,4-naftoquinona e 11 aminas diferentes. Os compostos obtidos foram caracterizados por espectroscopia de infravermelho e RMN 1H e 13C. Foram ensaiados 6 compostos para determinação da Concentração Inibitória Mínima frente a 4 cepas de bactérias Gram-positivas e 5 cepas de bactérias Gram-negativas. Dos compostos ensaiados, três mostraram-se ativos contra diversas bactérias, em concentrações que variaram entre 31,2 e 250 μg/mL. Para os compostos que apresentaram melhor atividade antibacteriana foi testada a interação com a soro albumina humana, proteína presente em grande quantidade nos mamíferos superiores e responsável pelo transporte de moléculas biologicamente ativas. Os valores de Ksv e Ka obtidos indicam formação de interação moderada entre a HSA e os compostos ensaiados, garantindo biodisponibilidade satisfatória dos compostos no plasma sanguíneo. Assim, os resultados obtidos neste trabalho indicam que os amino-derivados da 1,4-naftoquinona sintetizados podem ser utilizados como potenciais agentes antibacterianos contra algumas espécies de bactérias Gram-positivas e Gram-negativas. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | naftoquinonas | por |
dc.subject | atividade antibacteriana | por |
dc.subject | soro albumina humana | por |
dc.subject | naphthoquinones | eng |
dc.subject | antibacterial activity | eng |
dc.subject | serum human albumin | eng |
dc.title | Síntese e atividade antibacteriana de aminoderivados da 1,4-naftoquinona | por |
dc.title.alternative | Synthesis and antibacterial activity of 1,4-naphthoquinones aminoderivatives | eng |
dc.type | Dissertação | por |
dc.description.abstractOther | Bacteria are unicellular beings that can be found alone or in colonies. In the 19th century, scientists began to associate some diseases with certain species of bacteria. Researchers have since sought compounds capable of acting on these species of bacteria and minimizing the effects of infectious processes caused by some of them and considered serious. Several classes of compounds have been discovered throughout the 20th century capable of inhibiting the growth or even causing the death of pathogenic bacteria. However, the large capacity of these mutated bacteria led to the emergence of strains resistant to these substances. Thus, the development of new compounds with antibacterial potential is necessary. Several research groups have developed new prototypes to antibacterial drugs from natural products that already have satisfactory biological activity, such as quinones. In this work 11 compounds were synthesized from the reaction of 1,4-naphthoquinone and 11 different amines. The compounds obtained were characterized by infrared and 1H and 13C NMR spectroscopy. Six compounds were tested for Minimum Inhibitory Concentration against 4 strains of Gram-positive bacteria and 5 strains of Gram-negative bacteria. Of the compounds tested, three were active against various bacteria at concentrations ranging from 31.2 to 250 μg / ml. For the compounds that showed better antibacterial activity, the interaction with human serum albumin, a protein present in large numbers in the higher mammals and responsible for the transport of biologically active molecules, was tested. The Ksv and Ka values obtained indicate moderate interaction formation between the HSA and the compounds tested, ensuring satisfactory bioavailability of the compounds in the blood plasma. Thus, the results obtained in this work indicate that the synthesized 1,4-naphthoquinone amino derivatives can be used as potential antibacterial agents against some species of Gram-positive and Gram-negative bacteria. | eng |
dc.contributor.advisor1 | Lima, Aurea Echevarria Aznar Neves | |
dc.contributor.advisor1ID | CPF: 668.742.388-68 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/1879077396134052 | por |
dc.contributor.referee1 | Lima, Aurea Echevarria Aznar Neves | |
dc.contributor.referee2 | Vega, Maria Raquel Garcia | |
dc.contributor.referee3 | Castro, Rosane Nora | |
dc.contributor.referee4 | Barreto, Cleber Bomfim | |
dc.contributor.referee5 | Oliveira, Marcia Cristina Campos de | |
dc.creator.ID | CPF: 368.510.368-78 | por |
dc.creator.Lattes | http://lattes.cnpq.br/6411249230871934 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Ciências Exatas | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Química | por |
dc.relation.references | ABBOUD, R.; AKIL, M.; CHARCOSSET, C.; GREIGE-GERGES, H. Interaction of glucocorticoids and progesterone derivatives with human serum albumin. Chemistry and Physics of Lipids, 207, 2017, p. 271-278. AGERTT, V. A.; MARQUES, L. L.; BONEZ, P. C.; DALMOLIN, T. V.; OLIVEIRA, G. N. M. de.; CAMPOS, M. M. A. de. Evaluation of antimycobacterial activity of a sulphonamide derivative. Tuberculosis, 93, 2013, p. 318-321. AMINOV, R. History of antimicrobial drug discovery: major classes and health impacts. Biochemical Pharmacology, 133, 2017, p. 4-19. ANVISA. Agência Nacional de Vigilância Sanitária. Agentes antimicrobianos: bases teóricas e usos clínicos. 2007. Disponível em http://www.anvisa.gov.br/servicosaude/controle/rede_rm/cursos/rm_controle/opas_web/modulo1/conceitos.htm. Acessado em fevereiro de 2018. BARBOSA, T. P.; DINIZ-NETO, H. Preparação de derivados do lapachol em meio ácido e em meio básico: uma proposta de experimentos para a disciplina de química orgânica experimental. Química Nova, 36(2), 2013, p. 331-334. BARROS, L. S.; CHAVES, O. A.; SCHAEFFER, E.; SANT’ANNA, C. M. R.; FERREIRA, A. B. B.; CESARIN-SOBRINHO, D.; DA SILVA, F. A.; NETTO-FERREIRA, J. C. Evaluating the interaction between difluorinated chalcones and plasmatic albumin, Journal of Fluorine Chemistry, v. 190, 2016, p. 81–88. BOONYAKETGOSON, S.; RUKACHAISIRIKUL, V.; PHONGPAICHIT, S.; TRISUWAN, K. Naphthoquinones from the leaves os Rhinacanthus nasutus having acethylcolinesterase inhibitory and cytotoxic activities. Fitoterapia, 124, 2018, p. 206-210. CERQUEIRA, E. C.; NETZ, P. A.; CANTO, V. P.; PINTO, A. C.; FOLLMER, C.; Beyond Topoisomerase Inhibition: Antitumor 1,4-Naphthoquinones as Potential Inhibitors of Human Monoamine Oxidase. Chemical and Biological Drugs Diseases, 83, 2014, p. 401-410. CHAVES, O. A.; JESUS, C. S. H.; HENRIQUES, E. S.; BRITO, R. M. M.; SERPA, C. In situ ultra-fast heat deposition does not perturb the structure of serum albumin. Photochemical Photobiological Science, v. 15, 2016, p. 1524–1535. CHAVES, O. A. Estudo da interação entre albuminas séricas e moléculas biologicamente ativas. Química, 41 (146), 2017, p. 147-154. CHAVES, O. A.; SCHAEFFER, E.; SANT’ANNA, C. M. R.; NETTO-FERREIRA, J. C.; CESARIN-SOBRINHO, D.; FERREIRA, A. B. B. Insight into the interaction between a-lapachone and bovine serum albumin employing spectroscopic and computational approach. Mediterranean Journal of Chemistry, 5, 2016, p. 331-339. CHUA, K. Y. L.; STINEAR, T. P.; HOWDEN, B. P. Functional genomics of Staphylococcus aureus. Briefings in Functional Genomics, 12 (4), 2013, p. 305-315. CURRY, S. X-ray crystallography of albumin. In. Human Serum Albumin – New insights on its structural dynamics, functional impacts and pharmaceutical applications. Ed. M. Otagiri, Sojo University Publications, Kumamoto, 2011, p. 1-29. 51 DELARMELINA, M.; DALTOÉ, R. D.; CERRI, M. F.; MADEIRA, K. P.; RANGEL, L. B. A.; LACERDA-JUNIOR, V.; ROMÃO, W.; TARANTO, A. G.; GRECO, S. J. Synthesis, antitumor activity and docking of 2,3-(substituted)-1,4-naphthoquinone derivatives containing nitrogen, oxygen and sulfur. Journal of Brazilian Chemical Society, 26(9), 2015, p. 1804-1816. GALE, R. T.; BROWN, E. D. New chemical tools top robe cell wall biosynthesis in bactéria. Current Opinion on Microbiology, 27, 2015, p. 69-77. GUIMARAES, D. O.; MOMESSO, L. S.; PUPO, M. T. Antibióticos: importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Revista Química Nova, 33 (3), 2010, p. 667-679. GUN’KO, V. M.; KRUPSKA, T. V.; ANDRIYKO, L. S.; KLYMENKO, N. Y.; SIORA, I. V.; NOVIKOVA, O. A.; MARYNIN, A. I.; UKRAINETS, A. I.; CHARMAS, B.; SHEKHUONOVA, S. B.; TUROV, V. V. Bonding of doxorubicin to nanosilica and human serum albumin in various media. Journal of Colloid and Interface Science, 513, 2018, p. 809-819. HAMIDIAN, M.; AMBROSE, S. J.; HALL, R. M. A large conjugative Acinetobacter baumannii plasmid carrying the sul2 sulphonamide and strAB streptomycin resistance genes. Plasmid, 87-88, 2016, p. 43-50. HE, W.; ZHANG, X.; ZHANG, J.; JIA, X.; ZHANG, J.; SUN, W.; JIANG, H.; CHEN, D.; MURCHIE, A. I. H. Riboswitch control of induction of aminoglycoside resistance acetyl and adenyl-transferases. RNA Biology, 10 (8), 2013, p. 1266-1273. HORNING, E. C. Organic Synthesis Collective, Vol. 4, 1963, p. 698-699. JAIN, P.; SARAVANAN, C.; SINGH, S. K. Sulphonamides: Deserving class as MMP inhibitors? European Journal of Medicinal Chemistry, 60, 2013, p. 89-100. JEONG, D.; YAN, J. J.; NOH, H.; HEDMAN, B.; HODGSON, A. O.; SOLOMON, E. I.; CHO, J. Naphthalene oxidation of a manganese(IV)-bis(hydroxo) complex on the presence of acid. Angewandte Chemie International Edition, 57 (26), 2018, p. 7764-7768. KEHELPANNALA, C.; KUMAR, N. S.; JAYASINGHE, L.; ARAYA, H.; FUJIMOTO, Y. Naphthoquinone metabolites produced by Monacrosporium ambrosium, the Ectosymbiotic fungus of tea shot-hole borer, Euwallacea fornicates, in stems of tea, Camellia sinensis. Journal of Chemical Ecology, 44(1), 2017, p. 95-101. KHAMENEH, B., DIAB, R., GHAZVINI, K., BAZZAZ, B. S. F. Breakthroughs in bacterial resistances mechanisms and the potential ways to combat them. Microbial Pathogenesis, 95, 2016, p. 32-42. KIKUCHI, H.; SAKAI, T.; TESHIMA, R.; NEMOTU, S.; AKIYAMA, H. Total determination of chloramphenicol residues in foods by liquid chromatography-tandem mass spectrometry. Food Chemistry, 230, 2017, p. 589-593. KISHIMOTO, S.; TSUNEMATSU, Y.; NISHIMURA, S.; HAYASHI, Y.; HATTORI, A.; KAKEYA, H. Tumescenamide C, an antimicrobial cyclic lipodepsipeptide from Streptomyces sp. Tetrahedron, 68, 2012, p. 5572-5578. LOHMANN, U. Independent synthesis of the violet dyes from 1,2-naftoquinone-4-sulfonic acid and primary aliphatic amines as well as a byproduct. Archive der Pharmazie, 317 (4), 1984, p. 313-323. 52 MARKOVIC, O. S.; CVIJETIC, I, N.; ZLATOVIC, M. V.; OPSENICA, I. M.; KONSTANTINOVIC, J. M.; JOVANOVIC, N. V. T.; SOLAJA, B. A.; VERBIC, T. Z. Human serum albumin binding os certain antimalarials. Specthrochimica acta part A: Molecular and Biomolecular Spectroscopy, 192, 2018, p. 128-139. MARTINEZ, M. J. A.; BENITO, P. B. Biological activity of quinones. Studies in Natural Products Chemistry, 30, 2005, p. 303-366. MOFFA M.; BROOK I. Tetracyclines, Glycylcyclines and Chloramphenicol. In: BENETT, J. E.; DOLIN, R.; BLASER, M. J. Mandell, Douglas, and Bennett’s principles and practice of infectiousdiseases. Ed. Elsevier. 8ª edição, 2015, Filadélfia, p. 263-277. MUSTAEV, A.; MALIK, M.; ZHAO, X.; KUREPINA, N.; LUAN, G.; OPPEGARD, L. M.; HIASA, H.; MARKS, K. R.; KERNS, R. J.; BERGER, J. M.; DRLICA, K. Fluoroquinolone-gyrase-DNA Complexes: Two modes of drug bindings. Journal of Biological Chemistry, 289, 2014, p. 12300-12312. NILSSON, A. C.; JENSEN, J. S.; BJORKMAN, P.; PERSSON, K. Development of macrolide resistance in Mycoplasma pneumoniae-infected Swedish patients treated with macrolides. Scandinavian Journal of Infection Diseases, 46, 2014, p. 315-319. NING, X.; LI, Y.; QI, H.; LI, R.; JIN, Y.; LIU, J.; YIN, Y. Anti-cancer effect of a novel 2,3-didithiocarbamate substituted naphthoquinone as a tumor metabolic suppressor in vitro and vivo. Medicinal Chemical Communications, 9(4), 2018, p. 1-11. OGATA, T.; YOSHIDA, T.; SHIMIZU, M.; TANAKA, M.; FUKUHARA, C.; ISHII, J.; NISHIUCHI, A.; INAMOTO, K.; KIMACHI, T. Unusual, chemoselective Etherification of 2-hydroxy-1,4-naphthoquinone derivatives utilizing alkoxymethyl chlorides: scope, mechanism and application to the synthesis of biologically active natural product (-)-lantalucratin C. Tetrahedron, 72, 2016, p. 1423-1432. OLIVEIRA, M. F.; LEMOS, T. L. G.; MATTOS, M. C.; SEGUNDO, T. A.; SANTIAGO, G. M. P.; BRAZ-FILHO, R. New enamine derivatives of lapachol and biological activity. Anais da Academia Brasileira de Ciências. 74(2), 2002, p. 211-221. PAULEN, F. A.; HOEGY, B.; ROCHE, I. J. S.; MISLIN, G. L. A. Synthesis of conjugates between oxazolidinones antibiotics and a pyochelin analogues. Bioorganic & Medicinal Chemical Letters, 27, 2017, p. 4867-4870. PERIASAMY, M.; BHATT, V. M. A new 1,2-shift in the oxidation of aromatic rings. Tetrahedron Letters, 27, 1977, p. 2357-2360. PIRNÃU, A.; MIC, M.; NEAMTU, S.; FLOARE, C. G.; BOGDAN, M. Calorimetric and spectroscopic studies of the interaction between zidovudine and human serum albumin. Specthrochimica acta part A: Molecular and Biomolecular Spectroscopy, 191, 2018, p. 226-232. PÓOR, M.; KUNSÁGI-MÁTÉ, S.; BÁLINT, M.; HETÉNYI, C.; GERNER, Z.; LEMLI, B. Interaction of mycotoxin zearalenone with human serum albumin. Journal of Photochemistry & Photobiology, B: Biology, 170, 2017, p. 16-24. PRESTON, C. Antimicrobial Resistance Learning Site. Michigan State University, 2018. Disponível em < https://amrls.umn.edu/antimicrobial-resistance-learning-site>. Acessado em fevereiro de 2018. 53 SANTOS-BENEIT, F.; ORDÓÑES-ROBLES, M.; MARTIN, J. F. Glycopeptide resistance: Links with inorganic phosphate metabolism and cell envelope stress. Biochemical Pharmacology, 133, 2017, p. 74-85. SHARMA, R.; FRANCOIS, D.; HAMMERSCHLAG, M. R. New antimicrobial agents for the treatment Staphlococcal infections in children. Pediatric clinics of North America, 64, 2017, p. 1369-1387. SILVA JR, E. N.; MELO, I. M. M.; DIOGO, E. B. T.; COSTA, V. A.; SOUZA FILHO, J. D.; VALENÇA, W. O.; CAMARA, C. A.; OLIVEIRA, R. N.; ARAUJO, A. S.; EMERY, F. S.; SANTOS, M. R.; SIMONE, C. A.; MENNA-BARRETO, R. F. S.; CASTRO, S. L. On the search for potential anti-Trypanosoma cruzi drugs: Synthesis and biological evaluation of 2-hydroxy-3-methylamino and 1,2,3-triazolic naphthoquinoidal compounds obtained by click chemistry reactions. European Journal of Medicinal Chemistry, 52, 2012, p. 304-312. SILVA, T. M.; CAMARA, C. A.; BARBOSA, T. P.; SOARES, A. Z.; DA CUNHA, L. C.; PINTO, A. C.; VARGAS, M. D.; Molluscicidal activity of synthetic lapacholamino and hydrogenated derivatives. Bioorganic and Medicinal Chemistry, 13, 2005, p. 193-196. SINGH, S. B.; YOUNG, K.; SILVER, L. L. What is an “ideal” antibiotic? Discovery challenges and path forward. Biochemical Pharmacology, 133, 2017, p. 63-73. SOUSA, E. T.; CARDOSO, M. P.; SILVA, L. A.; ANDRADE, J. B. Direct determination of quinones in fine atmospheric particulate matter by GC-MS. Microchemical Journal, 118, 2015, p. 26-31. SPIZEK, J.; REZANKA, T. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance and applications. Biochemical Pharmacology, 133, 2017, p. 20-28. TIAN, J.N., LIU, J., HU, Z.D, CHEN, X.G.; Interaction of wogonin with bovine serum albumin. Bioorganic Medicinal Chemistry, v. 13, 2005, p. 4124–4129. WANG, S. H.; LO, C. Y.; GWO, Z. H.; LIN, H. J.; CHEN, L. G.; KUON, C. D.; WU, J. Y. Synthesis and biological evaluation of lipophilic 1,4-naphthoquinone derivative against human cancer cell lines. Molecules, 20, 2015, p. 11994-12015. WEI, W.; YANG, H. Synergy against extensively drug-resistance Acinetobacter baumannii in vitro by two old antibiotics: colistin and chloramphenicol. International Journal of Antimicrobial Agents, 49, 2017, p. 321-326. ZHANG, D.; ZHANG, X.; LIU, Y. C.; HUANG, S. C.; OUYANG, Y.; HU, Y. Investigations of the molecular interactions between nisoldipine and human serum albumin in vitro using multi-spectroscopy, electrochemistry and docking studies. J. Journal of Molecular Liquids, 258, 2018, p. 155-162. | por |
dc.subject.cnpq | Química | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/65038/2018%20-%20Carla%20Cristina%20da%20Silva.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/4632 | |
dc.originais.provenance | Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-05-12T13:54:33Z No. of bitstreams: 1 2018 - Carla Cristina da Silva.pdf: 2750023 bytes, checksum: e8fe906b016884629b9bd10e5c1cca82 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2021-05-12T13:54:33Z (GMT). No. of bitstreams: 1 2018 - Carla Cristina da Silva.pdf: 2750023 bytes, checksum: e8fe906b016884629b9bd10e5c1cca82 (MD5) Previous issue date: 2018-08-15 | eng |
Appears in Collections: | Mestrado em Química |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2018 - Carla Cristina da Silva.pdf | 2018 - Carla Cristina da Silva | 2.69 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.