Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/14802
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rego, Ramon de Sousa | |
dc.date.accessioned | 2023-12-22T03:06:30Z | - |
dc.date.available | 2023-12-22T03:06:30Z | - |
dc.date.issued | 2014-08-26 | |
dc.identifier.citation | REGO, Ramon de Sousa. Polimorfismo no gene que codifica a β-lactoglobulina e associação com características de produção em caprinos leiteiros. 2014. 45 f. Dissertação (Mestrado em Zootecnia) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2014. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/14802 | - |
dc.description.abstract | A qualidade proteica do leite de cabras e a digestibilidade da fração lipídica são importantes fatores que o destacam, quando comparado ao leite de vacas. A β-Lactoglobulina é a proteína de maior abundancia no soro do leite em ruminantes sendo produzida na glândula mamária durante o período de lactação. Ela pode representar até 12% do total proteico. Buscamos com o presente trabalho, avaliar o gene da β-Lactoglobulina (BLG) com seus polimorfismos genéticos nas regiões promotoras 5’ e 3’ UTR e associá-los as características de produção de leite no rebanho caprino experimental. Para isso foram utilizadas 150 cabras (Capra hircus) das raças Saanen e Alpinas, genotipadas para os polimorfismos do gene BLG. Para a genotipagem foram coletados 10 mL de sangue por animal. O sangue foi utilizado para a extração de DNA e amplificação de 2 fragmentos do gene BLG por intermédio da reação em cadeia da polimerase (PCR). Os fragmentos amplificados foram então submetidos à eletroforese em gel de poliacrilamida e avaliados pelo polimorfismo no tamanho do fragmento por restrição (PCR-RFLP). Foram utilizadas as enzimas SmaI e SacII, para a região promotora (região promotora + éxon 1) e para a região do éxon 7 (éxon 7 + região 3’), respectivamente. As diferenças nos padrões de corte foram visualizadas em gel de poliacrilamida. Na região promotora o polimorfismo de base única (SNP) na posição -60 (C/T) foi identificado e apresentou associação com a percentagem de proteínas no leite. Esse resultado sugere uma relação entre os genótipos da região promotora do gene BLG e o nível proteico do leite. Foi observado na região do éxon 7 a presença de dois polimorfismos +4641 (I2/I3) e +4601 (A/G). A variação I2-I3 é caracterizada pela repetição de uma sequência de 10 pb, variando em duas e três vezes, e sendo possível identifica-la por eletroforese. A variação I3 teve frequência muito baixa, e não houve associação entre esse polimorfismo e nenhuma característica de produção. O polimorfismo +4601 (A/G) foi identificado por meio da digestão da enzima SacII. Os alelos identificados tiveram frequências próximas às relatadas por outros autores e apresentaram associação com a percentagem de gordura no leite cabras, sendo que os animais com o genótipo S1S2 apresentaram maior percentagem de gordura que animais S1S1 e S2S2. A maior produção de conteúdo lipídico pode estar relacionada com a característica de transporte de ácidos graxos da β-Lactoglobulina | por |
dc.description.sponsorship | CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Milk whey protein | eng |
dc.subject | Capra hircus | por |
dc.subject | PCR-RFLP | por |
dc.subject | Proteína do soro leite | por |
dc.title | Polimorfismo no gene que codifica a β-lactoglobulina e associação com características de produção em caprinos leiteiros | por |
dc.title.alternative | Polymorphism in the gene encoding the β-lactoglobulin and association with traditional production in dairy goats | eng |
dc.type | Dissertação | por |
dc.description.abstractOther | The protein quality of milk of goats and digestibility of the lipid fraction are important factors that stand out when compared to milk from cows. The β-lactoglobulin is the higher abundant protein in whey ruminants being produced in the mammary gland during lactation. It may represent up to 12% of the total protein. We seek to present work was to evaluate the gene β-Lactoglobulin (BLG) with their genetic polymorphisms in the promoter regions 5 'and 3' UTR and associate them the characteristics of milk production in experimental goat herd. For this 150 goats (Capra hircus) of Saanen and Alpine, genotyped for polymorphisms of the BLG gene were used. For genotyping 10 mL of blood per animal were collected. The blood was used for DNA extraction and amplification of two fragments of the BLG gene by means of polymerase chain reaction (PCR). The amplified fragments were submitted to electrophoresis on polyacrylamide gel and evaluated by by restriction fragment length polymorphism (PCR-RFLP). The SmaI and SacII enzymes were used for the promoter (promoter + exon 1 region) region and the region of exon 7 (exon 7 + region 3 '), respectively. The differences in cutting patterns were visualized on a polyacrylamide gel. In the promoter region of the single nucleotide polymorphism (SNP) at position -60 (C/T) was identified and was associated with the percentage of protein in milk. This result suggests a relationship between genotypes of the promoter region of the BLG gene and the protein level of the milk. The presence of two polymorphisms +4641 (I2/I3) and +4601 (A/G) was observed in the region of exon 7. The I2-I3 variation is characterized by a repeat sequence of 10 bp, varying in two and three times, and it being possible to identify by electrophoresis. The I3 variation was often very low, and there was no association between this polymorphism and any production trait. Polymorphism +4601 (G/A) was identified by enzyme SacII digestion. Alleles were identified frequencies close to those reported by other authors and were associated with the percentage of fat in milk goats, and the animals with the S1S2 genotype had higher fat percentage than S1S1 animals and S2S2. The increased production of lipid content may be related to the characteristic of transporting fatty acids β-lactoglob | eng |
dc.contributor.advisor1 | Jangarelli, Marcelo | |
dc.contributor.advisor1ID | 7975868736 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/3839549418171209 | por |
dc.contributor.advisor-co1 | Melo, Ana Lúcia Puerro de | |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/4393320939032077 | por |
dc.contributor.referee1 | Soares, Maria Amélia Menck | |
dc.contributor.referee2 | Gasparino, Eliane | |
dc.creator.ID | CPF: 124.393.937-03 | por |
dc.creator.Lattes | http://lattes.cnpq.br/6910611263690480 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Zootecnia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Zootecnia | por |
dc.relation.references | ALBENZIO, M.; CAMPANOZZI, A.; D’APOLITO, M.D.; SANTILLO, A.; PETTOELLO MANTOVANI, M.; SEVI, A. Differences in protein fraction from goat and cow milk and their role on cytokine production in children with cow’s milk protein allergy. Small Ruminant Research. v. 105, p. 202– 205, 2012. ALEXANDEER, L.J.; HAYES, G.; PEARSE, M.J.; BEATTIE, C.W.; STEWART, A.F.; WILLIS, L.M.; MACKINLAY, A.G. Complete Sequence of Bovine B-lactoglobulin cDNA . Nucleic Acids Research. v. 17, p. 16739, 1989. ALFEREZ, M.J.M.; BARRIONUEVO, M.; LOPEZ ALIAGA, I.; SANZ SAMPELAYO, M.R.; LISBONA, F.; ROBLES, J.C. Digestive utilization of goat and cow milk fat in malabsorption syndrome. Journal of Dairy Research, v. 68, p. 451–461, 2001. ALSTON-MILLS, B.; AND M.P.; THOMPSON, A. possible mechanism of action of β- lactoglobulin. Journal of Dairy Science. v. 76, p. 196, 1993 ARBER, W.; LINN, S. DNA modification and restriction. Annual Review of Biochemistry. v. 38, p. 467–500, 1969. ASCHAFFENBURG, R.; DREWRY, J. Occurrence of different beta-lactoglobulin in cow’s milk. Nature. v. 176, n.4474, p. 218-219, 1955. BACH, A.C.; INGENBLEEK, Y.; FREY, A. The usefulness of dietarymediumchain trigycerides in body weight control: fact or fancy? Journal Lipid Research. v.37, p. 708–726, 1996. BALLESTER, M.; SANCHEZ, A.; FOLCH, J.M. Polymorphisms in the goat beta-lactoglobulin gene. Journal Dairy Research. v. 72, n.3, p. 379–384, 2005. BALTRĖNAITĖ, L.; LIUCVAIKIENĖ, K.; MAKŠTUTIENĖ, N.; MORKŪNIENĖ, K.; ŠALOMSKIENĖ, L.; MICEIKIENĖ, I.; STANKEVIČIUS, R.; KERZIENĖ, S. The influence of goat milk protein gene polymorphism to milk traits. Veterinarija ir Zootechnika. v. 62, n. 84, p. 8-13, 2013. BARRIONUEVO, M.; ALFEREZ, M.J.M.; LOPEZ ALIAGA, I.; SANZ SAMPELAYO, M.R. Beneficial effect of goat milk on nutritive utilization of iron and copper in malabsorption syndrome. Journal of Dairy Science. v85, p. 657–664, 2002. BELLASCO, J.; BRAWERMAN, G. Control of Messenger RNA Stability. San Diego, CA: Elsevier Academic Press, 1993. BOBE, G.; BEITZ, D. C.; FREEMAN, A. E.; LINDBERG, G. L. Effect of milk protein genotypes on milk protein composition and its genetic parameter estimates. Journal of Dairy Science. v. 82. n. 12, p. 2797-2804, 1999 (a). 39 BOBE, G.; BEITZ, D.C; LINDBERG, G.L. Associations among individual proteins and fatty acids in bovine milk as determined by correlations and factor analyses. Journal of Dairy Research. v. 66 p. 523-536, 1999(b). BOTARO, B .G.; LIMA, Y.V.R.; AQUINO, A.A.; FERNANDES, R.H.R.; GARCIA, J.F.; SANTOS, M.V. Polimorfismo da beta-lactoglobulina não afeta as características e a estabilidade do leite bovino. Pesquisa Agropecuária Brasileira. v.42, n.5, p.747-753, 2007. BOULANGER, A.; GROSCLAUDE, F.; MAHE, M.F. Polymorphism of caprine (Y g-I-caseina ndcx g-2-casein.Genetic Selection Evolution. v.16: p157-175, 1984 BROOKES, A. J. The essence of SNPs. Gene v. 234.p177-186, 1999. BRUCE, C.A.; WHITELAW. Regulation of ovine β-lactoglobulin gene expression during the first stage of lactogenesis. Biochimestry and Biophysical Research Comunication. v. 209, p. 1089-1093,1995. BUERGIN-WOLFF, A.; SIGNER, E.; FRIESS, H.M.; BERGER, R.; BIRBAUMER, A.; JUST, M. The diagnostic significance of antibodies to various cow’s milk PROTEINS. Europe Journal Pediatric. v. 133, p. 17–24, 1980. BURDON, T. G.; J. DEMMER, A. J. CLARK, AND C. J. WATSON. The mammary factor mpbf is a prolactin-induced transcriptional regulator which binds to stat factor recognition sites. FEBS Letters.v. 350, p. 177-182, 1994a BURDON, T.G.; MAITLAND, A.J.; CLARK, R.; WATSON, C. J. Regulation of the sheep beta-lactoglobulin gene by lactogenic hormones is mediated by a transcription factor that binds an interferon-gamma activation siterelated element. Molecular Endocrinolology. v. 8: p. 1528-1536, 1994b CAIXETA, E.T. Tipos de marcadores moleculares. In: BORÉM, A.; CAIXETA, E. T. (Ed.). Marcadores moleculares. 2. ed.Viçosa: UFV, p. 11-93, 2009. CEBALLOS, L. S.; MORALES, E. R.; ADARVE, G. T.; CASTRO, J.D.; MARTÍNEZ, L.P.; SAMPELAYO, M.R. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. Journal of Food Composition and Analysis. v. 22, p. 322–329, 2009. CHILLIARD, Y.; FERLAY, A.; ROUEL, J.; LAMBERET, G. A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. Journal of Dairy Science. v.8, n.5, p.1751–1770, 2003. CHIOFALO, L.; MICARI, P. Attuali conosenze sulle variante dele proteine del latte nelle popolazione ovine allevate in sicilla. Osservazioni sperimentali. Science e Tecnica Lattiero-Casearia. v. 38, p. 1004-114, 1987. CHO, Y., C. A.; BATT, A.N.; SAWYER L. Probing the retinol-binding site of bovine β- lactoglobulin. Journal Biol Chemestry. v. 269, p. 11102-11107, 1994. 40 EL-HANAFY, A. A.; EL-SAADANI, M. A.; EISSA, M.; MAHAREM, G. M.; KHALIFA, Z. A. Polymorphism of β-lacto globulin gene in barki and damascus and their cross bred goats in relation to milk yield. Biotecnic in Animal Husbandry. v. 26, n. 1-2, p 1-12, 2010. FARRELL JR.; H. M. ET AL. Nomenclature of the proteins of cows' milk - sixth revision. Journal of Dairy Science. v. 87, p. 1641-1674. 2004 FERREIRA, M.E.; GRATTAPAGLIA, D. Introdução ao uso de marcadores moleculares em análise genética. 2 ed. Brasília: Embrapa, p. 220, 1998. FLOWER D.R. The lipocalin protein family: structure and function. Biochemistry Journal. v. p. 318:1–14, 1996. FOLCH, J.M.; COLL, A.; HAYES, G.; SANCHEZ, A. Characterization of a caprine b-lactoglobulin pseudogene, identification and chromosomal localization by in situ hybridization in goat, sheep and cow. Gene. v. 177 , p. 87- 91, 1996. FOLCH. J.M., COLL, A. SANCHEZ, A. Complete sequence of caprine beta-lactoglobulin gene. Journal of Dairy Science. v. 77, p. 3493-3497, 1993. FORMAGGIONE, P.; SUMMER, A.; MALACARNE, M.; MARIANI, P. Milk protein polymorphism: detection and diffusion of the genetic variants in Bos genus. Univeritàdegli Studi di Parma, AnnalidellaFacoltadi Medicina Veterinario, vol. XIX, 1999. Disponível em: <http://www.unipr.it/arpa/facvet/annali/1999/formaggioni/formaggioni.htm> Acesso em : 27 de novembro de 2012. FOX, P. F.; MCSWEENWEY, P.L.H. Diary chemistry and biochemistry.Blackie Academic & Professional. p. 478, 1998. FURTADO, M. Fabricação de queijos de cabra. São Paulo: Nobel S.A, 6ª ed., 1985. GAYE, P.; MUE-DELAHAIE, D.; MERCIER, J .C.; SOULIER, S.; VILOTTE, J.L.; FURET, J.P. Ovine Beta lactoglobulin messenger RNA: Nucleic sequence and mRNA levels during functional differentiation of the mammary gland. Biochimistry. V. 68, p. 1097-1107, 1986. GODOVAC-ZIMMERMANN J.; KRAUSE I.; BARANYI M.; FISCHER-FRUHHOLZ S.; JUSZCZAK J.; ERHARDT G.; BUCHBERGER J.; KLOSTERMEYER H. Isolation and rapid sequence characterization of two novel bovine b-lactoglobulin I and J. Journal of Protein Chemistry. v. 15, p. 743–750, 1996. GODOVAC-ZIMMERMANN J,; KRAUSE I.; BUCHBERGER J.; WEISS G.; KLOSTERMEYER H. Genetic variants of bovine b-lactoglobulin.A novel wild-type b-lactoglobulin W and its primary sequence. BiolChemistry Hoppe-Seyler. v. 371, p. 255–260 ,1990. GODOVAC-ZIMMERMANN, J. The structural motif of beta-lactoglobulin and retinolbinding protein: A basic framework for binding and transport of small hydrophobic molecules. Trends Biochemistry Science. v. 13, p. 64-66, 1988. 41 GOETSCH, A.L; ZENG, S.S; GIPSON, T.A. Factors affecting goat milk production and quality. Small Ruminant Research. v.101 p. 55– 63, 2011. GRAZIANO, M.; D’ANDREA, M.; ANGIOLILLO, A.; LAGONIGRO, R.; PILLA, F.A. new polymorphism in goat beta-lactoglobulin promoter region. Italina Journal Animal Science. v. 2, p.67–70, 2003. GREENBERGER, N.J.; SKILLMAN, T.G. Medium chain triglycerides. Physiologic considerations and clinical implications .New England Journal Medical. v. 280, p. 1045–1058, 1969. GRIFFITHS, A. J. F.; WESSLER S.R; LEWONTIN R. C.; CARROLL S. B. Introdução a Genética. 9ª Edição. Tradução: P. A. Motta. Guanabara Koogan. Rio de Janeiro, 2009. GROSCLAUDE, F. Genetic polymorphisms of milk proteins. In: Proceedings of the IDF Seminar on Implications of Genetic Polymorphism of Milk Proteins on Production and Processing of Milk. Dairy Federation. v. 3, 1995. GURR, M.I. Nutritional significance of lipids. In: Fox, P.F. (Ed.), Advanced Dairy Chemistry, v. 2 Lipids. p. 349–402. 1995. HAENLEIN, G. F. W. Goat milk in human nutrition. Small Ruminant Research. v. 51, p. 155-163, 2004. HAMBLING, S. G.; MCALPINE, A. S.; SAWYER, L. B-lactoglobulin. In: P. F. Fox (ed.) Advanced dairy chemistry No. 1: Proteins. Elsevier Applied Science. p 141-189,1992. HAUG, A.; HOSTMARK, A. T.; HARSTAD, O. D. Lipids in health and disease. BioMedical Central, v 6, p. 25, 2007. HILL, J.P.; BOLAND, M.J.; CREAMER, L.K.; ANEMA, S.G.; OTTER, D.E.; PATERSON, G.R.; LOWE, R.; MOTION, R.L.; THRESHER, W.C. Effect of the bovine beta-lactoglobulin phenotype on the properties of beta-lactoglobulin, milk composition and dairy products. Macromolecular Interactions in food technology. v.650, p.281-294. 1996. HILL, J.P.; THRESHER, W.C.; BOLAND, M.J.; CREAMER, L.K.; ANEMA, S.G.; MANDERSON, G.; OTTER, D.E.; PATESON, G.R.; LOWE, R.; BURR, R.G.; MOTION, R.L.; WINKELMAN, A.; WICKHAM, B. The polymorphism of the milk protein betalactoglobulin: a review. Milk composition, production and biotechnology. p.173-202. 1997. INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. Disponível em: www.ibge.gov.br, 2005. Acesso em: 21 de novembro de 2012. JANDAL, J.M. Comparative aspects of goat and sheep milk. Small Ruminant Research. v. 22, p. 177-185, 1996. 42 JANSA PEREZ, M.; LEROUX, C.; SANCHEZ BONASTRE, A.; MARTIN, P. Occurrence of a LINE sequence in the 3« UTR of the goat as"-casein E-encoding allele associated with reduced protein synthesis level. Gene v.147 p.179-187, 1994. JEFFREYS, A.J.; WILSON, V.; THEIN, S.L. Hipervariable “minisatellite” regions in human DNA. Nature, v. 314, p. 67-73, 1985. JENNESS, R. Composition and characteristics of goat milk: review 1968–1979. Journal of Dairy Science. v. 63, p. 1605–1630, 1980. KAHILO, KH.; EL-SHAZLY, S.; EL-KHADRAWY A; FATTOUH I. Genetic Polymorphism in β-lactoglobulin Gene of Some Goat Breeds in Egypt and its Influence on Milk Yield. Life Science Journal. v.11, n.10, p. 232-238, 2014. KALSER, M.H. Medium chain triglycerides. Advanced Internal Medical, v. 17, p. 301–322, 1971 KING, J.B.W. The distribution of sheep beta-lactoblobulin. Animal production. V. 11, p. 53-57, 1969. KNUDSEN, J.; GRUNNET, I. Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase. Synthesis of medium-chain-length (C8 – C12) acyl-CoA esters by goat mammary-gland fatty acid synthetase. Biochemical Journal. v. 202, p.139-143, 1982. KONTOPIDIS, G.; HOLT, C.; SAWYER, L. The ligand-binding site of bovine β- lactoglobulin: Evidence for a function. Journal of Molecular Biology. v. 318, p. 1043-1055, 2002 KONTOPIDIS, G.; HOLT, C.; SAWYER, L. Invited review: betalactoglobulin: binding properties, structure and function. Journal of Dairy Science, v.87, p.785-796, 2004. KUMAR, A.; ROUT, K. P.; ROY, R. Polymorphism of b-lactoglobulin gene in Indian goats and its effect on milk yield. Journal Application Genetic. v. 47, n. 1, 2006. KUSS, A.W.; GOGOL, J.; GEIDERMANN, H. Associations of a polymorphic AP-2 binding site in the 5'-flanking region of the bovine beta-lactoglobulin gene with milk proteins. Journal of Dairy Science. v. 86, n. 6, p. 2213-2218, 2003. LE JAOUEN, J.C. Milking and the technology of milk and milk products. Goat production. Academic Press. p. 345-377, 1981 MACHA, J., Protein polymorphism in goat’s milk. Zivocisna Vyroba. V. 15, P. 801–805, 1970. MACK, P.B. A Preliminary Nutrition Study of the Value of Goat’s Milk in the Diet of Children. American Goat Society Publishers, p.106–132, 1952 43 MARTIN, P. Polymorphisme genetique des lactoproteines caprines. Lait. v. 73, p. 511–532, 1993 MELIA, S.; LOSI, G.; CASTAGNETTI, G.B. The influence of milk κ-casein and β-lactoglobulin phenotypes on fatty acid composition of milk from Reggiana cows. Dairy Science Technologies. v. 89, p. 115–122, 2009. MILLER S. A.; D.D.DYKES D. D.; POLESKY H. F.. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, v. 16, n. 3, p. 1215. 1988. MISZTAL, I. REMLF90 manual, 2002. Disponívelem<http://nce.ads.uga.edu/ ~ignacy/numpub/blupf90/docs/remlf90.pdf>. MOIOLI, B.; D’ANDREA, M.; PILLA, F. Candidate genes affecting sheep and goat milk quality. Small Ruminant Research. v. 68, p. 179–192, 2007. MOIOLI, B.; PILLA, F.; TRIPALDI, C. Detection of milk protein genetic polymorphisms in order to improve dairy traits in sheep and goats: a review. Small Ruminant Research. v.27. p. 185–195, 1998. MULLIS, K.B.; FALOONA, F.A. Specific synthesis of DNA in vitro via a polymerase-catalyzed reation. Methods in ezymology. v. 155, p. 335-350, 1987. PALMQUIST, D.L.; BEAULIEU, A.D.; BARBANO, D.M. Feed and animal factors influencing milk fat composition. Journal of Dairy Science v. 76 p. 1753-1771, 1993. PASSEY, R.G.; MACKINLAY, A.G. Characterization of a second, apparently inactive copy of the bovine β-lactoglobulin gene. European Journal of biochemistry. V. 233, p. 736-743, 1995. PENA, N.P.; SANCHEZ, A.; COLL, A.; FOLCH, J.M. Isolation, sequencing, and relative quantitation by fluorescent-ratio PCR of feline b-lactoblobulin I, II and III cDNAs. Mammalian. Genome. v. 10, p. 560-464, 1999. PENA, R.N.; SANCHEZ, A.; FOLCH, J.M. Characterization of genetic polymorphism in the goat beta-lactoglobulin gene. Journal of Dairy Reserch. v. 67, p. 217–224, 2000. PEREZ, M. D. Effect of beta-lactoglobulin on the activity of pregastric lipase. A possible role for this protein in ruminant milk. Biochimistry Biophysic Acta. v. 1123, p. 151-155, 1992. PEREZ, M. D.; M. CALVO. Interaction of beta-lactoglobulin with retinol and farry acids and its role as a possible biological function for this protein: A review. Journal of Dairy Science. v.78, p.978-988, 1995. PRÉAUX G.; BRAUNITZER G.; SCHRANK B.; STANGL A. The aminoacid sequence of goat b-lactoglobulin. Hoppe-Seyler's Zeitung für Phisiologie und Chemie, v. 360, p. 1595, 1979. 44 QIN, B. Y.; CREAMER, L. K.; BAKER, E. N.; JAMESON, G. B. 12-bromododecanoic acid binds inside the calyx of bovine β-lactoglobulin. FEBS Letters. V. 438, p.272-278, 1998. RAYNAL-LJUTOVACA, K.; LAGRIFFOULB, G.; PACCARDB, P.; GUILLET, I.; CHILLIARDC, Y. Composition of goat and sheep milk products: An update. Small Ruminant Research. v. 79, p 57–72, 2008. REMEUF, F. Influence du polymorphisme genetique de lacaseine α-s-1 caprine surles caracteristiques physico-chimiques et technologiques du lait. Lait, v. 73, p. 549–557, 1993. RIIHIMÄKI-LAMPÉN, L.H.; VAINIO, M.J.; VAHERMO, M.; POHJALA, L.L.; HEIKURA, J.M.; VALKONEN, K.H.; VIRTANEN, V.T.; YLI-KAUHALUOMA, J.T.; VUORELA, P.M. The Binding of Synthetic Retinoids to Lipocalin β-Lactoglobulins. Journal Medical Chemistry. v.53, p. 514–518, 2010. ROBITAILLE, G. Influence of kappa-casein and beta-lactoglobulin genetic variation on the heat stability of milk. Journal of Dairy Research. v.62, p.593-600, 1995. ROBITAILLE, G.; BRITTEN, M.; MORISSET, J.; PETITCLERC, D. Quantitative analysis of beta-lactoglobulin A and B genetic variants in milk of cows beta-lactoglobulin AB throughout lactation. Journal of Diary Research. v. 69, n.4, P.651-654, 2002. ROSEN, J. M.; WYSZOMIERSKI, S. L.; HADSELL, D. Regulation of milk protein gene expression. Annual Review Nutricion. v. 19, pv. 407-436, 1999. SABBAH, A.; HASSOUN, S.; DROUET, M. L’ allergie au lait de vache et sa substitution par le lait de chevre. In: Proceedings of the Colloque Interets Nutrition ne let Dietetique du Lait de Chevre, v. 81, p. 111–118, 1997. SANGER F.; NICKLEN S.; COULSON A. R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Science of the United States of America, v. 74, n. 12, p. 5463-5467, 1977. SARDINA, M. T; ROSA, J.M.; DAVOLI, R. Polymorphisms of beta-lactoglobulin promoter region. Molecular Biology Reports, v. 39, p. 3203–3210, 2012. SAS Institute Inc. Statistical Analysis System user’s guide. Version 9.1 ed. Cary: SAS Institute, USA, 2002. SCHUTZ, M.M.;, VANRADEN, P.M.; WIGGANS, G.R.; NORMAN, H.D. Standardization of lactation means of somatic cell scores for calculation of genetic evaluations. Journal of Dairy Science, v.78, p.1843-1854, 1995. SCHWABE, A.D.; BENNETT, L.R.; BOWMAN, L. Poctanoic acid absorption and oxidation in humans. Journal Application Physiology. v. 19, p. 335– 337, 1964. SCOTT, K. D.; ABLETT, E. M.; LEE, L. S.; HENRY, R. J. AFLP markers distinguishing an early mutant of flame seedless grape. Euphytica. v. 113, n. 3, p. 245-249, 2000. 45 STREULI, C. Extracellular matrix and gene expression in mammary epithelium. Seminars Cell Biology.. v. 4, p. 203-212. 1993 STUPNISKII, R.M.; IL’CHENKO, M.D.; Electrophoresis of goat’s milk proteins. Fiziol. Biokim. Sel’Khoz Zhivot Respub. Mezhved Temat. Nauch. v. 5, p.62–65, 1967. SWAISGOOD, H.E. Characteristics of milk. In: FENNEMA, O.R. Food chemistry, p. 841-878, 1996. SZTANKÓOVÁ Z.; MÁTLOVÁ, V.; MALÁ G. Genetic polymorphism of the β-lactoglobulin gene in the proximal region in the Czech goat population. 58º Annual Meeting of the European Association for Animal Production. Anais…p. 26 – 29, 2007. TANTIBHEDHYANANGKUL, P.; HASHIM, S.A. Medium-chain triglyceride feeding in premature infants: effects on fat and nitrogen absorption. Pediatrics. v. 55, p. 359–370, 1975. TANTIBHEDHYANANGKUL, P.; HASHIM, S.A. Medium-chain triglyceride feeding in premature infants: effects on calcium and magnesium absorption. Pediatrics v. 61, p. 537–545, 1978. TAYLOR, S.L. Immunologic and allergic properties of cow’s milk proteins in humans. Journal Food Protection. v. 49, p. 239–250, 1986. TELLIEZ, F.; BACH, V.; LEKE, A.; CHARDON, K.; LIBERT, J.P. Feeding behavior in neonates whose diet contained medium-chain triacylglycerols: short-term effects on thermoregulation and sleep. Journal Clinical Nutrition. v.76 n.5, p. 1091–1095, 2002. TSIARAS, A. M; BARGOULI, G; BANOS, G; BOSCOS, C. M. Effect of Kappa-Casein and Beta-Lactoglobulin Loci on Milk Production Traits and Reproductive Performance of Holstein Cows. Journal of Dairy Science v. 88 p. 327–334, 2005. VERESS, G.Y.; KUSZA. S.Z.; BŐSZE, Z.S.; KUKOVICS, S.; JÁVOR, A. Polymorphism of the αs1-casein, к-casein and ß-lactoglobulin genes in the Hungarian Milk Goat. South African Journal of Animal Science. v. 34, p 20-23, 2004. WANG, Q.;. ALLEN, J.C.; SWAISGOOD, H.E. Binding of lipophilic nutrients to β- lactoglobulin prepared by bioselective adsorption. Journal of Dairy Science. v. 82, p. 257-264, 1999. YAHYAOUI, M.H.; PENA, R.N.; SANCHEZ, A.; FOLCH, J.M. Polymorphism in the goat β-lactoglobulin proximal promoter region. Journal Animal Science. v. 78, p. 1100–1111, 2000. | por |
dc.subject.cnpq | Zootecnia | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/4964/2014%20-%20Ramon%20%20de%20Sousa%20Rego.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/11853/2014%20-%20Ramon%20de%20Sousa%20Rego.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/19738/2014%20-%20Ramon%20de%20Sousa%20Rego.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/26051/2014%20-%20Ramon%20de%20Sousa%20Rego.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/32494/2014%20-%20Ramon%20de%20Sousa%20Rego.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/38898/2014%20-%20Ramon%20de%20Sousa%20Rego.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/45226/2014%20-%20Ramon%20de%20Sousa%20Rego.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/51638/2014%20-%20Ramon%20de%20Sousa%20Rego.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/58098/2014%20-%20Ramon%20de%20Sousa%20Rego.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/1303 | |
dc.originais.provenance | Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2016-10-18T11:49:54Z No. of bitstreams: 1 2014 - Ramon de Sousa Rego.pdf: 1491511 bytes, checksum: 746021e21f53b13713de3e8e94d03121 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2016-10-18T11:49:54Z (GMT). No. of bitstreams: 1 2014 - Ramon de Sousa Rego.pdf: 1491511 bytes, checksum: 746021e21f53b13713de3e8e94d03121 (MD5) Previous issue date: 2014-08-26 | eng |
Appears in Collections: | Mestrado em Zootecnia |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2014 - Ramon de Sousa Rego.pdf | Documento principal | 1.46 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.