Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14804
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKrebs, Lisia Castro
dc.date.accessioned2023-12-22T03:06:31Z-
dc.date.available2023-12-22T03:06:31Z-
dc.date.issued2021-05-28
dc.identifier.citationKREBS, Lisia Castro. Estudo das características morfométricas e da associação genômica ampla (GWAS) em equinos da raça Campolina. 2021. 117 f. Dissertação (Mestrado em Zootecnia) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14804-
dc.description.abstractOs estudos em análises morfométricas dos equinos progrediram nos últimos anos; sempre partindo da premissa desta avaliação estar relacionada com a aptidão do cavalo. Com o avanço da avaliação genética na equinocultura criou-se a oportunidade de obter informações precisas sobre a funcionalidade dos animais, assim como a maior exatidão da descendência e obter o alelo desejado. Esta pesquisa tem como objetivo realizar Estudo das características Fenotípicas e o Estudo de Associação Genômica Ampla (GWAS) de medidas morfométricas em equinos da raça Campolina. Foram mensurados 270 equinos, com idade acima de 36 meses de idade, registrados na Associação Brasileira dos Criadores do Cavalo Campolina (ABCCCampolina), pertencentes aos estados da Bahia, Rio de Janeiro e Minas Gerais, para a Análise Fenotípica de 45 medidas morfométricas. Destes equinos foram selecionados, com base no pedigree, 48 animais para extração do DNA para posterior realização do GWAS. E, para a realização do GWAS foram utilizados os dados de 18.876 registros genealógicos da ABCCCampolina, o qual contém as informações de 15 medidas morfométricas. O DNA genômico foi extraído de amostras de bulbo capilar utilizando o kit Nucleospin Tissue. Posteriormente a extração do DNA, ocorreu a genotipagem do DNA com a utilização do chip GGP Equine Illumina ~65000SNP. As análises estatísticas realizadas para os dados fenotípicos foram correlação de Pearson, covariância, análise discriminante e componentes principais. Após foi realizado a análise genotípica e o GWAS. As análises foram realizadas utilizando o Excel®, RStudio® e softwares BLUPF90®. Na análise de correlação de Pearson observou-se que as medidas lineares e de perímetro correlacionaram positivamente com as 45 medidas morfométricas. A maioria das medidas angulares possuíram correlações não significantes com as medidas morfométricas. Verificou-se que na análise de covariância, de componentes principais e discriminante que os machos apresentaram menor variação das medidas lineares e de perímetros em relação as fêmeas. Os machos foram mais altos e apresentaram peito mais largo, maior ângulo escapulo-umeral e maior pescoço, tanto no comprimento quanto no perímetro em relação as fêmeas (P<0,05). As fêmeas apresentaram maior perímetro torácico, ancas mais largas e maior abertura dos ângulos coxo-solo e femoro-tibial do que os machos (P<0,05). Na análise de GWAS observou-se que para as 15 medidas morfométricas 628 SNPs foram responsáveis por explicar mais de 1% da variação genética ocorrida em equinos da raça Campolina. Conclui-se que na raça Campolina, as medidas lineares e de perímetros são as medidas morfométricas mais indicadas para classificação dos equinos quanto ao sexo, apresentando maior dimorfismo sexual, quando comparadas as medidas angulares. Os possíveis genes candidatos para as medidas morfométricas avaliadas foram: RBMS3, HAUS, PIK3R1, SUCLG2, ZCWPW2, CLYBL, DNAJC3, DNAJC15, KMO, LMOD3, LOC100630169, LOC102148584, LRCH1 e THRB.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectcavalopor
dc.subjectgenética,por
dc.subjectmorfometriapor
dc.subjectgeneticseng
dc.subjecthorseeng
dc.subjectmorphometryeng
dc.titleEstudo das características morfométricas e da associação genômica Ampla (GWAS) em equinos da raça Campolinapor
dc.title.alternativeStudy of morphometric characteristics and genomic wide association (GWAS) in Campolina horseseng
dc.typeDissertaçãopor
dc.description.abstractOtherStudies in morphometric analyzes of horses have progressed in recent years; always assuming this assessment is related to the horse's fitness. With the advance of genetic evaluation in equine culture, the opportunity has been created to obtain precise information about the functionality of the animals, as well as greater accuracy of offspring and to obtain the desired allele. This research aims to study the Phenotypic characteristics and the Genomic Wide Association Study (GWAS) of morphometric measurements in Campolina horses. A total of 267 horses, aged over 36 months, registered at the Brazilian Association of Horse Breeders Campolina (ABCCCampolina), belonging to the states of Bahia, Rio de Janeiro and Minas Gerais, were measured for the Phenotypic analysis of 45 morphometric measurements. From these horses, 48 animals were selected, based on the pedigree, for DNA extraction for subsequent GWAS performance. And, to carry out the GWAS, data from 18,876 genealogical records of ABCCCampolina were used, which contains information from 15 morphometric measurements. Genomic DNA was extracted from hair bulb samples using the Nucleospin Tissue kit. After DNA extraction, DNA genotyping was performed using the GGP Equine Illumina ~65000SNP chip. Statistical analyzes performed for phenotypic data were Pearson correlation, covariance, discriminant analysis and principal components. Afterwards, genotypic analysis and GWAS were performed. Analyzes were performed using Excel®, RStudio® and BLUPF90®. In the Pearson correlation analysis, it was observed that the linear and perimeter measurements correlated positively with the 45 morphometric measurements. Most angular measurements had non-significant correlations with morphometric measurements. It was found that in the analysis of covariance, principal components and discriminant that males presented less variation in linear and perimeter measurements than females. Males were taller and had wider chest, greater scapulohumeral angle and larger neck, both in length and perimeter than females (P<0.05). Females had greater thoracic perimeter, wider hips and greater opening of the thigh-ground and femoro-tibial angles than males (P<0.05). In the GWAS analysis, it was observed that for the 15 morphometric measurements, 628 SNPs were responsible for explaining more than 1% of the genetic variation that occurred in Campolina horses. It is concluded that in Campolina breed, linear and perimeter measurements are the most suitable morphometric measurements for classifying horses according to gender, with greater sexual dimorphism when compared to angular measurements. Possible candidate genes for the morphometric measurements evaluated were: RBMS3, HAUS, PIK3R1, SUCLG2, ZCWPW2, CLYBL, DNAJC3, DNAJC15, KMO, LMOD3, LOC100630169, LOC102148584, LRCH1 and THRB.eng
dc.contributor.advisor1Godoi, Fernanda Nascimento de
dc.contributor.advisor1ID042.528.716-54por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8679152554313928por
dc.contributor.advisor-co1Melo, Ana Lúcia Puerro de
dc.contributor.referee1Godoi, Fernanda Nascimento de
dc.contributor.referee2Barbero, Marina Mortati Dias
dc.contributor.referee3Lucena, Jorge Eduardo Cavalcante
dc.creator.ID159.567.667-86por
dc.creator.Latteshttp://lattes.cnpq.br/2648949771227439por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Zootecniapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Zootecniapor
dc.relation.referencesAL ABRI, M. A., POSBERGH, C., PALERMO, K., SUTTER, N. B., EBERTH, J., HOFFMAN, G. E., BROOKS, S. A. Genome-wide scans reveal a quantitative trait locus for withers height in horses near the ANKRD1 gene. Journal of Equine Veterinary Science, v. 60, p. 67-73. e1, 2018. ARTHUR WT, ELLERBROEK SM, DER CJ, BURRIDGE K, WENNERBERG K. XPLN, a guanine nucleotide exchange factor for RhoA and RhoB, but not RhoC. Journal of Biological Chemistry, v. 277, n. 45, p. 42964-42972, 2002. ARVANITIS C, FELSHER DW. Conditional transgenic models define how MYC initiates and maintains tumorigenesis. In: Seminars in Cancer Biology. Academic Pressp. 313- 317, 2006. BACK, W.; CLAYTON, H.M. Equine Locomotion. Elsevier Health Sciences, 2013. BARBOSA, C. G. Estudo morfométrico na raça mangalarga marchador uma abordagem multivariada. Dissertação (Mestrado em Zootecnia) Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 77p., 1993. BARENDSE, W., HARRISON, B.E., BUNCH, R.J., THOMAS, M.B., TURNER, L.B. Genome wide signatures of positive selection: the comparison of independent samples and the identification of regions associated to traits. BMC genomics, v. 10, n. 1, p. 178, 2009. BEAUMONT, V., MRZLJAK, L., DIJKMAN, U., FREIJE, R., HEINS, M., RASSOULPOUR, A., MUNOZ-SANJUAN, I. The novel KMO inhibitor CHDI-340246 leads to a restoration of electrophysiological alterations in mouse models of Huntington's disease. Experimental Neurology, v. 282, p. 99-118, 2016. BECK-PECCOZ, P., CHATTERJEE, V. K. K. The variable clinical phenotype in thyroid hormone resistance syndrome. Thyroid, v. 4, n. 2, p. 225-232, 1994. BENZING, T., BRANDES, R., SELLIN, L., SCHERMER, B., LECKER, S., WALZ, G., KIM, E. Upregulation of RGS7 may contribute to tumor necrosis factor-induced changes in central nervous function. Nature Medicine, v. 5, n. 8, p. 913-918, 1999. CALVO, S.E.; CLAUSER, K.R.; MOOTHA, V.K. MitoCarta2. 0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Research, v. 44, n. D1, p. D1251- D1257, 2016. CAMPBELL, B.M., CHARYCH, E., LEE, A.W., MOLLER, T., Kynurenines in CNS disease: regulation by inflammatory cytokines. Frontiers in Neuroscience, v. 8, p. 12, 2014. CHEN, W. K., FENG, L. J., LIU, Q. D., KE, Q. F., CAI, P. Y., ZHANG, P. R., LIN, W. P. Inhibition of leucine-rich repeats and calponin homology domain containing 1 accelerates microglia-mediated neuroinflammation in a rat traumatic spinal cord injury model. Journal of Neuroinflammation, v. 17, n. 1, p. 1-14, 2020. CHEN, Y., DU, Q., HE, Y., WEN, C., HU, H. B., WANG, W., CHENG, H. PIK3R1 Promotes Lung Cancer Proliferation Through Activating PI3K/AKT/mTOR Signaling Pathways. Research Square, 2021. CHOU, C. K., TANG, C. J., CHOU, H. L., LIU, C. Y., NG, M. C., CHANG, Y. T., CHIU, C. C. The Potential Role of Krüppel-Like Zinc-Finger Protein Glis3 in Genetic Diseases and Cancers. Archivum Immunologiae et Therapiae Experimentalis, v. 65, n. 5, p. 381- 389, 2017. COWAN, C.M., RAYMOND, L.A., Selective neuronal degeneration in Huntington's disease. Current Topics in Developmental Biology, v. 75, p. 25-71, 2006. DIAZ,I.S., JUNQUEIRA, G.S.B., CRUZ, V.A.R., OLIVEIRA, C.A.A., OLIVEIRA, H.N., CAMARGO, G.M.F., COSTA, R.B. Principal components for morphometric traits in Campolina horses. Journal of Animal Breeding and Genetics,v.138,n.2,p.179- 187,2021. DOGTEROM, M., KOENDERINK, G. H. Actin microtubule crosstalk in cell biology. Nature Reviews Molecular Cell Biology, v. 20, n. 1, p. 38-54, 2019. DUDLEY, A. T., ROBERTSON, E. J. Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Developmental Dynamics: an official publication of the American Association of Anatomists, v. 208, n. 3, p. 349-362, 1997. ENNS, G. M., SHASHI, V., BAINBRIDGE, M., GAMBELLO, M. J., ZAHIR, F. R., BAST, T., GOLDSTEIN, D. B. Mutations in NGLY1 cause an inherited disorder of the endoplasmic reticulum associated degradation pathway. Genetics in Medicine, v. 16, n. 10, p. 751-758, 2014. EquCab3.0 disponível em: https://www.ncbi.nlm.nih.gov/assembly/GCF_000002305.2/, acesso: 20 fev 2021. FORREST, D., HANEBUTH, E., SMEYNE, R. J., EVERDS, N., STEWART, C. L., WEHNER, J. M., CURRAN, T. Recessive resistance to thyroid hormone in mice lacking function. The EMBO Journal, v. 15, n. 12, p. 3006-3015, 1996. FRITZ, D., STEFANOVIC, B. RNA-binding protein RBMS3 is expressed in activated hepatic stellate cells and liver fibrosis and increases expression of transcription factor Prx1. Journal of Molecular Biology, v. 371, n. 3, p. 585-595, 2007. FURUTA, Y., PISTON, D. W., HOGAN, B. L. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development, v. 124, n. 11, p. 2203-2212, 1997. GALEONE, A., HAN, S. Y., HUANG, C., HOSOMI, A., SUZUKI, T., JAFAR-NEJAD, H. Tissue-specific regulation of BMP signaling by Drosophila N-glycanase 1. Elife, v. 6, p. e27612, 2017. GAO, C., HSU, F. C., DIMITROV, L. M., OKUT, H., CHEN, Y. D. I., TAYLOR, K. D., PALMER, N. D. and deletions with cardiometabolic phenotypes in Mexican Americans: The Insulin Resistance Atherosclerosis Family Study. Genetic Epidemiology, v.41, n.4, p.353-362, 2017. GLASS, C. K., AND J. M. HOLLOWAY. Regulation of gene expression by the thyroid hormone receptor. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, v. 1032, n. 2-3, p. 157-176, 1990. GRARUP, N.; SULEM, P.; SANDHOLT, C.H.; THORLEIFSSON, G.; AHLUWALIA, T.S.; STEINTHORSDOTTIR, V.; BJARNASON, H.; GUDBJARTSSON, D.F.; MAGNUSSON, O.T.; SPARSØ, T. Genetic architecture of vitamin B 12 and folate levels uncovered applying deeply sequenced large datasets. PLoS Genet, v.9, n.6, p.e1003530, 2013. GREEN, E. L., GREEN, M. C. The development of three manifestations of the short ear gene in the mouse. Journal of Morphology, v. 70, n. 1, p. 1-19, 1942. GREEN, M. C. Further morphological effects of the short ear gene in the house mouse. Journal of Morphology, v. 88, n. 1, p. 1-21, 1951. GU, J., ZENG, J., WANG, X., GU, X., ZHANG, X., ZHANG, P. LRCH1 polymorphisms linked to delayed encephalopathy after acute carbon monoxide poisoning identified by GWAS analysis followed by Sequenom MassARRAY® validation. BMC medical genetics, v. 20, n. 1, p. 1-8, 2019. GUZZO RM, SALIH M, MOORE ED, TUANA BS. Molecular properties of cardiac tailanchored membrane protein SLMAP are consistent with structural role in arrangement of excitation-contraction coupling apparatus. American Journal of Physiology-Heart and Circulatory Physiology, v. 288, n. 4, p. H1810-H1819, 2005. GUZZO, R. M., SEVINC, S., SALIH, M., TUANA, B. S. A novel isoform of sarcolemmal membrane-associated protein (SLMAP) is a component of the microtubule organizing centre. Journal of cell science, v. 117, n. 11, p. 2271-2281, 2004a. GUZZO, R. M., WIGLE, J., SALIH, M., MOORE, E. D., TUANA, B. S. Regulated expression and temporal induction of the tail-anchored sarcolemmal-membraneassociated protein is critical for myoblast fusion. Biochemical Journal, v. 381, n. 3, p. 599-608, 2004b. HANKS, S., ADAMS, S., DOUGLAS, J., ARBOUR, L., ATHERTON, D. J., BALCI, S., RAHMAN, N. Mutations in the gene encoding capillary morphogenesis protein 2 cause juvenile hyaline fibromatosis and infantile systemic hyalinosis. The American Journal of Human Genetics, v. 73, n. 4, p. 791-800, 2003. HAYES, B. J., BOWMAN, P. J., CHAMBERLAIN, A. J., GODDARD, M. E. Invited review: genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science, v.92, p.433-443, 2009. HILL, E. W., GU, J., EIVERS, S.S., FONSECA, R.G., MCGIVNEY, B.A., GOVINDARAJAN, P.; ORR, N.; KATZ, L.M.; MACHUGH, D. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses. PloS one, v. 5, n. 1, p. e8645, 2010. HOGAN, B. L. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes & Development, v. 10, n. 13, p. 1580-1594, 1996. HUEBNER, K., GARRISON, P. N., BARNES, L. D., CROCE, C. M. The role of the FHIT/FRA3B locus in cancer. Annual Review of Genetics, v. 32, n. 1, p. 7-31, 1998. JAFFE, A. B., HALL, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol., v. 21, p. 247-269, 2005. JIANG, Q., SHI, D., NAKAJIMA, M., DAI, J., WEI, J., MALIZOS, K. N. Lack of association of single nucleotide polymorphism in LRCH1 with knee osteoarthritis susceptibility. Journal of Human Genetics, v. 53, n. 1, p. 42, 2008. JOHANSSON, M., BOCHER, V., LEHTO, M., CHINETTI, G., KUISMANEN, E., EHNHOLM, C., OLKKONEN, V. M. The two variants of oxysterol binding proteinrelated protein-1 display different tissue expression patterns, have different intracellular localization, and are functionally distinct. Molecular Biology of The Cell, v. 14, n. 3, p. 903-915, 2003. JOHANSSON, M., LEHTO, M., TANHUANP , K., COVER, T. L., OLKKONEN, V. M. The oxysterol-binding protein homologue ORP1L interacts with Rab7 and alters functional properties of late endocytic compartments. Molecular Biology of the Cell, v. 16, n. 12, p. 5480-5492, 2005. KIEL, D. P., DEMISSIE, S., DUPUIS, J., LUNETTA, K. L., MURABITO, J. M., KARASIK, D. Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Medical Genetics, v. 8, n. 1, p. 1-13, 2007. KIJAS, J.W., TOWNLEY, D., DALRYMPLE, B.P., HEATON, M.P., MADDOX, J.F., MCGRATH, A., WILSON, P., INGERSOLL, R.G., MCCULLOCH, R., MCWILLIAM, S., TANG, D. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PloS one, v. 4, n. 3, p. e4668, 2009. KINGSLEY, D. M., BLAND, A. E., GRUBBER, J. M., MARKER, P. C., RUSSELL, L. B., COPELAND, N. G., JENKINS, N. A. The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGF superfamily. Cell, v. 71, n. 3, p. 399-410, 1992. LAM, C., WOLFE, L., NEED, A., SHASHI, V., ENNS, G. NGLY1-related congenital disorder of deglycosylation. GeneReviews, 2018. LI, R., GUNDERSEN, G. G. Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nature Reviews Molecular Cell Biology, v. 9, n. 11, p. 860-873, 2008. LIEM, K. F., TREMML, G., ROELINK, H., JESSELL, T. M. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell, v. 82, n. 6, p. 969-979, 1995. LIM, E. T., WÜRTZ, P., HAVULINNA, A. S., PALTA, P., TUKIAINEN, T., REHNSTRÖM, K., SEQUENCING INITIATIVE SUOMI (SISU) PROJECT. Project Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet, v. 10, n. 7, p. e1004494, 2014. LIN, S. R., LI, Y. C., LUO, M. L., GUO, H., WANG, T. T., CHEN, J. B., GUI, Y. T. Identification and characteristics of the testes-specific gene, Ccdc38, in mice. Molecular medicine reports, v. 14, n. 2, p. 1290-1296, 2016. LIN, X.; LU, D.; GAO, Y.; TAO, S.; YANG, X.; FENG, J.; TAN, A.; ZHANG, H.; HU, Y.; QIN, X., SUN, J. Genome-wide association study identifies novel loci associated with serum level of vitamin B12 in Chinese men. Human Molecular Genetics, v. 21, n. 11, p. 2610-2617, 2012. LIU, T., TIAN, J., WANG, G., YU, Y., WANG, C., MA, Y., ZHANG, X., XIA, G., LIU, B., KONG, Z. Augmin triggers microtubule-dependent microtubule nucleation in interphase plant cells. Current Biology, v. 24, n. 22, p. 2708-2713, 2014. LONG, F. Building strong bones: molecular regulation of the osteoblast lineage. Nature Reviews Molecular Cell Biology, v. 13, n. 1, p. 27-38, 2012. LUCENA, J. E. C., DE BARROS VIANNA, S. A., NETO, F. B., SALES FILHO, R. L. M., DINIZ, W. J. S. Estudo comparativo das proporções morfométricas entre garanhões e castrados da raça Campolina. Semina: Ciências Agrárias, v. 36, n. 1, p. 353-366, 2015. LYONS, K. M., HOGAN, B. L. M., ROBERTSON, E. J. Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mechanisms of Development, v. 50, n. 1, p. 71-83, 1995. MADDISON, D.C., GIORGINI, F. The kynurenine pathway and neurodegenerative disease. In: Seminars in Cell & Developmental Biology. Academic Press, 2015. p. 134-141. MAKVANDI-NEJAD, S., HOFFMAN, G. E., ALLEN, J. J., CHU, E., GU, E., CHANDLER, A.M., LOREDO, A.I., BELLONE, R.R., MEZEY, J.G., BROOKS, S.A., SUTTER, N.B. Four loci explain 83% of size variation in the horse. PLoS One, v. 7, n. 7, p. e39929, 2012. MARIE, P.J. Signaling pathways affecting skeletal health. Current Osteoporosis Reports, v. 10, n. 3, p. 190-198, 2012. MCMANUS, C.; FALCÃO, R.A.; SPRITZE, A.; COSTA, D.; LOUVANDINI, H.; DIAS, L.T.; TEIXEIRA, R.A.; REZENDE, M.J.M.; GARCIA, J.A.S. Morphological characterization of Campeiro breed horses. Revista Brasileira de Zootecnia, v.34, n.5, p. 1553-1562, 2005. MEIRA, C.T., FARAH, M.M., FORTES, M.R., MOORE, S.S., PEREIRA, G.L., SILVA, J.A.I.V., CURI, R.A. A genome-wide association study for morphometric traits in quarter horse. Journal of Equine Veterinary Science, v. 34, n. 8, p. 1028-1031, 2014. METZGER, J.; SCHRIMPF, R.; PHILIPP, U.; DISTL, O. Expression levels of LCORL are associated with body size in horses. PLoS One, v. 8, n. 2, p. e56497, 2013. MISZTAL, I.; LEGARRA, A.; AGUILAR, I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. Journal of Dairy Science. v.92, n.9, p.4648-4655, 2009. NADER, M., WESTENDORP, B., HAWARI, O., SALIH, M., STEWART, A. F., LEENEN, F. H., TUANA, B. S. Tail-anchored membrane protein SLMAP is a novel regulator of cardiac function at the sarcoplasmic reticulum. American Journal of Physiology-Heart and Circulatory Physiology, v. 302, n. 5, p. H1138-H1145, 2012. NCBI, National Center for Biotechnology Information. disponível: https://www.ncbi.nlm.nih.gov/assembly/GCF_000002305.2/, acesso: 20 ago 2019. ARIGA, H. MSSP promotes ras/myc cooperative cell transforming activity by binding to Genes to Cells, v. 5, n. 2, p. 127-141, 2000. OPPENHEIMER, J. H. Thyroid hormone action at the cellular level. Science, v. 203, n. 4384, p. 971-979, 1979. PATTERSON, L.; STAIGER, E. A.; BROOKS, S. A. DMRT 3 is associated with gait type in Mangalarga Marchador horses but does not control gait ability. Animal genetics, v. 46, n. 2, p. 213-215, 2015. PENKOV, D., NI, R., ELSE, C., PIÑOL-ROMA, S., RAMIREZ, F., & TANAKA, S. Cloning of a human gene closely related to the genes coding for the c-myc single-strand binding proteins. Gene, v. 243, n. 1-2, p. 27-36, 2000. PEREIRA, J.C.C. Melhoramento genético aplicado à produção animal. 6 ed. Belo Horizonte: FEPMVZ Editora, 2012. 758 p. PETERS, S. M., BLEIJENBERG, E. H., VAN DIERENDONCK, M. C., VAN DER HARST, J. E., SPRUIJT, B. M. Characterization of anticipatory behaviour in domesticated horses (Equus caballus). Applied Animal Behaviour Science, v. 138, n. 1-2, p. 60-69, 2012. RAUCH F, GLORIEUX FH. Osteogenesis imperfecta. The Lancet, v. 363, n. 9418, p. 1377- 1385, 2004.. REEVES, C. V., DUFRAINE, J., YOUNG, J. A., KITAJEWSKI, J. Anthrax toxin receptor 2 is expressed in murine and tumor vasculature and functions in endothelial proliferation and morphogenesis. Oncogene, v. 29, n. 6, p. 789-801, 2010. REGATIERI, I. C.; MOTA, M.D.S. Melhoramento genético de equinos: Aspectos bioquímicos. Ars Veterinaria, v. 28, n. 4, p. 227-233, 2012. RESENDE, M.D.V., LOPES, P.S., SILVA, R.L., PIRES, I.E. Seleção genômica ampla (GWS) e maximização da eficiência do melhoramento genético. Pesquisa Florestal Brasileira, n.56, p. 63, 2008. ROSS, C.A., AYLWARD, E.H., WILD, E.J., LANGBEHN, D.R., LONG, J.D., WARNER, J.H., SCAHILL, R.I., LEAVITT, B.R., STOUT, J.C., PAULSEN, J.S., REILMANN, R., UNSCHULD, P.G., WEXLER, A., MARGOLIS, R.L., TABRIZI, S.J. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nature Reviews Neurology, v. 10, n. 4, p. 204, 2014. SAP, J., MUÑOZ, A., DAMM, K., GOLDBERG, Y., GHYSDAEL, J., LEUTZ, A., VENNSTRÖM, B. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature, v. 324, n. 6098, p. 635-640, 1986. SAPKO, M.T., GUIDETTI, P., YU, P., TAGLE, D.A., PELLICCIARI, R., SCHWARCZ, R. Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: Implications for Huntington's disease. Experimental Neurology, v. 197, n. 1, p. 31-40, 2006. SERBANOVIC-CANIC, J., CVEJIC, A., SORANZO, N., STEMPLE, D. L., OUWEHAND, W. H., FRESON, K. Silencing of RhoA nucleotide exchange factor, ARHGEF3, reveals its unexpected role in iron uptake. Blood, The Journal of the American Society of Hematology, v. 118, n. 18, p. 4967-4976, 2011. SHARABY, Y., LAHMI, R., AMAR, O., ELBAZ, I., LERER-GOLDSHTEIN, T., WEISS, A. M., TZUR, A. Gas2l3 is essential for brain morphogenesis and development. Developmental Biology, v. 394, n. 2, p. 305-313, 2014. SHEN, H., CAMPANELLO, G. C., FLICKER, D., GRABAREK, Z., HU, J., LUO, C., MOOTHA, V. K. The human knockout gene CLYBL connects itaconate to vitamin B12. Cell, v. 171, n. 4, p. 771-782. e11, 2017. SIGNER-HASLER, H., FLURY, C., HAASE, B., BURGER, D., SIMIANER, H., LEEB, T., RIEDER, S. A genome-wide association study reveals loci influencing height and other conformation traits in horses. PLoS One, v. 7, n. 5, p. e37282, 2012. SOLLOWAY, M. J., ROBERTSON, E. J. Early embryonic lethality in Bmp5; Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. Development, v. 126, n. 8, p. 1753-1768, 1999. SOUSA, A.S.; JESUS, I.I.C.; OLIVEIRA, C.A.A.; COSTA, R.B.; GODOI, F.N. How is the morphometry of stallions and mares show-winning and nonwinning Campolina brazilian breed with batida and picada gaits? Journal of Equine Veterinary Science, v. 64, p. 34- 40, 2018. doi: https://doi.org/10.1016/j.jevs.2018.02.012. STONE, T.W., DARLINGTON, L.G. The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders. British journal of pharmacology, v. 169, n. 6, p. 1211-1227, 2013 TANEERA, J., FADISTA, J., AHLQVIST, E., ATAC, D., OTTOSSON-LAAKSO, E., WOLLHEIM, C. B., GROOP, L. Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia. Human Molecular Genetics, v. 24, n. 7, p. 1945-1955, 2015. indicates LCORL/NCAPG as a candidate locus for withers height in German Warmblood horses. Animal Genetics, v. 44, n. 4, p. 467-471, 2013. TOZAKI, T., SATO, F., ISHIMARU, M., KIKUCHI, M., KAKOI, H., HIROTA, K.I., NAGATA, S.I. Sequence variants of BIEC2-808543 near LCORL are associated with body composition in Thoroughbreds under training. Journal of Equine Science, v. 27, n. 3, p. 107-114, 2016. VANRADEN, P.M. Efficient methods to compute genomic predictions. Journal of Dairy Science, v. 91, n. 11, p. 4414-4423, 2008. WANG, H.; MISZTAL, I.; AGUILAR, I.; LEGARRA, A.; MUIR, WM. Genome-wide association mapping including phenotypes from relatives without genotypes in a singlestep (ssGWAS) for 6-week body weight in broiler chickens. Frontiers in Genetics. v.5, n.134, 2014. WANG, Y., ZHANG, H., HE, H., AI, K., YU, W., XIAO, X., ZHOU, G. LRCH1 suppresses migration of CD4(+) T cells and refers to disease activity in ulcerative colitis. International Journal of Medical Sciences, v. 17, n. 5, p. 599, 2020. WEINBERGER, C., THOMPSON, C. C., ONG, E. S., LEBO, R., GRUOL, D. J., EVANS, R. M.The c-erb-A gene encodes a thyroid hormone receptor. Nature, v. 324, n. 6098, p. 641-646, 1986. WIGLE, J. T., DEMCHYSHYN, L., PRATT, M. C., STAINES, W. A., SALIH, M., TUANA, B. S. Molecular cloning, expression, and chromosomal assignment of sarcolemmalassociated proteins: a family of acidic amphipathic -helical proteins associated with the membrane. Journal of Biological Chemistry, v. 272, n. 51, p. 32384-32392, 1997. XU, X., HAN, L., ZHAO, G., XUE, S., GAO, Y., XIAO, J., WANG, H. LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. Journal of Experimental Medicine, v. 214, n. 1, p. 209-226, 2017. YANG, K., HUANG, R., FUJIHIRA, H., SUZUKI, T., YAN, N. N-glycanase NGLY1 regulates mitochondrial homeostasis and inflammation through NRF1. Journal of Experimental Medicine, v. 215, n. 10, p. 2600-2616, 2018. YOSHIDA, K., REEVES, C., VINK, J., KITAJEWSKI, J., WAPNER, R., JIANG, H., MYERS, K. Cervical collagen network remodeling in normal pregnancy and disrupted parturition in Antxr2 deficient mice. Journal of Biomechanical Engineering, v. 136, n. 2, 2014. YU, D., DI PROSPERO, N.A., SAPKO, M.T., CAI, T., CHEN, A., M., DU, F., WHETSELL, W.O., GUIDETTI, P., SCHWARCZ, R., TAGLE, D.A. Biochemical and phenotypic abnormalities in kynurenine aminotransferase II-deficient mice. Molecular and Cellular Biology, v. 24, n. 16, p. 6919-6930, 2004. YUEN, M., SANDARADURA, S. A., DOWLING, J. J., KOSTYUKOVA, A. S., MOROZ, N., QUINLAN, K. G., CLARKE, N.F. Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. The Journal of Clinical Investigation, v. 124, n. 11, p. 4693-4708, 2014. ZHANG, H., WANG, Z., WANG, S., LI, H. Progress of genome wide association study in domestic animals. Journal of Animal Science and Biotechnology, v. 3, n. 1, p. 1-10, 2012. ZHANG, N., ZHAO, C., ZHANG, X., CUI, X., ZHAO, Y., YANG, J., GAO, X. Growth arrest specific 2 protein family: Structure and function. Cell Proliferation, v. 54, n. 1, p. e12934, 2021.por
dc.subject.cnpqZootecniapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/72994/2021%20-%20Lisia%20Castro%20Krebs.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6532
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-04-19T18:39:56Z No. of bitstreams: 1 2021 - Lisia Castro Krebs.pdf: 4520679 bytes, checksum: cadd8da7de0b445b9a4d9fe8b6a9f2f1 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-04-19T18:39:57Z (GMT). No. of bitstreams: 1 2021 - Lisia Castro Krebs.pdf: 4520679 bytes, checksum: cadd8da7de0b445b9a4d9fe8b6a9f2f1 (MD5) Previous issue date: 2021-05-28eng
Appears in Collections:Mestrado em Zootecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Lisia Castro Krebs.pdf4.41 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.