Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/17645
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSaide, Victor Gabriel de Paula-
dc.date.accessioned2024-07-19T15:20:52Z-
dc.date.available2024-07-19T15:20:52Z-
dc.date.issued2022-04-29-
dc.identifier.citationSAIDE, Victor Gabriel de Paula.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/17645-
dc.description.abstractProjéteis de fuzis podem sofrer deformação após o disparo, o que dificulta a identificação da arma de fogo utilizada e, consequentemente, do atirador pela comparação balística realizada por microscopia óptica. Nestes casos, o conhecimento da composição química dos projéteis surge como alternativa. No presente trabalho, a técnica de fluorescência de raios-X por dispersão de comprimento de onda (WDXRF) foi utilizada pela primeira vez como uma ferramenta para identificar a origem de projéteis de fuzis, com o auxílio da quimiometria. Foram analisados, no total, 66 amostras de núcleo de chumbo de projéteis de fuzis de calibre 7.62. Estas amostras formam 6 grupos distintos de projéteis, se considerados o fabricante e o ano de fabricação: Companhia Brasileira de Cartuchos (CBC) (dos anos de 2009 e 2016), Indústrias Militares de Israel (IMI), Cartucho Federal (FC), Fray Luiz Beltrán (FLB) e Zavod Vlasim (ZV). A análise das componentes principais (PCA) sobre os dados espectrais discriminou estes 6 grupos de projéteis. As primeiras 3 componentes principais (PC) foram responsáveis por mais de 99% da variabilidade das amostras. As regiões espectrais do antimônio e do espalhamento de raios-X foram determinantes para a discriminação dos grupos. O dendrograma obtido na análise de agrupamento hierárquico (HCA) mostrou a formação de 6 grupos com uma distância relativa de 1,5. A análise de k-vizinhos mais próximos (k-NN) foi capaz de classificar corretamente todas as 17 amostras utilizadas no conjunto de teste, usando 1 ≥ k ≥ 8. A análise de modelagem suave independente de analogias entre classes (SIMCA) classificou corretamente todas as amostras do conjunto de teste. Os resultados foram promissores para fins de investigação forense. A técnica WDXRF se mostrou viável para análise de amostras do núcleo de chumbo de projéteis de fuzis e a análise estatística aplicada se mostrou adequada para discriminação dos projéteis de fuzis a partir dos dados espectrais. O percentual dos elementos obtidos pelo método dos parâmetros fundamentais foi investigado pelas mesmas técnicas (PCA e HCA), porém os 6 grupos de projéteis não foram totalmente discriminados. O percentual de antimônio se mostrou determinante para separação de alguns grupos, principalmente do grupo CBC do ano de 2016, devido ao alto teor de antimônio que este grupo apresentou. A análise de variância (ANOVA) de Welch, seguida pelo teste de Games-Howell, do percentual de antimônio confirmou que este elemento, por si só, pode diferenciar quase todos os grupos de projéteis. A técnica WDXRF tem a vantagem de ser simples e rápida, além de preservar as evidências por se tratar de um método não destrutivo.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectHCApt_BR
dc.subjectPCApt_BR
dc.subjectSIMCApt_BR
dc.subjectk-NNpt_BR
dc.subjectWDXRFpt_BR
dc.titleAnálise química de núcleos de chumbo de projéteis de fuzis por fluorescência de raios-x por dispersão de comprimento de onda (wdxrf) e quimiometria para a investigação forensept_BR
dc.typeTesept_BR
dc.description.abstractOtherRifle bullets are usually deformed after firing, hampering the identification of the firearm that made the shot and consequently the shooter by ballistic comparison using optical microscopy. In such cases, knowledge of the composition of the bullets can be an alternative means of identifying their origin. In this work, wavelength dispersion X-ray fluorescence (WDXRF) was used for the first time as a tool to identify the origin of rifle projectiles, with the aid of chemometrics. A total of 66 samples of lead core from 7.62 caliber rifle projectiles were analyzed. These samples form 6 distinct groups of projectiles, considering the manufacturer and the year of manufacture: Companhia Brasileira de Cartuchos (CBC) of the year 2009 and of the year 2016, Israel Military Industries (IMI), Federal Cartridge (FC), Fray Luiz Beltrán (FLB) and Zavod Vlasim (ZV). Principal component analysis (PCA) on the spectral data discriminated these 6 projectile groups. The first 3 principal components (PC) were responsible for more than 99% of the variability in the samples. The spectral regions of antimony and X-ray scattering were decisive for the discrimination of the groups. The dendrogram obtained in the hierarchical cluster analysis (HCA) showed the formation of 6 groups with a relative distance of 0,85. The k-nearest neighbor (k-NN) analysis was able to correctly classify all 17 samples used in the test set, using 1 ≥ k ≥ 8. The smooth modeling analysis independent of class analogies (SIMCA) correctly classified all samples in the test set. The results were promising for forensic investigation purposes. The WDXRF technique proved to be viable for the analysis of lead core samples from rifle projectiles and the applied statistical analysis proved to be adequate for the discrimination of rifle projectiles from the spectral data. The percentage of elements obtained by the method of fundamental parameters were investigated by the same techniques (PCA and HCA), however the 6 groups of projectiles were not fully discriminated. The percentage of antimony proved to be decisive for the separation of some groups, mainly the CBC group of the year 2016, due to the high content of antimony that this group presented. Welch's analysis of variance (ANOVA), followed by the Games-Howell test, of the percentage of antimony confirmed that this element alone can differentiate almost all projectile groups. The WDXRF technique has the advantage of being simple and fast, in addition to preserving evidence as it is a non-destructive method.en
dc.contributor.advisor1Rocha Junior, José Geraldo-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-3115-6724pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7721155377063365pt_BR
dc.contributor.advisor-co1Barra, Cristina Maria-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0003-0516-2562pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/3429510646090195pt_BR
dc.contributor.referee1Rocha Junior, Jose Geraldo-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-3115-6724pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7721155377063365pt_BR
dc.contributor.referee2Cordeiro, Flávio Couto-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8863897754502242pt_BR
dc.contributor.referee3Canuto, André Vinicius dos Santos-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3300847150379345pt_BR
dc.contributor.referee4Favaro, Martha Maria Andreotti-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/4300339042168078pt_BR
dc.contributor.referee5Caldas, Luiz Fernando Silva-
dc.contributor.referee5Latteshttp://lattes.cnpq.br/2872113209685121pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4689831222187977pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Químicapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Químicapt_BR
dc.relation.referencesADUSEI E., FERNANDES T., COSTA D, BRITO J.A., GONÇALVES L.L. The use of wavelength dispersive X-ray fluorescence (WDXRF) spectrometry and multivariate techniques for assessment of illegal dyes in spices. Scientect Journal of Life Sciences, v.1, p.8-15, 2017. AIGINGER, H., WOBRAUSCHEK, P. A method for quantitative X-ray fluorescence analysis in the nanogram region. Nuclear Instruments and Methods, v. 114, p. 157– 158, 1974. ALESSANDRA B.; MARINI. F. Chemometric Methods for spectroscopy-based pharmaceutical analysis. Frontiers in Chemistry. v.6, p.576-582, 2018. BECKHOFF, B., KANNGIEßER, B., LANGHOFF, N., WEDELL, R., WOLFF, H. Handbook of practical x-ray fluorescence analysis. Springer Science & Business Media, 2007. BLACKLOCK, E., SADLER, P. Shot-gun pellet identification and discrimination. Forensic Science International, v. 12, p.109–117, 1978. BOHAN, L. Strengthening forensic science: a way station on the journey to justice. Journal of Forensic Sciences, v. 55, p.5-7, 2010. BRITO, L.R., MARTINS, A.R., BRAZ, A., CHAVES, A.B., BRAGA, J.W., PIMENTEL, M.F. Critical review and trends in forensic investigations of crossing ink lines. Trends in Analytical Chemistry, v. 94, p.54-69, 2017. BROWN, S. D. Chemical systems under indirect observation: latent properties and chemometrics. Applied Spectroscopy, v. 49, p.14A-31A, 1995. BUENO, M. I. M., CASTRO, M. T. P. O., DE SOUZA, A. M. X-ray scattering processes and chemometrics for differentiating complex samples using conventional EDXRF equipment. Chemometrics and Intelligent Laboratory Systems, v. 78, p. 96–102, 2005. CÂMARA, Sarita Silva. Propriedades luminescentes upconversion do YVO4: Er,Yb aplicadas ao estudo forense de resíduo de tiro. 68 f. Dissertação (Mestrado) - Curso de Química, Instituto de Química, Universidade de Brasília, Brasília, 2014. CHERKASHINA, T. Y., SHTEL’MAKH, S. I., PASHKOVA, G. V. Determination of trace elements in calcium rich carbonate rocks by wavelength dispersive x-ray fluorescence spectrometry for environmental and geological studies. Applied Radiation and Isotopes, v.130 p.153–161, 2017. CIVICI, N., GJONGECAJ, S., STAMATI, F. Compositional study of IIIrd century BC silver coins from Kreshpan hoard (Albania) using EDXRF spectrometry. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, v. 258, p. 414–420, 2007. 66 COLLINS, D. Forensic chemistry. 1 ed. Thomson Custom Pub, 2006. Committee on Scientific Assessment of Bullet Lead Elemental Composition Comparison and National Research Council, Forensic Analysis: Weighing Bullet Lead Evidence. National Research Council, 2004. DOTY, K.C., LEDNEV, I.K. Raman spectroscopy for forensic purposes: Recent applications for serology and gunshot residue analysis. TrAC Trends in Analytical Chemistry, v.103, p. 215-222, 2018. DUCKWORTH, D.C. Atomic spectroscopy, forensic science applications, Encyclopedia of Spectroscopy and Spectrometry, Elsevier, 2010, pp. 84–90, 2010. DUFOSSE, T., TOURON, P. Comparison of bullet alloys by chemical analysis: Use of ICP-MS method. Forensic Science International, v. 91, p. 197–206, 1998. EKINCI, N., KAVAZ, E., CINAN, E., SEVINDIK, C. Elemental analysis of six mines in erzincan region using Wavelength-Dispersive X-Ray Fluorescence Spectrometry. Asian Journal of Chemistry, v.28, p.489–492, 2016. ESBENSEN, K.H. Multivariate data analysis—In Practice, 5th ed.; Camo Software: Oslo, Norway, 2010. EWING, A.V., KAZARIAN, S.G. Infrared spectroscopy and spectroscopic imaging in forensic science. ANALYST, v.142, p.257-272, 2017. FARIAS, R. F. Introdução à química forense. 3 ed. Campinas, SP: Átomo, 2010. FBI National Press Office Laboratory Announces Discontinuation of Bullet Lead Examinations, publicado em 01/09/2005. https://archives.fbi.gov/archives/news/pressrel/press-releases/fbi-laboratory-announcesdiscontinuation- of-bullet-lead-examinations. Acesso em 12 jan. 2019. FERREIRA, L. P., NASCENTES, C. C., VALLADÃO, F. N. Feasibility of a new method for identification and discrimination of gunshot residues by total reflection X-ray fluorescence and principal component analysis. Journal of the Brazilian Chemical Society, v. 30, n. 12, p. 2582–2589, 2019. FERREIRA, M. M. C. Multivariate QSAR. Journal of the Brazilian Chemical Society, v. 13, p. 742–753, 2002. FERREIRA, M. M. C. Quimiometria: conceitos, métodos aplicações. Ed. Unicamp. Campinas, SP: 2015. FINNEY, MARK A., MAYNARD, TREVOR B., MCALLISTER, SARA S.; GROB, IAN J. A study of ignition by rifle bullets. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p.1-31, 2013. FOGO (Cruzado/Anistia Internacional). Fevereiro: Número de vítimas de bala perdida aumentou 93% publicado em 1/03/2020. Disponível em: 67 https://fogocruzado.org.br/relatorio-grande-rio-fevereiro-2020/. Acessado em 10/12/2020. FORINA, M., DRAVA, G. Chemometrics for wine applications. Analysis, v. 25, p.22- 29, 1997. GAUGLITZ, G. AND MOORE, D.S. Handbook of Spectroscopy, Ed. John Wiley & Sons, 2014. GAUGLITZ, G. AND VO-DINH, T. Handbook of Spectroscopy. Ed. John Wiley & Sons, 2006. GEORGAKOPOULOU, M., HEIN, A., MÜLLER, N. S. Development and calibration of a WDXRF routine applied to provenance studies on archaeological ceramics. X-Ray Spectrometry, v. 46, p. 186–199, 2017. GILLESPIE, K. A., KRISHNAN, S. S. Analysis of lead shot—a comparison of analyses using atomic absorption spectrophotometry and neutron activation analysis. Journal of the Canadian Society of Forensic Science, v.2, p.94–102, 1969. GRANT, D.M., PETERS, C.A. Atomic Spectroscopy for forensic applications. Encyclopedia of Analytical Chemistry, R. A. Meyers, Ed. Chichester, UK: John Wiley & Sons, Ltd, 2000. GUILHEN, S.N, COTRIM, M.A.B., SAKATA, S., SCAPIN, M.A. Application of the fundamental parameter method to the assessment of major and trace elements in soil and sediments from Osamu Utsumi uranium mine by WDXRF. REM, Int. Eng. J. v. 72, p. 609-617, 2019. GUINN, V. P., HACKLEMAN, R. P., LUKENS, H. R., SCHLESINGER, HO L. Applications of neutron activation analysis in scientific crime investigation. Gulf General Atomic, v. 1, p. 1-94, 1970. HANEY, M. A., GALLAGHER, J. F. Elemental analysis of bullet lead by spark source mass spectrometry. Analytical Chemistry, v. 47, p. 62–65, 1975. HIDA, M., SATO, H., SUGAWARA, H. Classification of counterfeit coins using multivariate analysis with x-ray diffraction and x-ray fluorescence methods. Forensic Science International, v. 115, p. 129–134, 2001. HOPKE, P. K. The evolution of chemometrics. Analytica Chimica Acta, v. 500, p. 365– 377, 2003. HOUCK, Max M., SIEGEL, Jay A. Fundamental of Forensic Science. Ed. Burlington: Elsevier - Academic Print, 2010. 68 IPEA (INSTITUTO DE PESQUISA ECONÔMICA APLICADA). Atlas da Violência 2018 mapeia os homicídios no Brasil. Brasília, DF, publicado em 5/06/2017. Disponível em: http://ww.ipea.gov.br/portal/index.php? option=com_content&view=article&id=30253. Acesso em: 13 set. 2019. ISMAIL, N. F., MAULIDIANI, M., OMAR, S., et al. Classification of stingless bee honey based on species, dehumidification process and geographical origins using physicochemical and ATR-FTIR chemometric approach. Journal of Food Composition and Analysis, v. 104, p. 104126, 2021. ISP (Instituto de Segurança Pública). ISP divulga dados do mês de maio, publicado em 30/06/2017. Disponível em: http://www.isp.rj.gov.br/Noticias.asp?ident=382. Acessado em 13/10/2019. JANSSENS, K. X-Ray fluorescence analysis, in handbook of spectroscopy: second, enlarged edition. Weinheim, Germany, 2014. JENKINS, R. X-ray Fluorescence Spectrometry, 2 ed., Wiley - Interscience, New York, 1999. JENKINS, R., GOULD, R. W., GEDCKE, D. Applications of X-ray spectrometry Applied Spectroscopy Reviews, v. 35, p. 129–150, 2004. JOLLIFFE, IAN, CADIMA, JORGE. Principal component analysis: A review and recent developments. philosophical transactions of the royal society. Mathematical, Physical and Engineering Sciences. v.374. p. 1-16, 2016. KETO, R. Analysis and comparison of bullet leads by inductively-coupled plasma mass spectrometry. Journal of Forensic Sciences, v.44, p.1020-1026, 1998. KOEN, W. J., HOUCK, M. M., Compositional bullet lead analysis. Forensic Science Reform: Protecting the Innocent, v.1, p.1-23, 2017. KOONS, R., BUSCAGLIA, J. Forensic significance of bullet lead compositions. Journal of forensic sciences, v.50, p.341-351, 2005. KOWALSKI, Chemometrics theory and applications. ACS Symposium Series No.52, American Chemical Society, Washington DC 1977. KUMAR, R., SHARMA, V. Chemometrics in forensic science. TrAC - Trends in Analytical Chemistry, v. 105, p. 191–201, 2018. LI, D. Ballistics projectile image analysis for firearm identification. IEEE Transactions on Image Processing, v. 15, p. 2857–2865, 2006. LISBOA, W. M., DE ASSIS, J. T., ZANI, J. H. Identificação de resíduos de disparos de arma de fogo utilizando fluorescência de raios x por dispersão em energia. Engevista, v. 19, p. 950-959, 2017. 69 LUKENS, H.R., GUINN, V.P. Comparison of bullet lead specimens by nondestructive neutron activation analysis. Journal of Forensic Sciences, v.16, p.301–308, 1971. MADEIRA, F. B., SAIDE, V. G. P., CASTRO, M. T. P. O., et al. X-ray scattering and chemometrics as tools to assist in the identification of gunshot residues by wavelength dispersive X-ray fluorescence spectrometry. Journal of the Brazilian Chemical Society, v. 31, p. 2470–2478, 2020. MARINI, F. Classification methods in chemometrics. Current Analytical Chemistry, v. 6, p. 72–79, 2010. MAŠTRUKO, V. Forenzična balistika, Bósnia, 2005. Disponível em: <http://www.forenzika.com/gsr_analysis_e.htm> Acesso em: 2 nov. 2020. MILONE, Giuseppe. Estatística Geral e Aplicada. São Paulo: Pioneira Thomson Learning, 2004. Ministério da justiça e segurança pública – polícia federal. Cartilha de armamento e tiro, publicado em 12/04/2017. Disponível em https://www.gov.br/pf/ptbr/ assuntos/armas/cartilha-de-armamento-e-tiro.pdf/view. Acessado em 13/10/2019. MONTURO, C. Comparison of bullets, Forensic Firearm Examination, p. 195–203, 2019. MUEHLETHALER, C., LEONA, M., LOMBARDI, J.R. Review of surface-enhanced raman scattering applications in forensic science. Analytical Chemistry, v.88, p.152- 169, 2006. MUELLER, D.; FERRÃO, M.F.; MARDER, L.; da COSTA, A.B.; SCHNEIDER, R. Fourier transform infrared spectroscopy (FTIR) and multivariate analysis for identification of different vegetable oils used in biodiesel production. Sensors, v. 13, n. 4, p. 4258-4271, 2013. MUNCK, L., MØLLER, B. Principal component analysis of near infrared spectra as a tool of endosperm mutant characterisation and in barley breeding for quality. Czech Journal of Genetics and Plant Breeding, v. 41, p. 89–95, 2018. NICHOLS R. Firearm and toolmark identification criteria: a review of the literature, part ii. J. Forensic Sci., v.48, p.318-327, 2003. OGDEN, R., LINACRE, A. Wildlife forensic science: A review of genetic geographic origin assignment. Forensic Sci. Int. GENETICS, v.18, p.152-159, 2015. ORTIZ, R. S., MARIOTTI, K. C., SCHWAB, N. V., SABIN, G. P., ROCHA, W. F. C., DE CASTRO, E. V. R., LIMBERGER, R. P., MAYORGA, P., BUENO, M. I. M. S., ROMÃO, W. Fingerprinting of sildenafil citrate and tadalafil tablets in pharmaceutical formulations via X-ray fluorescence (XRF) spectrometry. Journal of Pharmaceutical and Biomedical Analysis, v.58, p.7–11, 2012. 70 OTTO, M. Chemometrics – Statistics and Computer application in Analytical Chemistry. Weinheim:, Wiley, 1999. 128p. PANDEY, G., THARMAVARAM, M., RAWTANI, D., et al., Multifarious applications of atomic force microscopy in forensic science investigations, Forensic Sci. Int. v.273, p.53-63, 2017. PEELE, E.R., HAVEKOST, D.G., PETERS, C.A., RILEY, J.P., HALBERSTAM, R.C. Comparison of bullets using the elemental composition of the lead component. Forensic Aspects of Trace Evidence, Quantico, p. 57–68, 1991. PETERS, C. A.; HAVEKOST, D. G.; KOONS, R. D. Multielement analysis of bullet lead by inductively coupled plasma-atomic emission spectrometry. Crime Laboratory Digest, v. 15, p. 33-38, 1988. RANDICH, E., DUERFELDT, W., MCLENDON, W., A metallurgical review of the interpretation of bullet lead compositional analysis. Forensic Science International, v. 127, p. 174–191, 2002. RANDICH, E., GRANT, P.M. Proper assessment of the JFK assassination bullet lead evidence from metallurgical and statistical perspectives. Journal of Forensic Sciences, v.51, p.717–728, 2006. RIBEIRO, J. S., SALVA, T. J., FERREIRA, M. M. C. Chemometric studies for quality control of processed brazilian coffees using drifts. Journal of Food Quality, v. 33, p. 212–227, 2010. SANTRA, S., MITRA, D., SARKAR, M. Analysis of some coins by energy dispersive X-ray fluorescence (EDXRF) and high energy particle induced X-ray emission (PIXE) techniques. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, v. 229, p. 465–470, 2005. SATO-BERRÚ R.Y., MEJÍA-URIARTE E.V., FRAUSTO-REYES C., VILLAGRÁN-MUNIZ M, S H.M., SANIGER J.M. Application of principal component analysis and Raman spectroscopy in the analysis of polycrystalline BaTiO3 at high pressure. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 66, p.557-560, 2007. SATRIANO, N. Caso João Pedro: PF nega pedido do MPRJ de realizar nova perícia sobre a morte de adolescente. Publicado em 29/10/2020. Disponível em: https://g1.globo.com/rj/rio-de-janeiro/noticia/2020/10/29/caso-joao-pedro-pf-negapedido- do-mprj-de-realizar-nova-pericia-sobre-a-morte-de-adolescente.ghtml. Acesso em 10/12/2020. SCHRAMM, R. Use of X-ray fluorescence analysis for the determination of rare earth elements, Physical Sciences Reviews, v. 1, p. 1–17, 2016. SCHWAB, Nicolas Vilczaki. Determinação de dióxido de titânio em cremes dentais por fluorescência de raios-X e calibração multivariada. 83 f. Dissertação (Mestrado) - Curso de Química, Departamento de Química Analítica, Universidade Estadual de Campinas, Campinas, 2011. 71 Secretaria de Segurança Pública do Estado do Amazonas (SSP-AM). Comparação balística levou a resolução de 30 homicídios em Manaus, publicado em 20/10/2019. Disponível em: http://www.ssp.am.gov.br/comparacao-balistica-levou-a-resolucao-de- 30-homicidios-em-manaus. Acesso em 25/01/2021. SEDDA, A. F., ROSSI, G. Bullets fragments identification by comparison of their chemical composition obtained using instrumental neutron activation analysis. Forensic Science International, v. 206, p. e5–e7, 2011. SEETHA, D., VELRAJ, G. FT-IR, XRD, SEM-EDS, EDXRF and chemometric analyses of archaeological artifacts recently excavated from Chandravalli in Karnataka State, South India. Radiation Physics and Chemistry, v. 162, p. 114–120, 2019. SHALTOUT, A. A., MOHARRAM, M. A., MOSTAFA, N. Y. Wavelength dispersive X-ray fluorescence analysis using fundamental parameter approach of Catha edulis and other related plant samples. Spectrochimica Acta - Part B Atomic Spectroscopy, v.67, p.74–78, 2012. SJÅSTAD, K. E., SIMONSEN, S. L., ANDERSEN, T. H. Lead isotope ratios for bullets, a descriptive approach for investigative purposes and a new method for sampling of bullet lead, Forensic Science International, v. 244, p. 7–15, 2014. SONG, J., CHU, W., VORBURGER, V. Development of ballistics identification from image comparison to topography measurement in surface metrology. Measurement Science and Technology, v. 23, p. 054010, 2012. STUART, B. Forensic Analytical Techniques. Chichester, UK: John Wiley & Sons, Ltd, 2012. TOBIN, W., DUERFELDT, W. How probative is comparative bullet lead analysis? Criminal Justice, v. 17, p. 26–34, 2002. TOCHETTO, D. Balística Forense. Campinas: Millenium Editora, 2003. TREJOS, T., ALMIRALL, J. R. Laser ablation inductively coupled plasma mass spectrometry in forensic science. Encyclopedia of Analytical Chemistry, v.1, p.1-22 2010. TUKEY, J.W. Exploratory data analysis. Addison-Wesley, Reading, MA, 1977. TUKEY, J.W. The future of data analysis. Ann. Math. Statist., v.33, p.1-67, 1962. VAN GRIEKEN, R. AND MARKOWICZ, A. Handbook of X-ray Spectrometry. CRC Press. 2001. VANDENGINSTE G.M., MASSART D.L., BUYDENS M.C. Handbook Of Chemometrics and Qualimetrics part B. Elsevier: Amsterdam, 1998. p.224. WERNER, D., RHUMORBARBE, D., KRONSEDER, P. Comparison of three bullet recovery systems. Forensic Science International, v. 290, p. 251–257, 2018.pt_BR
dc.subject.cnpqQuímicapt_BR
Appears in Collections:Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Victor Gabriel de Paula Saide.pdf3.86 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.