Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/17668
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPinto, Douglas Chaves de Alcantara-
dc.date.accessioned2024-07-29T13:15:28Z-
dc.date.available2024-07-29T13:15:28Z-
dc.date.issued2022-10-25-
dc.identifier.citationPINTO, Douglas Chaves de Alcântara. Estudos com a xantona natural α-mangostina: planejamento, síntese de derivados, e avaliação de suas atividades antiparasitárias frente a amastigotas de Trypanosoma cruzi. 2022. 248 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/17668-
dc.description.abstractA doença de Chagas ou tripanossomíase americana, causada pelo protozoário Trypanosoma cruzi é uma doença crônica que, até o momento, não há tratamento quimioterápico eficaz. Esta parasitose causa importantes impactos na saúde pública do Brasil, além de outros países das Américas e, atualmente, por conta de fluxos migratórios e alterações climáticas, tem sido recorrente o aparecimento da doença em regiões não endêmicas, é uma das doenças consideradas negligenciadas pela OMS. Este trabalho faz parte de uma linha de pesquisa que tem como objetivo o uso de produtos naturais abundantes e acessíveis no planejamento, síntese e avaliação biológica de novas moléculas com potencial aplicação na quimioterapia da doença de Chagas. Os resultados descritos nesta tese envolvem a extração, o planejamento, a síntese e a avaliação da atividade tripanocida de derivados diretos da xantona natural a-mangostina, isolada do pericarpo dos frutos de Garcinia mangostana, assim como híbridos moleculares contendo uma ponte do tipo1,2,3-triazol, ligada aos sistemas nitroeterociclos 2-nitroimidazol e 5- nitroimidazol, com rendimento global para os derivados diretos entre 67-98%, e para os híbridos valores de rendimentos de 77-94%. Os derivados obtidos foram avaliados quanto às suas atividades tóxicas frente a amastigotas de T. cruzi (cepa Tulahuen C2C4 LacZ) e células da linhagem LCC-MK2, os derivados diretos apresentaram valores de IC50 entre 2,65-52,4μM, e para os derivados híbridos mais ativos os valores de atividades se encontram entre 2,1-3,2μM. O conjunto de resultados obtidos nesta tese demonstram o potencial da xantona natural no desenvolvimento de novas alternativas terapêuticas para o tratamento da doença de Chagas.pt_BR
dc.description.sponsorshipConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqpt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectDoença de Chagaspt_BR
dc.subjectGarcinia mangostanapt_BR
dc.subjecthibridação molecularpt_BR
dc.subjectquimioterapia antiparasitáriapt_BR
dc.subjectChagas diseasept_BR
dc.subjectGarcinia mangostanapt_BR
dc.subjectmolecular hybridizationpt_BR
dc.subjectantiparasitic chemotherapypt_BR
dc.titleEstudos com a xantona natural α-mangostina: planejamento, síntese de derivados, e avaliação de suas atividades antiparasitárias frente a amastigotas de Trypanosoma cruzipt_BR
dc.title.alternativeStudies with the natural xanthone α-mangostine: design, synthesis of derivatives, and evaluation of their antiparasitic activities against Trypanosoma cruzi amastigotesen
dc.typeTesept_BR
dc.description.abstractOtherChagas disease or American trypanosomiasis is a chronic infectious disease caused by the hemoflagellate protozoan Trypanosoma cruzi, for which there is currently no effective chemotherapy treatment. This parasitic disease causes important impacts on public health in Brazil, in addition to other countries in Americas. Currently, due to migratory flows and climate changes, the appearance of the disease has been recurrent in non-endemic regions, it is one of the diseases considered as neglected by WHO. This work is part of a research line aiming the use of abundant and accessible natural products in the design, synthesis and biological evaluation of new molecules with potential application in the chemotherapy of Chagas disease. The results described in this thesis involve the extraction, the design, the synthesis and evaluation of the trypanocidal activity of direct derivatives of the natural xanthone -mangostine, isolated from the pericarp of the fruits of Garcinia mangostana, as well as heterocyclic molecular hybrids with a 1,2,3-triazole bridge containing 2-nitroimidazole and 5-nitroimidazole nitroheterocycle systems, with an overall yield for the direct derivatives between 67-98%, and for the hybrids yield values of 77-94%. The derivatives obtained were evaluated for their toxic activities against T. cruzi amastigotes (Tulahuen C2C4 LacZ strain) and in the LCC-MK2 cell line, the direct derivatives showed IC50 values between 2.65-52.4μM, and for the most active hybrid derivatives activity values are between 2.1-3.2μM. The set of results obtained in this thesis demonstrate the potential of natural -mangostine in the development of new therapeutic alternatives for the treatment of Chagas disease.en
dc.contributor.advisor1Lima, Marco Edilson Freire de-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8392420706762318pt_BR
dc.contributor.advisor-co1Lima, Débora Decotè Ricardo de-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/3572066508469025pt_BR
dc.contributor.referee1Lima, Marco Edilson Freire de-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8392420706762318pt_BR
dc.contributor.referee2Trossini, Gustavo Henrique Goulart-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/1463048040306555pt_BR
dc.contributor.referee3Silva, Fernando de Carvalho da-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/7183643963574044pt_BR
dc.contributor.referee4Almeida, Wanda Pereira-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/3903296396671088pt_BR
dc.contributor.referee5Gomes, Daniela Cosentino-
dc.contributor.referee5Latteshttp://lattes.cnpq.br/3067190550867881pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8242987356335874pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Químicapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Químicapt_BR
dc.relation.referencesAFLAK, N.; BEM, E. L.; AYOUCHIA, H.; BAHSIS, L.; ANANE, H.; JULVE, M.; STIRIBA, S. E. Recent Advances in Copper-Based Solid Heterogeneous Catalysts for Azide-Alkyne Cycloaddition Reactions. Int J Mol Sci., v. 23, p. 2383, 2022. AHLQUIST, M.; FOKIN, V. V. Enhanced reactivity of dinuclear copper(I) acetylides in dipolar cycloadditions. Organometallics, v. 26, p. 4389–4391, 2007. AHMED, R. S. I.; LIU, G.; RENZETTI, A.; FARSHI, P.; YANG, H.; SOAVE, C.; DOU, Q. P. Biological and Mechanistic Characterization of Novel Prodrugs of Green Tea Polyphenol Epigallocatechin Gallate Analogs in Human Leiomyoma Cell Lines. Journal of Cellular Biochemistry, v. 117, p. 2357–2369, 2016. AIZAT, W. M.; AHMAD-HASHIM, F. H.; SYED JAAFAR, S. N. Valorization of mangosteen, “The Queen of Fruits,” and new advances in postharvest and in food and engineering applications: A review. Journal of Advanced Research, v. 20, p. 61–70, 2019. AIZAT, W. M.; JAMIL, I. N.; AHMAD-HASHIM, F. H.; NOOR, N. M.; Recent updates on metabolite composition and medicinal benefits of mangosteen plant. Peer J, 7, e6324, 2019. AKAWA, O. B., SUBAIR, T. I., SOREMEKUN, O. S., OLOTU, F. A., & SOLIMAN, M. E. S. Structural alterations in the catalytic core of hSIRT2 enzyme predict therapeutic benefits of Garcinia mangostana derivatives in Alzheimer’s disease: molecular dynamics simulation study. RSC Advances, v. 11, p. 8003–8018, 2021. AL-MASSARANI, S. et al. Phytochemical, Antimicrobial and Antiprotozoal Evaluation of Garcinia Mangostana Pericarp and α-Mangostin, Its Major Xanthone Derivative. Molecules, v. 18, p. 10599–10608, 2013. ALSHARIF, M. A.; RAJA, Q. A.; MAJEED, N. A.; JASSAS, R. S.; ALSIMAREE, A. A.; SADIQ, A.; NAEEM, N.; MUGHAL, E. U.; ALSANTALI, R. I.; MOUSSA, Z.; AHMED, S. A. DDQ as a versatile and easily recyclable oxidant: a systematic review. RSC Adv., v. 47, p. 29826-29858, 2021. AMBLARD, M.; FEHRENTZ, J. A.; MARTINEZ, J.; SUBRA, G. Methods and protocols of modern solid phase Peptide synthesis. Mol Biotechnol., v. 33, p. 239-254, 2006. AMES, B. N, GOLD, L. S. Chemical carcinogenesis: too many rodent carcinogens. Proc. Natl Acad. Sci., v. 87, p.7776, 1990. ANASTAS, P & EGHBALI, N. Green chemistry: principles and practice. Chem. Soc. Rev., v. 39, p. 301-312, 2010. ANDREU, G. L. P.; MAURMANN, N.; REOLON, G. K.; DE FARIAS, C. B.; SCHWARTSMANN, G.; DELGADO, R.; ROESLER, R. Mangiferin, a naturally occurring glucoxilxanthone improves long-term object recognition memory in rats. European Journal of Pharmacology, v. 635, p. 124–128, 2010. 210 ATANASOV, A. G. et al Discovery and resupply of pharmacologically active plant- derived natural products: A review. Biotechnology Advances, v. 33, p. 1582–1614, 2015. ATANASOV, A. G.; ZOTCHEV, S. B.; DIRSCH, V. M.; SUPURAN C. T. Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, v. 20, p. 200–216, 2021. ATKINSON, J. E.; GUPTA, P.; LEWIS, J. R. Benzophenone participation in xanthone biosynthesis (Gentianaceae). Chemical Communications (London), v. 22, p. 1386, 1968. AUSTIN, M. B.; NOEL, J. P. The chalcone synthase superfamily of type III polyketide synthases. Natural Product Reports, v. 20, p. 79–110, 2002. AVULA, S. K.; RAZA SHAH, S.; AL-HOSNI, K.; U. ANWAR, M.; CSUK, R.; DAS, B.; AL-HARRASI, A. Synthesis and antimicrobial activity of 1H-1,2,3-triazole and carboxylate analogues of metronidazole. Beilstein J. Org. Chem., v. 17, p. 2377– 2384, 2021. AZWANIDA, N. N. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med Aromat Plants, v. 4, p. 196, 2015. BALUNAS, M. J.; SU, B.; BRUEGGEMEIER, R. W.; KINGHORN, A. D. Xanthones from the Botanical Dietary Supplement Mangosteen (Garcinia mangostana) with Aromatase Inhibitory Activity. Journal of Natural Products, v. 71, p. 1161–1166, 2008. BARREIRO, E. J., FRAGA, C. A. M. Em: Química Medicinal: as bases moleculares da ação dos fármacos. 3a ed., Artmed, Porto Alegre, 2015. BASTRAKOV, M.; STAROSOTNIKOV, A. Recent Progress in the Synthesis of Drugs and Bioactive Molecules Incorporating Nitro(het)arene Core. Pharmaceuticals (Basel)., v. 15, p. 705, 2022. BEERHUES L. Benzophenone synthase from cultured cells of Centaurium erythraea. FEBS Letters, v. 383, p. 264–266, 1996. BEERHUES, L. Biosynthesis of the active Hypericum perforatum constituents In Medicinal and Aromatic Plant Science and Biotechnology: Odabas, M. S., Çirak C., eds.; Global Science Books: Islework, 2011. BEHRENDT, R.; WHITE, P.; OFFER, J. Advances in Fmoc solid-phase peptide synthesis. J. Pept. Sci., v. 22, p. 4– 27, 2016. BENDER, B. J. et al. A practical guide to large-scale docking. Nat Protoc., v. 16, p. 4799–4832, 2021. BENNETT, G. J.; LEE, H. H. Xanthones from guttiferae. Phytochemistry, v. 28, p. 967– 998, 1989. BERMUDEZ, J. et al. Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Trop. V. 156, p. 1-16, 2016. BERRY, D. J.; DIGIOVANNA, C. V.; METRICK, S. S.; MURUGAN, R. 2001. Catalysis by 4-dialkylaminopyridines. Arkivoc., v. 2, p. 964, 2001. BHATIA, V. K.; RAMANATHAN, J. D.; SESHADRI, T. R. Constitution of mangiferin. Tetrahedron, v. 23, p. 1363–1368, 1967. 211 BISHOP, T & SHAM, P. editors. Analysis of multifactorial diseases. Oxford: Bios Scientific; 2000. BISWAS, S.C. & SEN, R.K. X-ray crystallographic studies of xanthones. Indian J. Pure Appl. Phys., V. 20, p. 414, 1982. BUCKNER, F. S. et al. Efficient technique for screening drugs for activity Against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrobial agents and chemotherapy, v. 40, p. 2592-2597, 1996. BURAVLEV, E. V.; SHEVCHENKO, O. G.; KUTCHIN, A. V. Synthesis and membrane-protective activity of novel derivatives of α-mangostin at the C-4 position. Bioorganic & Medicinal Chemistry Letters, v. 25, p. 826–829, 2015; BURAVLEV, E. V., SHEVCHENKO, O. G., ANISIMOV, A. A., & SUPONITSKY, K. Y. Novel Mannich bases of α- and γ-mangostins: Synthesis and evaluation of antioxidant and membrane- protective activity. European Journal of Medicinal Chemistry, v. 152, p. 10–20, 2018. CABRERA, M. et al. Cytotoxic, mutagenic and genotoxic effects of new anti-T. cruzi 5- phenylethenylbenzofuroxans. Contribution of Phase I metabolites on the mutagenicity induction. Toxicol. Lett., v. 190, p. 149, 2009. CHAGAS, Carlos. Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Memórias do Instituto Oswaldo Cruz, v. 1, p. 159-218, 1909. CHAVAN, T & MUTH A. The diverse bioactivity of a-mangostin and its therapeutic implications, Future Med Chem., v. 13, p. 1679, 2021. CHENG, F.; LI, W.; LIU, G.; TANG, Y. Natural product and natural product derived drugs in clinical trials Curr. Top. Med. Chem. (Sharjah, United Arab Emirates), v. 13, p. 1273, 2013. CHENG, W.; ZHU, S.; MA, X.; QIU, N.; PENG, P.; SHENG, R.; HU, Y. Design, synthesis and biological evaluation of 6-(nitroimidazole-1H-alkyloxyl)-4- anilinoquinazolines as efficient EGFR inhibitors exerting cytotoxic effects both under normoxia and hypoxia. European Journal of Medicinal Chemistry, v. 89, p. 826–834, 2015. CHI, X. et al. Design, synthesis and structure–activity relationships of mangostin analogs as cytotoxic agents. RSC Advances, v. 8, p. 41377–41388, 2018. CHIN, Y. W.; JUNG, H. A.; CHAI, H.; KELLER, W. J.; KINGHORN, A. D. Xanthones with quinone reductase-inducing activity from the fruits of Garcinia mangostana (Mangosteen). Phytochemistry, v. 69, p. 754–758, 2008. COCKROFT, S. L.; PERKINS, J.; ZONTA, C.; ADAMS, H.; SPEY, S. E.; LOW, C. M, et al. Substituent effects on aromatic stacking interactions. Org Biomol Chem., v. 5, p. 1080, 2007. CORRADINI. F.; MARCHESELLI, L.; TASSI, L.; TOSI, G. Static dielectric constants of the N, N-dimethylformamide/2-methoxyethanol solvent system at various temperatures. Can J Chem., v. 70, p. 2899, 1992. COURA, J.R.; CASTRO, S. L. A critical review on Chagas disease chemotherapy. Mem. Inst. Oswaldo Cruz, v. 97, p. 3-24, 2002. 212 CROSSLAND, R. K.; SERVIS, K. l. A facile synthesis of methanesulfonate esters. J. Org. Chem., v. 35, p. 3195-3196, 1970. DAVID, B.; WOLFENDER, J. L.; DIAS, D. A. The pharmaceutical industry and natural products: historical status and new trends. Phytochemistry Reviews, v. 14, p. 299–315, 2015. DE ALCÂNTARA PINTO, D. C.; PITASSE-SANTOS, P.; DE SOUZA, G. A.; CASTRO, R. N.; FREIRE DE LIMA, M. E. Peracetylation of polyphenols under rapid and mild reaction conditions. Nat Prod Res., v. 24, p. 1-6, 2022. DE MELLO, R. F. A. et al. A fast and efficient preparative method for separation and purification of main bioactive xanthones from the waste of Garcinia mangostana L. by high-speed countercurrent chromatography. Arabian Journal of Chemistry, v. 14, p. 103252, 2021. DE SOUZA, Rita de Cássia Moreira et al. Chagas disease in the context of the 2030 agenda: Global warming and vectors. Mem. Inst. Oswaldo Cruz, v. 116, p. e200479, 2021. DESIMONE, W. R.; CURRIE, K. S.; MITCHELL, S. A.; DARROW, J. W.; PIPPIN, D. A. Privileged Structures: Applications in Drug Discovery. Combinatorial Chemistry & High Throughput Screening, v. 7, p. 473-493, 2004. DHARMARATNE, H. R. W.; SAKAGAMI, Y.; PIYASENA, K. G. P.; THEVANESAM, V. Antibacterial activity of xanthones from (Garcinia mangostana L.) and their structure–activity relationship studies. Natural Product Research, v. 27, p. 938–941, 2013. DIAS, L.C. et al. Quimioterapia da doença de Chagas: estado da arte e perspectivas no desenvolvimento de novos fármacos. Quím. Nova, v. 32, p. 2444-2457, 2009. DO SACRAMENTO, C. K. et al. Cultivo do mangostão no Brasil. Revista Brasileira de Fruticultura, v. 29, p. 195–203, 2007. DOCAMPO, R. Sensitivity of Parasites to free radical damage by antiparasitic drugs. Chemical and Biological Interactions, v.73, p. 27, 1990. DOS SANTOS, W. G. Natural History of COVID-19 and Current Knowledge on Treatment Therapeutic Options. Biomedicine & Pharmacotherapy, 110493, 2020. DRAG, M. & SALVESEN, G. S. Emerging principles in protease-based drug discovery. Nature Reviews Drug Discovery, v. 9, p. 690 - 701, 2010. DRUGBANK, C. A. [S. l.]. Disponível em: https://www.drugbank.ca/drugs/DB00916., 2005. Acesso em 14 julho de 2022. ECHEVERRÍA, L. E. et al. WHF IASC roadmap on Chagas disease. Global heart, v. 15, n. 1, 2020. ELEFTHERIOU, P.; AMANATIDOU, D.; PETROU, A.; GERONIKAKI, A. In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus. Molecules, v. 25, p. 2529, 2020. 213 FALASCA, A.; MELCK, D.; PARIS, D. et al. Seasonal changes in the metabolic fingerprint of Juniperus communis L. berry extracts by 1H NMR-based metabolomics. Metabolomics, v. 10, p. 165–174, 2014. FERREIRA, R. C.; DE MELO, M. E.; MORAES JUNIOR, M. A et al. Evaluation of genotoxic activity in the blood and urine of guinea pigs treated with nifurtimox and benznidazole. Brazilian J. Med. Biol. Res., v. 21, p. 1077, 1988. FERREIRA, W. S.; FRANKLIM, T. N.; LOPES, N. D.; DE LIMA, M. E. F. Piperina, seus análogos e derivados: potencial como antiparasitários. Revista Virtual de Química, v. 4, n. 3, p. 208-224, 2012; FRANKLIM, T, N.; FREIRE-DE-LIMA, L.; DINIZ, J, N, S.; PREVIATO, J. O.; CASTRO, R. N.; MENDONÇA-PREVIATO, L.; LIMA, M. E. F. Design, synthesis and trypanocidal evaluation of novel 1,2,4-triazoles-3-thiones derived from natural piperine. Molecules, v. 18, p. 6366-6382, 2013. FINN, M. G., & FOKIN, V. V. Click chemistry: function follows form. Chemical Society Reviews, v. 39, p. 1231, 2010. FRANKLIM, T.; FREIRE-DE-LIMA, L.; DE NAZARETH SÁ DINIZ, J.; PREVIATO, J.; CASTRO, R.; MENDONÇA-PREVIATO, L.; DE LIMA, M. Design, Synthesis and Trypanocidal Evaluation of Novel 1,2,4-Triazoles-3-thiones Derived from Natural Piperine. Molecules, v. 18, p. 6382, 2013. FUJITA, M.; INOUE, T. Biosynthesis of mangiferin in Anemarrhena asphodeloides Bunge. I. The origin of the xanthone nucleus. Chemical & pharmaceutical bulletin, v. 28, p. 2476–2481, 1980. GALES, L. & DAMAS, A. M. Xanthones-A Structural Perspective. Curr. Med. Chem., v. 12, p. 2499–2515, 2005. GAZI, M. A.; ISLAM, M. R.; KIBRIA, M. G.; MAHMUD, Z. General and advanced diagnostic tools to detect Mycobacterium tuberculosis and their drug susceptibility: a review. European Journal of Clinical Microbiology & Infectious Diseases, v. 34, p. 851–861, 2015. GEE, P.; MARON, D. M.; AMES, B. N. Detection and classification of mutagens: a set of basespecific Salmonella tester strains. Proc. Natl Acad. Sci., v. 91, p. 11610, 1994. GLANZMANN, N. et al. Synthesis and biological activity of novel 4- aminoquinoline/1,2,3-triazole hybrids against Leishmania amazonensis. Biomedicine & Pharmacotherapy, 141, 111857, 2021. GUO, M.; WANG, X.; LU, X.; WANG, H.; BRODELIUS, P. E. α-Mangostin Extraction from the Native Mangosteen (Garcinia mangostana L.) and the Binding Mechanisms of α-Mangostin to HSA or TRF. Plos One, v. 11, p. 1-22, 2016. GUPTA, P.; LEWIS, J. R. Biogenesis of xanthones in Gentiana lutea. Journal of the Chemical Society C: Organic, p. 629, 1971. HALDÓN, E.; NICASIO, M. C.; PÉREZ, P. J. Copper-catalysed azide–alkyne cycloadditions (CuAAC): an update. Organic & Biomolecular Chemistry, v. 13, p. 9550, 2015. HEIN, C. D.; LIU, X. M.; WANG, D. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm Res., v. 25, p. 2216-2230, 2008. 214 HEIN, J. E.; FOKIN, V. V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chemical Society Reviews, v. 39, p. 1315, 2010. HIDAYAT, S.; IBRAHIM, F. M.; PRATAMA, K. F.; MUCHTARIDI, M. The interaction of alpha-mangostin and its derivatives against main protease enzyme in COVID-19 using in silico methods. J. Adv. Pharm. Technol. Res., v. 12, p. 285, 2021. HIMO, F.; LOVELL, T.; HILGRAF R.; ROSTOVTSEV,V. V.; NOODLEMAN, L.; SHARPLESS, K. B.; FOKIN, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. Journal of American Chemical Socity, v. 127, p. 210–216, 2005. HIMO, F.; LOVELL, T.; HILGRAF, R.; ROSTOVTSEV, V. V.; NOODLEMAN, L.; SHARPLESS, K. B.; FOKIN, V. V. Copper(I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates. Journal of the American Chemical Society, v. 127, p, 216, 2005. HOTEZ P. J.; MOLYNEUX, D. H.; FENWICK, A.; KUMARESAN, J.; SACHS, S.E.; SACHS, J.D.; SAVIOLI, L. Control of neglected tropical diseases. The New England Journal of Medicine, v. 357, p. 1018–27, 2007. HOUSE, J. E. Fundamentals of Quantum Chemistry, Elsevier, San Diego, 2004. STEWART, J. J. P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model., v. 19, p. 32, 2013. HOUWELING, T. A. J. et al. Socioeconomic Inequalities in Neglected Tropical Diseases: A Systematic Review. PLOS Neglected Tropical Diseases, v. 10, e0004546, 2016. http://who.sprinklr.com, acessado em Março de 2022. https://clarivate.com/products/web-of-science/databases. Palavras-chave utilizadas: alpha-mangostin or α-mangostin. Filtros utilizados no levantamento (Research Area): Pharmacology Pharmacy or Biochemistry Molecular Biology or Cell Biology, acessado em Fevereiro de 2022. https://doi.org/10.1021/acs.bioconjchem.1c00247, acessado em Outubro de 2022. https://www.needpix.com/photo/887745/., licença Creative Commons CC., acessado em Outubro de 2021. https://www.nobelprize.org/prizes/chemistry/ acessado em Outubro de 2022. https://www.tridge.com/intelligences/mangosteen/production, acessado em outubro 2021. HUANG, G. M.; SUN, Y.; GE, X.; WAN, X.; LI, C. B. Gambogic acid induces apoptosis and inhibits colorectal tumor growthviamitochondrial pathways. World Journal of Gastroenterology, v. 21, p. 6194, 2015. HUANG, Z.; JIN, L.; FENG, Y.; PENG, P.; YI, H.; LEI, A. Iron-Catalyzed Oxidative Radical Cross-Coupling/Cyclization between Phenols and Olefins. Angewandte Chemie, v. 125, p. 7292–7296, 2013. 215 HUISGEN, R. Kinetics and reaction mechanisms: selected examples from the experience of forty years. Pure and Applied Chemistry, v. 61, p. 628, 1989; HUISGEN, R. 1,3- Dipolar Cycloadditions. Past and Future. Angewandte Chemie International Edition in English, v. 2, p. 598, 1963. IIKUBO, K.; ISHIKAWA, Y.; ANDO, N.; UMEZAWA, K.; NISHIYAMA, S. The first direct synthesis of α-mangostin, a potent inhibitor of the acidic sphingomyelinase. Tetrahedron Letters, v. 43, p. 291–293, 2002. IKAN, R. In: Natural Products: A Laboratory Guide, Academic Press, 2nd Edition: 233-238, 1991. ISHII, M. et al. Synthesis, molecular modelingand preliminary biological ealuation of a set of novel 3- acethyl-2,5-disubstituted-1,3,4-oxadiazolines as potential antibacterial, anti-T. cruzi, and antifungical agents. Bioorg. Med. Chem. v. 19, p. 6292-6301, 2011. JENKINS, G. J.; DOAK, S. H.; JOHNSON, G. E. Do dose response thresholds exist for genotoxic alkylating agents? Mutagenesis, v. 20, p. 398, 2005. JIANG, K. et al. Design, synthesis, and biological evaluation of 1,3,6,7- tetrahydroxyxanthone derivatives as phosphoglycerate mutase 1 inhibitors. Bioorganic & Medicinal Chemistry Letters, v. 36, 127820, 2021. JIANG, X.; HAO, X.; JING, L.; WU, G.; KANG, D.; LIU, X.; ZHAN, P. Recent applications of click chemistry in drug discovery. Expert Opin Drug Discov., v. 14, p. 789, 2019. JIN, Z.; DU, X.; XU, Y.; DENG, Y.; LIU, M.; ZHAO, Y. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature. v. 582, p. 289 -293, 2020. JUNG, H. A.; SU, B. N.; KELLER, W. J.; MEHTA, R. G.; KINGHORN, A. D. Antioxidant Xanthones from the Pericarp of Garcinia mangostana (Mangosteen). Journal of Agricultural and Food Chemistry, v. 54, p. 2077–2082, 2006. KAUR, J.; SAXENA, M.; RISHI, N. An Overview of Recent Advances in Biomedical Applications of Click Chemistry. Bioconjugate Chemistry, v. 32, p. 1455–1471, 2021. KE, H.; MORRISEY, J. M.; QU, S.; CHANTARASRIWONG, O.; MATHER, M. W.; THEODORAKIS, E. A.; VAIDYA, A. B. Caged Garcinia Xanthones, a Novel Chemical Scaffold with Potent Antimalarial Activity. Antimicrobial Agents and Chemotherapy, v. 61, p. 1-28, 2017; FERNANDES, C.; CARRARO, M. L.; RIBEIRO, J.; ARAÚJO, J.; TIRITAN, M. E.; PINTO, M. M. M. Synthetic Chiral Derivatives of Xanthones: Biological Activities and Enantioselectivity Studies. Molecules, v. 24, p. 1-36, 2019. KLUNDT, T.; BOCOLA, M.; LÜTGE, M.; BEUERLE, T.; LIU, B.; BEERHUES, L. A Single Amino Acid Substitution Converts Benzophenone Synthase into Phenylpyrone Synthase. Journal of Biological Chemistry, v. 284, p. 30957–30964, 2009. KOLB, H. C.; FINN, M. G.; SHARPLESS, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl., v. 40, p. 2004-2021, 2001. KUMAGAI, K.; HOSOTANI, N.; KIKUCHI, K.; KIMURA, T.; SAJI, I. Xanthofulvin, a Novel Semaphorin Inhibitor Produced by a Strain of Penicillium. The Journal of Antibiotics, v. 56, p. 610–616, 2003. 216 KUMAR, P.; NAGARAJAN, A.; UCHIL, P. D. Analysis of cell viability by the MTT assay. Cold spring harbor protocols, v. 2018, n. 6, p. pdb. prot095505, 2018. LAKHERA, S.; DEVLAL, K.; GHOSH, A.; CHOWDHURY, P.; RANA, M. Modelling the DFT stuctural and reactivity study of feverfew and evaluation of its potential antiviral activity Against COVID-19 using molecular docking and MD simulations. Chem. Pap., v. 76, p. 2759-2776, 2022. LAWSON, A. D. G.; MACCOSS, M.; HEER, J. P. Importance of Rigidity in Designing Small Molecule Drugs To Tackle Protein–Protein Interactions (PPIs) through Stabilization of Desired Conformers. Journal of Medicinal Chemistry, v. 61, p. 4283– 4289, 2018. LEE, B. Y.; BACON, K. M.; BOTAZZI, M. E.; HOTEZ, P. J. Global economic burden of Chagas disease: a computational simulation model. The Lancet Infect. Dis. v. 13, p. 342-348, 2013. LEYVA-LÓPEZ, N.; LIZÁRRAGA-VELÁZQUEZ, C. E.; HERNÁNDEZ, C.; SÁNCHEZ-GUTIÉRREZ, E. Y. Exploitation of Agro-Industrial Waste as Potential Source of Bioactive Compounds for Aquaculture. Foods, v. 9, p. 843, 2020; FAO. The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction, FAO: Rome, 2019. LIPINSKI, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies, v. 4, p. 337–341, 2004. LIPINSKI, C. A.; LOMBARDO, F.; DOMINY, B. W.; FEENEY, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev., v. 46, p. 26, 2001. LIU, B.; FALKENSTEIN-PAUL, H.; SCHMIDT, W.; BEERHUES, L. Benzophenone synthase and chalcone synthase fromHypericum androsaemumcell cultures: cDNA cloning, functional expression, and site-directed mutagenesis of two polyketide synthases. The Plant Journal, v. 34, p. 847–855, 2003. LUTZ, J.; ZARAFSHANI, Z. Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne “click” chemistry. Advanced Drug Dellvery Reviews, v. 60, p. 870, 2008. MANDOLI, A. Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction (CuAAC). Molecules, v. 21, p. 1174, 2016. MASTERS, K. S., & BRÄSE, S. Xanthones from Fungi, Lichens, and Bacteria: The Natural Products and Their Synthesis. Chemical Reviews, v. 112, p. 3717–3776, 2012. MATTAREI, A.; BIASUTTO, L.; RASTRELLI, F.; GARBISA, S.; MAROTTA, E.; ZORATTI, M.; PARADISI, C. Regioselective O-Derivatization of Quercetin via Ester Intermediates. An Improved Synthesis of Rhamnetin and Development of a New Mitochondriotropic Derivative. Molecules., v. 15, p. 4736, 2010. MAYA, J. D.; BOLLO, S; NUÑES-VERGARA, L. J.; SQUELLA, J. A.; REPETTO, Y.; MORELLO, A.; PÉRIÉ, J.; CHAUVIÈRE, G. Trypanosoma cruzi: effect and mode of action of nitroimidazole and nitrofuran derivatives. Biochemical Pharmacology, v. 65, p. 1006, 2003; MITSCHER, L. A.; LEMKE, T. L.; GENTRY, E. J. Foye’s Principles of Medicinal Chemistry. 6ed. Lippincott: Williams & Wilkins, 2012. 217 MBWAMBO, Z. H.et al. Antiparasitic Activity of Some Xanthones and Biflavonoids from the Root Bark ofGarcinia livingstonei. Journal of Natural Products, v. 69, p. 369– 372, 2006. MELDAL, M.; DINESS, F. Recent Fascinating Aspects of the CuAAC Click Reaction. Trends Chem., v. 2, p. 584, 2020. MOHAMED, G. A.; IBRAHIM, S. R. M.; SHAABAN, M. I.; ROSS, S. A. Mangostanaxanthones I and II, new xanthones from the pericarp of Garcinia mangostana. Fitoterapia, v. 98, p. 215–221, 2014. MOLYNEUX, David H. et al. The history of the neglected tropical disease movement. Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 115, n. 2, p. 169-175, 2021. MORELLI, C. F.; BIAGIOTTI, M.; PAPPALARDO, V. M.; RABUFFETTI, M. & SPERANZA, G. Chemistry of α-mangostin. Studies on the semisynthesis of minor xanthones fromGarcinia mangostana. Natural Product Research, v. 29, p. 750–755, 2014. MORGON, N. H.; COUTINHO, K. editores. Métodos de química teórica e modelagem molecular. São Paulo: Livraria da Física; 2007. MOTA, D. C. G. D.; PEREIRA, A. M. T. B.; ARAÚJO, S. M.; GOMES, M. L. Estresse e resiliência em doença de Chagas. Aletheia, 24, 57-68, 2006. MUNIN, A. & EDWARDS-LÉVY, F. Encapsulation of Natural Polyphenolic Compounds; a Review. Pharmaceutics, v. 3, p. 793–829, 2011. NAYIK, G. A.; GULL, A. Antioxidants in Fruits: Properties and Health Benefits; Nayik, G. A.; Gull, A., eds.; Springer: Singapore, 2020. NEUMANN, S.; BIEWEND, M.; RANA, S.; BINDER, W. H. The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications. Macromolecular Rapid Communications, 1900359, 2019. NEWMAN, D. J., & CRAGG, G. M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, v. 83, p. 770–803, 2020. NEWMAN, D. J.; CRAGG, G. M. Natural Products as Sources of New Drugs from 1981 to 2014. Journal of Natural Products, v. 79, p. 629–661, 2016. NGUYEN, N. K.; TRUONG, X. A.; BUI, T. Q.; BUI, D. N.; NGUYEN, H. X.; TRAN, P. T.; NGUYEN, L.-H. D. α -Glucosidase Inhibitory Xanthones from the Roots of Garcinia fusca. Chemistry & Biodiversity, v. 14, e1700232, 2017; KHAW, K. Y.; KUMAR, P.; YUSOF, S. R.; RAMANATHAN, S.; MURUGAIYAH, V. Probing simple structural modification of α‐mangostin on its cholinesterase inhibition and cytotoxicity. Arch. Pharm., e2000156, 2020. NICOLAOU, K. C. Organic synthesis: the art and science of replicating the molecules of living nature and creating others like them in the laboratory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering. Sciences, v. 470(2163), p. 20130690–20130690, 2014. 218 NILAR, H. L. J. Xanthones from the heartwood of Garcinia mangostana. Phytochemistry., v. 60, p, 548, 2002. NKENGFACK, A. E.; MKOUNGA, P.; MEYER, M.; FOMUM, Z. T.; BODO, B. Globulixanthones C, D and E three prenylated xanthones with antimicrobial properties from the root bark of Symphonia globulifera. Phytochemistry, v. 61, p. 181–187, 2002. NOGRADY, T.; WEAVER, D.F. Medicinal Chemistry: A Molecular and Biochemical Approach, 3 rd ed., Oxford Press: New York, 2005. OBOLSKIY, D.; PISCHEL, I.; SIRIWATANAMETANON, N.; HEINRICH, M. Garcinia mangostana L.: a phytochemical and pharmacological review. Phytotherapy Research, v. 23, p. 1047–1065, 2009; OVALLE-MAGALLANES, B.; EUGENIO- PÉREZ, D.; PEDRAZA-CHAVERRI, J. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food and Chemical Toxicology, v. 109, p. 102–122, 2017. OUYANG, T.; LIU, X.; OUYANG, H.; REN, L. Recent trends in click chemistry as a promising technology for virus-related research. Virus Research, v. 256, p. 28, 2018. PAPROCKI, D.; MADEJ, A.; KOSZELEWSKI, D.; BRODZKA, A.; OSTASZEWSKI, R. Multicomponent Reactions Accelerated by Aqueous Micelles. Frontiers in Chemistry, v. 6, p. 502, 2018. PASTERKAMP, R. J. et al. Expression of the Gene Encoding the Chemorepellent Semaphorin III Is Induced in the Fibroblast Component of Neural Scar Tissue Formed Following Injuries of Adult But Not Neonatal CNS. Molecular and Cellular Neuroscience, v. 13, p. 143–166, 1999. PASTRE, R.; MARINHO, A. M. R.; RODRIGUES-FILHO, E.; SOUZA, A. Q. L.; PEREIRA, J. Diversidade de policetídeos produzidos por espécies de Penicillium isoladas de Melia azedarach e murraya paniculata. Química Nova, v. 30, p. 1867–1871, 2007. PATTERSON, S. & WYLLIE, S. Nitro drugs for the treatment of trypanosomatid diseases: past, presente and future prospects. Trends in Parasitology, v. 30, p. 298, 2014. PAUCAR, R.; MORENO-VIGURI, E.; PÉREZ-SILANES, S. Challenges in Chagas Disease Drug Discovery: A Review. Curr Med Chem., v. 23, p. 3154-3170, 2016. PELOZO, M. F.; LIMA, G. F. S.; CORDEIRO, C. F.; SILVA, L. S.; CALDAS, I. S.; CARVALHO, D. T.; LAVORATO, S. N.; HAWKES, J. A.; FRANCO, L. L. Synthesis of New Hybrid Derivatives from Metronidazole and Eugenol Analogues as Trypanocidal Agents. J. Pharm. Pharm. Sci., v. 24, p. 421- 434, 2021. PERES, V.; NAGEM, T. J. Trioxygenated naturally occurring xanthones. Phytochemistry, v. 44, p. 191–214, 1997. PERES, V.; NAGEM, T. J.; DE OLIVEIRA, F. F. Tetraoxygenated naturally occurring xanthones. Phytochemistry, v. 55, p. 683–710, 2000. PETERS, S.; SCHMIDT, W.; BEERHUES, L. Regioselective oxidative phenol couplings of 2,3′,4,6-tetrahydroxybenzophenone in cell cultures of Centaurium erythraea RAFN and Hypericum androsaemum L. Planta, v. 204, p. 64–69, 1997. 219 PINHEIRO, L.; NAKAMURA, C. V.; DIAS FILHO, B. P.; FERREIRA, A. G.; YOUNG, M. C. M.; CORTEZ, A. G. Antibacterial xanthones from Kielmeyera variabilis mart. (Clusiaceae). Memórias Do Instituto Oswaldo Cruz, v. 98, p. 549–552, 2003. PINTO, M. M. M.; PALMEIRA, A.; FERNANDES, C.; RESENDE, D. I. S. P.; SOUSA, E.; et al. From Natural Products to New Synthetic Small Molecules: A Journey through the World of Xanthones. Molecules, v. 26, p. 431, 2021. POPŁOŃSKI J, TURLEJ E, SORDON S, TRONINA T, BARTMAŃSKA A, WIETRZYK J, HUSZCZA E. Synthesis and Antiproliferative Activity of Minor Hops Prenylflavonoids and New Insights on Prenyl Group Cyclization. Molecules, v. 23, p. 776, 2018. REN, Y.; LANTVIT, D. D.; DE BLANCO, E. J. C.; KARDONO, L. B. S.; et al. Proteasome-inhibitory and cytotoxic constituents of Garcinia lateriflora: absolute configuration of caged xanthones. Tetrahedron, v. 66, p. 5311–5320, 2010. ROBERT, E. B.; STEVEN, A.; LEMMEL, X.; QIONGQIONG, A. Z. Bioorthogonal Chemistry and Its Applications. Bioconjugate Chemistry, v. 32, p. 2479, 2021. RODIONOV, V. O.; FOKIN, V. V.; FINN, M. G. Mechanism of the ligand-free CuIcatalyzed azide-alkyne cycloaddition reaction. Angewandte Chemie International Edition in English, v. 44, p. 2210-2215, 2005. ROSTOVTSEV, V. V.; GREEN, L. G.; FOKIN, V. V.; SHARPLESS, K. B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angewandte Chemie International Edition, v. 41, p. 2599, 2002. SANTOS, C. M. M.; FREITAS, M.; FERNANDES, E. A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. European Journal of Medicinal Chemistry. Eur. J. Med. Chem. v. 157, P. 1460, 2018; NIE, W.; ZAN, X.; YU, T.; RAN, M.; HONG, Z. Synergetic therapy of glioma mediated by a dual delivery system loading α-mangostin and doxorubicin through cell cycle arrest and apoptotic pathways. Cell Death & Disease, v. 11, p. 1-13, 2020. SARGOLZAEI, M. Effect of nelfinavir stereoisomers on coronavirus main protease: Molecular docking, molecular dynamics simulation and MM/GBSA study. Journal of Molecular Graphics and Modelling, v. 103, p. 107803, 2021. SCHMID, W. Ueber das Mangostin. Annalen Der Chemie Und Pharmacie, v. 93, p. 83–88, 1855. SCHULTZ, T. W.; ALLISON, T. C. Toxicity and toxic interaction of aniline and pyridine. Bulletin of environmental contamination and toxicology., v. 23, p. 819, 1979; SHAWAHNA, R.; RAHMAN, N. U. Evaluation of the use of partition coefficients and molecular surface properties as predictors of drug absorption: a provisional biopharmaceutical classification of the list of national essential medicines of Pakistan. DARU, v. 19, p. 99, 2011. SILVERMAN, R. B & HAWE, W. P. SAR studies of fluorine-substituted benzylamines and substituted 2-penylethylamines as substrates and inactivators of monoamine oxidase B. J. Enzyme Inhib., v. 9, p. 215, 1995. 220 SIMÕES-SILVA, M. R et al. Drug repurposing strategy against Trypanosoma cruzi infection: In vitro and in vivo assessment of the activity of metronidazole in mono- and combined therapy. Biochem Pharmacol., v, 145, p. 46-53, 2017. SMITH, M. B.; MARCH, J. Em March’s Advanced Organic Chemistry. Reactions, mechanisms, and structure, 8a Ed., Wiley, New York, 2019. SORIANO-ARANDES, A. et al. Control and management of congenital Chagas disease in Europe and other non-endemic countries: current policies and practices. Trop Med Int Health, v. 21, p. 590-596, 2016. STANAWAY J.D.; ROTH, G. The burden of Chagas disease: estimates and challenges. Global Heart, v. 10, p.139-144, 2015. STEWART, B. H.; CHAN, O. H.; LU, R. H et al. Comparison of intestinal permeabilities determined in multiple in vitro and in situ models: relationship to absorption in humans. Pharm. Res., v. 12, p. 693, 1995. SUDTA, P.; JIARAWAPI, P.; SUKSAMRARN, A.; HONGMANEE, P.; SUKSAMRARN, S. Potent activity against multidrug-resistant mycobacterium tuberculosis of alpha-mangostin analogs. Chemical and pharmaceutical bulletin, v. 61, p. 194–203, 2013. SUETH-SANTIAGO, V.; DECOTE-RICARDO, D.; MORROT, A.; FREIRE-DE- LIMA, C. G.; LIMA, M. E. F. Challenges in the chemotherapy of Chagas disease: Looking for possibilities related to the differences and similarities between the parasite and host. World Journal of Biological Chemistry, v. 8, p. 57, 2017. TAI, N. V.; QUAN, P. M.; HÁ, V. T.; LUYEN, N. D.; CHI, H. K.; CUONG, L. H.; PHONG, L.; CHINH, L. V. Synthesis od Propargyl Ciompounds and Their Cytotoxic Activity. Russian Journal of Organic Chemistry, v. 57, p. 462-468, 2021. TORNØE, C. W.; CHRISTENSEN, C.; MELDAL, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. The Journal of Organic Chemistry, v. 67, p. 3064, 2002. TROCHINE, A.; CREEK, D. J.; FARAL-TELLO, P.; BARRET, M.P.; ROBELLO, C. Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics. PLoS Neglected tropical Diseases, v. 8, p. 15, 2014. URBINA, J. A. et al. Parasitological cure of acute and chronic experimental Chagas disease using the long-acting experimental triazole TAK-187. Activity against drug- resistant Trypanosoma cruzi strains. International Journal of Antimicrobial Agents, v. 21, p. 48, 2003. VALÉRIO, L. F, FAZZA, S. P. H, MARINHO, J. A.; REIS, S. R.; DE AZEVEDO, A. L.; CAPRILES, G. P. V. Z.; ABRAMO, C.; DAVID, S. A. 1,2,3-Triazole derivatives: synthesis, docking, cytotoxicity analysis and in vivo antimalarial activity. Chem Biol Interact. 2021; 350 :109688. VELEZ, A. S. M. M.; DE SOUZA, G. A.; PITASSE-SANTOS, P.; DE ALCÂNTARA PINTO, D. C.; DECOTE-RICARDO, D.; DE LIMA, M. E. F. 2-Nitro-1-vinyl-1H- imidazole. Molbank 2022, M1326, 2022. 221 VIEGAS-JUNIOR, C.; DANUELLO, A.; DA SILVA BOLZANI, V.; BARREIRO, E. J.; FRAGA, C. A. Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem., v. 14, p. 1829-1852, 2007. VIEIRA, L. M. M.; KIJJOA. A. Naturally-Occurring Xanthones: Recent Developments. Current Medicinal Chemistry, v. 12, p. 2413–2446, 2005. VOGL, M.; KRATZER, R.; NIDETZKY, B.; BRECKER, L. Candida tenuis xylose reductase catalysed reduction of acetophenones: the effect of ring-substituents on catalytic efficiency. Organic & biomolecular chemistry., v. 9, p. 5870, 2011 WANG, C.; LU, L.; NA, H, et al. Conjugation of a nonspecific antiviral sapogenin with a specific HIV fusion inhibitor: a promising strategy for discovering new antiviral therapeutics. J Med Chem., v. 57, p. 7354, 2014. WERMUTH, C. G. Identical and non-identical twin drugs. IN: WERMUTH, C. G, editor. The practice of medicinal chemistry. London: Academic. p. 261-293, 1996; WEZEMAN, T.; BRÄSE, S.; MASTERS, K.S. Xanthone dimers: a compound family which is both common and privileged. Natural Product Reports, v. 32, p. 28, 2015. WEZEMAN, T.; MASTERS, K. S. Chapter 12 Xanthones are Privileged Scaffolds in Medicinal Chemistry—But are they Over-privileged? In Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation; The Royal Society of Chemistry: London, UK, 2016. WHO - Global distribution of cases of Chagas disease, based on official estimates, 2018. Retrieved September 1, 2020, https://www.who.int/docs/defaultsource/ntds/chagas- disease/chagas-2018-cases.pdf?sfvrsn=f4e94b3b_2, 2018. WHO. Anti-tuberculosis drug resistance in the world, WHO, Geneva, 2004. WHO. Global tuberculosis report 2017, WHO: Geneva, 2017. WORLD HEALTH ORGANIZATION et al. Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire, v. 90, p. 33-44, 2015. Worrell, B. T.; Malik, J. A. & Fokin, V. V. Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions. Science, v. 340, p. 457– 460, 2013. WU, D.; YANG, K.; ZHANG, Z.; FENG, Y.; RAO, L.; CHEN, X. & YU, G. (2022). Metal-free bioorthogonal click chemistry in cancer theranostics. Chemical Society Reviews, v. 51, p. 1336-1376, 2022. WU, K. M. A New Classification of Prodrugs: Regulatory Perspectives. Pharmaceuticals (Basel), v. 3, p. 77-81, 2009. XIA, Y.; LI, Y.; WESTOVER, K. D.; SUN, J.; CHEN, H.; ZHANG, J.; FISHER, D. E. Inhibition of Cell Proliferation in an NRAS Mutant Melanoma Cell Line by Combining Sorafenib and α-Mangostin. Plos One, v. 11, e0155217, 2016. XIAO, H. M.; LING, Y.; ZHAI, Y. F.; LI, Y. M. Theoretical studies on the mechanism of Mannich reaction involving iminium salt as potential Mannich reagent. Use of acetaldehyde as pseudo-acid component. Chemical Research in Chinese Universities v. 13, p. 329, 1997. 222 XU, D.; NIE, Y.; LIANG, X.; JI, L.; HU, S.; YOU, Q.; WANG, F.; YE, H.; WANG, J. A Concise and Efficient Total Synthesis of α-Mangostin and β-Mangostin from Garcinia Mangostana. Natural Product Communications, v. 8, p. 1101-1103, 2013. XU, Z.; HUANG, L.; CHEN, X.H. Cytotoxic Prenylated Xanthones from the Pericarps of Garcinia mangostana. Molecules, v. 19, p. 1820–1827, 2014. YANG, A.; LIU, C.; WU, J.; KOU, X.; SHEN, R. A review on α-mangostin as a potential multi-target-directed ligand for Alzheimer’s disease. European Journal of Pharmacology, v. 897, p. 173950, 2021. YANG, B.; LANG, H.; LIU, Z.; WANG, S.; MEN, Z.; SUN, C. Three stages of hydrogen bonding network in DMF-water binary solution. Journal of Molecular Liquids., v. 324, p. 114996, 2021. YAO, H.; LIU, J.; XU, S.; ZHU, Z.; XU, J. The structural modification of natural products for novel drug discovery. Expert Opinion on Drug Discovery, v. 12, p. 121–140, 2016. YATES, P & BHAT, H. B. (1970). Acid-catalyzed cyclization of mangostin. Canadian Journal of Chemistry, v. 48(4), p. 680–684, 1970. YAZDANIAN, M.; GLYNN, S. L.; WRIGHT, J. L.; HAWI, A. Pharmaceutical Research, v. 15, p. 1490–1494, 1998. ZHANG, X. et al. Synthesis, SAR and biological evaluation of natural and non-natural hydroxylated and prenylated xanthones as antitumor agents. Med Chem., v. 8, p. 1012- 1025, 2012. ZHAO, Y., TANG, G., TANG, Q., ZHANG, J., HOU, Y., CAI, E., WANG, S. A Method of Effectively Improved α-Mangostin Bioavailability. European Journal of Drug Metabolism and Pharmacokinetics, v. 41, p. 605–613, 2015.pt_BR
dc.subject.cnpqQuímicapt_BR
Appears in Collections:Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Douglas Chaves de Alcântara Pinto.Pdf5.29 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.