Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/18391
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJesus, Daiana Souza de-
dc.date.accessioned2024-10-02T15:24:28Z-
dc.date.available2024-10-02T15:24:28Z-
dc.date.issued2023-10-26-
dc.identifier.citationJESUS, Daiana Souza de. Melhoria das propriedades físicas, acústicas, mecânicas e biológicas da madeira pela técnica de acetilação. 2023. 112 f. Tese (Doutorado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2023.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/18391-
dc.description.abstractA acetilação com anidrido acético surge como um método promissor para melhorar as propriedades da madeira, reduzindo sua sensibilidade à umidade, aumentando a estabilidade dimensional e a durabilidade. Este processo químico, que cria grupos acetila hidrofóbicos na parede celular, resulta em uma madeira mais resistente e durável, sendo comercializada como alternativa a materiais como madeiras tropicais, plásticos, metais e concreto. O objetivo desse trabalho foi avaliar o efeito do tratamento químico por acetilação nas propriedades físicas, acústicas, mecânicas e degradação biológica em uma madeira de conífera (pinus) e uma folhosa (marupá). Corpos de prova foram confeccionados em diferentes dimensões, de acordo com os ensaios a serem realizados: 25×30×50 mm (radial × tangencial × longitudinal) para ensaios de estabilidade dimensional, 20×20×10 mm para ensaios biológicos e réguas nas dimensões de 5×35×300 mm para os demais ensaios. As amostras foram acetiladas com anidrido acético aquecidas a duas diferentes temperaturas: 100 ou 120 °C e mantidas por 1 hora ou por 2 horas. Foram testados três métodos de secagem antes da acetilação: madeira seca em estufa a 103+/- 2°C; madeira seca em estufa a 60 °C com a aplicação de vácuo a -720 mmHg; Madeira seca com pentóxido de fósforo (P2O5) em temperatura ambiente. O ganho percentual de peso (WPG) foi calculado para determinar a eficiência da acetilação. A densidade aparente, o teor de umidade de equilíbrio, as contrações lineares (tangencial, radial e longitudinal) e volumétrica e o ponto de saturação das fibras foram determinadas de acordo com a norma ABNT NBR 7190/97. O módulo de elasticidade estático (MOE) foi determinado de forma não destrutiva, conforme a norma ABNT NBR 7190/22 em uma máquina de ensaio universal Contenco UMC 300. Os ensaios não destrutivos de propagação de ondas foram realizados por meio do método de vibração transversal em um equipamento adaptado, e os dados foram analisados utilizando o software Fast Fourier Analyzer (FFT Analyzer) da FAKOPP® Enterprise. Para avaliar a capacidade de deterioração das madeiras, o fungo Postia placenta (causador da podridão parda) foi utilizado seguindo a norma ASTM D-2017 (1994) ao longo de 16 semanas de exposição. O tratamento por acetilação com os maiores WPG reduziram o inchamento da madeira nas diferentes direções (volumétrico, tangencial e radial), diminuíram a umidade de equilíbrio e o Ponto de saturação das fibras para as duas espécies estudadas. A densidade aparente diminuiu nos tratamentos de 1 hora e aumentou nos tratamentos de 2 horas, para as duas espécies estudadas. Para o pinus, a acetilação resultou em aumento da densidade, enquanto para o marupá, houve redução nas médias de densidade em todos os tratamentos. A frequência de ressonância aumentou nos tratamentos de 1 hora a 100 oC para ambas as espécies, diminuindo ou não apresentando diferença significativa nos demais tratamentos. Adicionalmente, a acetilação resultou em uma redução no decremento logarítmico (DL) para a madeira de ambas as espécies em todos os tratamentos. O módulo de elasticidade dinâmico (MOEd) e o módulo de elasticidade estático (MOE) aumentaram para a maioria dos tratamentos de pinus, enquanto diminuíram para a madeira de marupá. Nos tratamentos de acetilação, houve um aumento correspondente no ângulo de contato. As análises colorimétricas revelaram que os tratamentos a 100 oC e 120 oC por 2 horas preservaram a cor da madeira, mesmo após 42 e 120 horas de exposição UV. Isso destaca a eficácia desses tratamentos de acetilação na resistência à fotodegradação da madeira de pinus e marupá, evidenciando seu potencial para aplicações em ambientes externos sujeitos à exposição prolongada à radiação UV. Observou-se uma perda significativa de massa após a acetilação da madeira de pinus, chegando a até 58%, possivelmente devido à preferência do fungo por coníferas. No entanto, tratamentos com maiores ganhos de peso (WPG) demonstraram eficácia na redução da perda de massa. Para o marupá, os tratamentos por acetilação revelaram-se eficazes na redução da deterioração, com uma diminuição de até 88,41% na perda de massa para a madeira tratada por 2 horas a 120 °C com secagem com P2O5, em comparação com a amostra não tratada (controle).pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectMadeirapt_BR
dc.subjectModificação químicapt_BR
dc.subjectEstabilidade dimensionalpt_BR
dc.subjectDurabilidade da madeirapt_BR
dc.subjectWoodpt_BR
dc.subjectChemical alterationpt_BR
dc.subjectDimensional stabilitypt_BR
dc.subjectWood durabilitypt_BR
dc.titleMelhoria das propriedades físicas, acústicas, mecânicas e biológicas da madeira pela técnica de acetilaçãopt_BR
dc.title.alternativeImprovement of the physical, acoustic, mechanical and biological properties of wood using the acetylation techniqueen
dc.typeTesept_BR
dc.description.abstractOtherAcetylation with acetic anhydride appears as a promising method to improve the properties of wood, reducing its sensitivity to humidity, increasing dimensional stability and durability. This chemical process, which creates hydrophobic acetylated groups in the cell wall, results in more resistant and durable wood, being sold as an alternative to materials such as tropical woods, plastics, metals and concrete. The objective of this work was to evaluate the effect of chemical treatment by acetylation on the physical, acoustic, mechanical properties and biological manipulation of coniferous wood (pine) and hardwood (marupá). Test specimens were made in different dimensions, according to the tests to be carried out: 25×30×50 mm (radial × tangential × longitudinal) for dimensional stability tests, 20×20×10 mm for biological tests and rulers in dimensions of 5×35×300 mm for the other tests. The samples were acetylated with acetic anhydride heated to two different temperatures: 100 or 120 °C and kept for 1 hour or 2 hours. Three drying methods were tested before acetylation: oven-dried wood at 103+/- 2°C; oven- dried wood at 60 °C with vacuum application at -720 mmHg; Dry wood with phosphorus pentoxide (P2O5) at room temperature. Percent weight gain (WPG) was calculated to determine acetylation efficiency. The apparent density, equilibrium moisture content, linear (tangential, radial and longitudinal) and volumetric contractions and the saturation point of the fibers were determined in accordance with the ABNT NBR 7190/22 standard. The static modulus of elasticity (MOE) was determined non-destructively, in accordance with the ABNT NBR 7190/22 standard, on a Contenco UMC 300 universal testing machine. Non-destructive wave propagation tests were carried out using the vibration method cross section on adapted equipment, and the data were analyzed using the Fast Fourier Analyzer (FFT Analyzer) software from FAKOPP® Enterprise. To evaluate the wood's restriction capacity, the fungus Postia placenta (which causes brown rot) was used following the ASTM D-2017 (1994) standard over 16 weeks of exposure. Acetylation treatment with the highest WPG reduced the wood swell in the different specifications (volumetric, tangential and radial), reduced the equilibrium moisture content and the saturation point of the fibers for the two scientific species. The apparent density decreased in the 1-hour treatments and increased in the 2-hour treatments, for the two specific species. For pine, acetylation resulted in an increase in density, while for marupá, there was a reduction in average density in all treatments. The resonance frequency increased in the 1-hour treatments at 100 oC for both species, whether or not there was a significant difference in the other treatments. Furthermore, acetylation demonstrated a reduction in logarithmic decrement (LD) for wood of both species across all treatments. The sound modulus of elasticity (MOEd) and the aesthetic modulus of elasticity (MOE) increased for most pine treatments, while they decreased for marupá wood. In acetylation treatments, there was a corresponding increase in the contact angle. Colorimetric analyzes revealed that treatments at 100 oC and 120 oC for 2 hours preserved the color of the wood, even after 42 and 120 hours of UV exposure. This highlights the effectiveness of these acetylation treatments in resisting photodegradation of pine and marupá wood, highlighting their potential for applications in external environments subject to prolonged exposure to UV radiation. A significant loss of mass was observed after acetylation of pine wood, reaching up to 58%, possibly due to the fungus' preference for conifers. However, treatments with greater weight gains (WPG) have demonstrated efficacy in reducing mass loss. For marupá, acetylation treatments proved to be effective in reducing interference, with a reduction of up to 88.41% in mass loss for wood treated for 2 hours at 120 °C with drying with P2O5, compared to untreated sample (control).en
dc.contributor.advisor1Nascimento, Alexandre Miguel do-
dc.contributor.advisor1IDhttps://orcid.org/0000-0001-5347-5577pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3579375199519821pt_BR
dc.contributor.referee1Nascimento, Alexandre Miguel do-
dc.contributor.referee1IDhttps://orcid.org/0000-0001-5347-5577pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3579375199519821pt_BR
dc.contributor.referee2Trevisan, Henrique-
dc.contributor.referee2IDhttps://orcid.org/0000-0003-0155-231Xpt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/2760790628174618pt_BR
dc.contributor.referee3Oliveira, Renata Nunes-
dc.contributor.referee3IDhttps://orcid.org/0000-0001-9782-269Xpt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9026953896544145pt_BR
dc.contributor.referee4Gonçalves, Fabricio Gomes-
dc.contributor.referee4IDhttps://orcid.org/0000-0003-2010-9508pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/0616694853822879pt_BR
dc.contributor.referee5Segundinho, Pedro Gutemberg de Alcântara-
dc.contributor.referee5IDhttps://orcid.org/0000-0002-4393-8686pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/0125088071269647pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/3889585414338463pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Florestaspt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciências Ambientais e Florestaispt_BR
dc.relation.referencesABOLTINS, A.; MOROZOVS, A. Mathematical aspects of absorption of acetic anhydride in wood. Transactions of the Estonian Agricultural University, 196, 167-171, 1998. ACCSYS TECHNOLOGIES. Relatório de Impacto do PLC da Accsys Technologies, outubro de 2014. AHMED, S.A.; ADAMOPOULOS, S. Acoustic properties of modified wood under different humid conditions and their relevance for musical instruments. Applied Acoustics. 140. 92-99, 2018. (DOI: 10.1016/j.apacoust.2018.05.017). ALEXANDER, J.; HAGUE, J.; BONGERS, F.; IMAMURA, Y.; ROBERTS, M. The resistance of Accoya and Tricoya to attack by wood-destroying fungi and termites. Int. Res. Group on Wood Preservation, IRG/WP 14-40658, St, Gerorge, Utah, USA. 2014. ALMEIDA, T.H. Estudo da estabilidade dimensional de madeiras tropicais brasileiras. (Dissertação) - Universidade de São Paulo, São Carlos, SP, 2015. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D2017: Standard method for accelerated laboratory test of natural decay resistance for woods. West Consho hocken, 2005. 5p. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM E-1876-21: Standard test method for dynamic Young’s Modulus, shear modulus and Poisson’s ratio by impulse excitation of vibration. ASTM International, West Conshohocken, PA. 2021. AMORIM, M.R.S.; RIBEIRO, P.G.; MARTINS, S.A.; DEL MENEZZI, C.H.S.; SOUZA, M.R. Surface wettability and roughness of 11 Amazonian tropical hardwoods. Floresta e Ambiente, v. 20, n. 1, p. 99-109, 2013. ANDERBERG, S. Mechanical properties of chemical modified wood of load-bearing constructions. (153f). Tese (Department of Structural Engineering) - Faculty of Engineering LTH Box 118 S-221 00 LUND Sweden, 2016. ANDRADE JUNIOR, J.R. Classificação estrutural de peças de madeira de Pinus elliottii utilizando o módulo de elasticidade obtido pelo método de ondas longitudinais de tensão. 2016, 126 p. Dissertação (Mestrado em Engenharia Civil (Estruturas)) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, SP, 2016. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 7190-1:2022 - Projeto de estruturas de madeira - Parte 2: Métodos de ensaio para classificação visual e mecânica de peças estruturais de madeira, Rio de Janeiro. 2022. AYADI, N.; LEJEUNE, F.; CHARRIER, F.; CHARRIER, B.; MERLIN, A. Color stability of heat-treated wood during artificial weathering. Holz als Roh-und Werkstoff, v. 61, p. 221- 226, 2003. 91 BARBOSA, L.C.A.; MALTHA, C.R.A.; SILVA, V.L.; COLODETTE, J.L. Determination of the siringyl/guaiacyl ratio in eucalyptus wood by pyrolysis-gas chromatography/mass spectrometry (PY–GC/MS). Química Nova, v. 31, n. 8, p. 2035-2041, 2008. BARRICHELO, L.E.G.; BRITO, J.O. Química da madeira. Piracicaba: ESALQ, 126p., 1985. BATISTA, D.C.; KLITZKE, R.J.; TABORDA, C.V.S. Densidade básica e retratibilidade da madeira de clones de três espécies de Eucalyptus. Ciência Florestal, v. 20, n. 4, p. 665-674, 2010. BAUFLEUR, A.M.Y.; STANGERLIN, D.M.; GOUVEIA, F.N.; SILVA, A.S.V.S.; OLIVEIRA, J.R.V.; SILVEIRA, M.F; PIMENTA, A.S.; MELO, R.R. Resistance of acetylated Jacaranda copaia wood to termites and decaying fungi attack. Acta Amazonica, [S.L.], v. 52, n. 3, p. 264-269, set. 2022. http://dx.doi.org/10.1590/1809-4392202200832. BODIG, J.; JAYNE, B.A. Mechanics of Wood and Wood Composites. New York: van Nostrand Reinhold, 1993. 712 p. BONGERS, H.P.M.; BECKERS, E.P.J. Mechanical properties of acetylated solid wood treated on pilot plant scale. In: Van Acker J, Hill CAS (eds) The first European conference on wood modification. Gent, Belgium, p. 341–350, 2003. BRISOLARI A. Estudo da molhabilidade em madeiras tropicais ou de reflorestamento por medidas de ângulo de contato e de permeabilidade. [dissertação]. São Carlos: Universidade Federal de São Carlos, Universidade de São Paulo; 2008. 98 p. BRYNE, L.E.; WÅLINDER, M.E.P. Ageing of modified wood. Part 1: Wetting properties of acetylated, formulated, and thermally modified wood. Holzforschung, v. 64, n. 3, p. 295-304, 2010. https://doi.org/10.1515/hf.2010.040 BURGER, L. M.; RICHTER, H. G. Anatomia da madeira. São Paulo: Nobel, 157p., 1991. CALIL JÚNIOR, C.; MINÁ, A.J.S. Vibração transversal: Um método eficiente para classificação de peças estruturais de madeira. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 7, n. 2, p. 335-338, 2003. CASTRO, V.G.; GUIMARÃES, P.P. Deterioração e preservação da madeira. Mossoró: EdUFERSA, 108 p. 2018. CAULFIELD, D.F. The effect of cellulose on the structure of water. In: Fibre-water interactions in paper-making. Clowes and Sons Ltd.: London, 1978. CHAI, Y.; LIU, J.; WANG, Z.; ZHAO, Y. Acetylated poplar wood. BioResources, v. 12, n. 1, p. 912-922, 2017. CHRISTIANSEN, A.W. Effect of overdrying of yellow-poplar veneer on physical properties and bonding. Holz Roh- Werkstoff, v. 52, p. 139-149, 1994. 92 COSSOLINO L.C.; PEREIRA A.H. A. Amortecimento: classificação e métodos de determinação. Informativo Técnico-Científico ITC04-Amortecimento/ATCP, ATCP Engenharia Física, São Carlos, SP, 14 p., 2010. COSTA, J. A.; GONÇALEZ, J. C.; CAMARGOS, J. A.; GOMES, I. A. S. Fotodegradação de duas espécies de madeiras tropicais: jatobá (Hymenaea courbaril) e tauari (Couratari oblongifolia) submetidas à radiação ultravioleta. Cerne, v. 17, n. 1, p. 133-139, 2011. CRUZ, M.M.S. Estudo da molhabilidade da madeira de pinho pela resina ureia- formaldeído. 2006, 200 p. Dissertação (Mestrado) - Curso de Agronomia, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisboa, Portugal, 2006. DENT, R.W. A multiplayer theory for gas sorption. Part 1: Sorption of a single gas. Textile Research Journal, v. 47, n. 2, p. 145-152, 1977. DINWOODIE, J.M. Timber: its nature and behaviour, 2nd ed. E. and F.N. Spon, London, UK. 2000. DONG, Y. et al. Improvement of water resistance, dimensional stability, and mechanical properties of poplar wood by rosin impregnation. European Journal of Wood and Wood Products, v. 74, n. 2, p. 177-184, 2016. DREHER, W.A.; GOLDSTEIN, I.S.; CRAMER, G.R. Mechanical properties of acetylated wood. Forest Product Journal, v. 14, p. 66-68, 1964. DUNDAR, T.; AKBULUT, T.; KORKUT, S. The effects of some manufacturing factors on surface roughness of sliced Makoré (Tieghemella heckelii Pierre Ex A. Chev.) and rotary-cut eech (Fagus orientalis L.) veneers. Building and Enviroment, v. 43, p. 469-474, 2008. D'ALMEIDA, M.L.O..; KOGA, M.E.T.; FERREIRA, D.C.; PIGOZZO, R.J. Composição química da madeira e matérias-primas fibrosas. In: Celulose SENAI (SP). São Paulo: SENAI, 2013. Cap.1, p.11-58. EFANOV, M.V. Transformations of aspen wood and its principal components by o-acylation. Chemistry of Natural Compounds, v. 37, n. 5, p. 482-485, 2001. ESTEVES, B.; VIDEIRA, R.; PEREIRA, H. Chemistry and ecotoxicity of heat-treated pine wood extractives. Wood Science and Technology, v. 45, p. 661-676, 2011. EVANS, A.R.;LIMP-FOSTER, M.; KELLEY, M.R. Going APE over ref-1. Mutation Research, v. 461, n. 2, p. 83-108, 2000. FAVARO, J.S.C. Estudos da polpação kraft, branqueamento e refino de Eucalyptus grandis x Eucalyptus urophylla. 2015. Tese (Doutorado) - Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá, Guaratinguetá, SP, 2015. FEIST, W. C.; ROWELL, R. M.; BARBOUR, R. J. Outdoor wood weathering and protection. Archaeological Wood: Properties, Chemistry and Preservation, p. 263-298, 1990. 93 FENGEL, D.; WEGENER, G. Wood: chemistry, ultrastucture, reactions. New York: Walter de Gruyter, 613p. 1984. FODOR, F.; NÉMETH, R.; LANKVELD, C.; HOFMANN, T. Effect of acetylation on the chemical composition of hornbeam (Carpinus betulus L.) in relation with the physical and mechanical properties. Wood Material Science & Engineering, v. 13, n. 5, p. 271-278. 2017. https://doi.org/10.1080/17480272.2017.1316773 FOREST PRODUCTS LABORATORY. Wood Handbook: Wood as an Engineering Material. Forest Products Society, Madison, Wisconsin, 1999. FRIHART, C.R. Adhesive interaction with wood. In: FUNDAMENTALS OF COMPOSITE PROCESSING PROCEEDINGS OF A WORKSHOP, Nov 5-6, Madison, WI. Gen. Tech. Rep. FPL-GTR-149. USDA, For. Serv., For. Prod. Lab. p. 29-53. 2010. FUQUA, M.A; HUO, L.; ULVEN, A. Natural fiber reinforced composites. Polymer Reviews, v. 52, n. 3, p. 259-320, 2012. GARCIA, J.A. Fibras papeleras. 1. ed. Barcelona: Ediciones UPC, 243p., 2007. GÉRARDIN, P. New alternatives for wood preservation based on thermal and chemical modification of wood: a review. Annals of Forest Science, v. 73, p. 559-570, 2016. GINDL, M.; REITERER, G.; SINN, S.E. Effects of surface ageing on wettability, surface chemistry, and adhesion of wood. Holz als Roh- und Werkstoff, v. 62, p. 273-280, 2004. GOLDSTEIN, I.S.; JEROSKI, E.B.; LUND, A.E.; NIELSON, J.F.; WEAVER, J.W. Acetylation of wood in lumber thickness. Forest Products Journal, v. 11, p. 363-370, 1961. GOMES, D.F.; SILVA, F.J.R.M.; BIANCHI, M.L.;TRUGILHO, P.F. Estabilidade dimensional da madeira acetilada de eucalipto. Scientia Florestalis, n. 70, p. 125-130, 2006. GOMIDE, J. L.; COLODETTE, J. L.; OLIVEIRA, R. C.; SILVA, C. M. Caracterização tecnológica, para produção de celulose, da nova geração de clones de Eucalyptus do Brasil. Revista Árvore, v. 29, n.1, p. 129-137, 2005. GOODELL, B., ZHU, Y., KIM, S., KAFLEE, K., EASTWOOD, D., DANIEL, G., JELLISON, J., YOSHIDA, M., GROOM, L., PINGALI, S.V. Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood decay fungi. Biotechnol. Biofuels 10 (179), 2007. GOUVEIA, F. N. Aplicação de tratamentos térmicos para estabilização colorimétrica de madeiras tropicais. 2008. 130 p. Tese (Doutorado em Ciência Florestal) – Universidade de Brasília, Brasília, DF, 2008. GRACE, A. F.; YEKEEN, O. O.; OLALEKAN, O. S. Decay Resistance of the Acetylated Tropical Hardwood Species. Journal of Forest and Environmental Science, v. 36, n. 3, p. 225-232, 2020. 94 HAQUE, M.N.; HILL, C.A.S. Chemical modification, wood flour and fibre with acetic anhydride. Journal of the Institute of Wood Science, v.15, n. 3, p. 109-115, 2000. HILL, C. Wood modification: Chemical, thermal, and other processes. Chichester, England: John Wiley and Sons. 2006. HILL, C.A.S. Why does acetylation protect wood from microbiological attack? Wood Material Science & Engineering: 2009. HILL, C.A.S.; HILLIER, J. The kinetics of anhydride modification reactions of wood. Experimental results and theoretical modelling. International Research Group on Wood Preservation, Doc. No. IRG/WP/98-40125. 1998. HILL, C.A.S.; ORMONDROYD, G. Dimensional changes in Corsican pine (Pinus nigra Arnold) modified with acetic anhydride measured using a helium pycnometer. Holz Forschung, v. 58, p. 544-547. 2004. HILL, C.A.S.; PAPADOPOULOS, A.N. The pyridine-catalyzed acylation of pine sapwood and phenolic model compounds with carboxylic acid anhydrides. Determination of activation energies and entropy of activation. Holz Forschung, v. 56, n. 2, p. 150-156, 2002. HOMAN, W.J.; BONGERS, F. Influence of up-scaling processes on degree and gradient of acetylation in Spruce and Beech. In: Final workshop cost action e22 environmental optimization of wood protection, Estoril, 2004. Proceedings. Estoril: International Research Group on Wood Protection, 2004. HOMAN, W.; TJEERDSMA, B.; BECKERS, E.; JORISSEN, A. Structural and other properties of modified wood. In: World Conference on Timber Engineering. 2000. HON, D. Weathering of wood in structural use. In: Environmental degradation of engineering in aggressive environments. Proceedings of 2nd international conference on environmental degradation of engineering materials. Va Polytech Inst, Lab for the Study of Environ Degrad. of Eng Mater, Blacksburg, Va, USA, p. 519-529, 518, 1981. HUANG, X.; KOCAEFE, D.; KOCAEFE, Y.; BOLUK, Y.; PICHETTE, A. Changes in wettability of heat-treated wood due to artificial weathering. Wood Science and Technology, v. 46, p. 1215-1237, 2012. HUNT, C. G.; ZELINKA, S. L.; FRIHART, C. R.; LORENZ, L.; YELLE, D.; GLEBER, S. C. Acetylation increases relative humidity threshold for ion transport in wood cell walls–A means to understanding decay resistance. International Biodeterioration& Biodegradation, v. 133, p. 230- 237, 2018. JONES, D.; HILL, C.A.S. Wood modification: A brief overview of the technology. In: Proceedings of the 5th COST E34 International Workshop, SERNEK, M. (ed.), Bled, Slovenia, 6-7 Sept. 2007, p. 1-9. 2007. JORISSEN, A.; BONGERS, F.; KATTENBROEK, B.; HOMAN, W. The influence of acetylation of Radiata pine in structural sizes on its strength properties. In: Militz H, Hill CAS (eds) The Second European Conference on Wood Modification. Go ̈ttingen, Germany, 2005. 95 KANG, H.-Y.; KANG, C.-W.; HONG, S.-H.; MATSUMURA, J. () Effect of heat treatment on the acoustic properties of a wooden xylophone keyboard. Journal- Faculty of Agriculture Kyushu University 61(1):157-163. 2016 (DOI: 10.5109/1564098) KATAOKA, Y.; KIGUCHI, M. Depth profiling of photo-induced degradation in wood by FT- IR microspectroscopy. Journal Wood Science, v. 47, n. 4, p. 325-327, 2001. KOLLMANN, F.F.; CÔTÉ, W.A. Principles of Wood Science and Technology. Heildelberg, New York: Spring Verlag Berlim. 1968. KLOCK, U.; ANDRADE, A. S Química da Madeira. 3. ed. rev. Curitiba: Universidade Federal do Paraná, 2005. LARSSON, P. Acetylation of solid wood. 1988, número de páginas. PhD thesis. Departament of Forest Products and Chemical Engineering Chalmers, University of Technology, Göteborg, Germany, 1988. LARSSON, B., P. Benchmarking and state of the art for modified wood. SP Technical Research Institute of Sweden Box 857, 501 15 Borås, Sweden. 2013. LARSSON, B.P.; SIMONSON, R.A. study of strength, hardness and deformation of acetylated Scandinavian softwoods. Holz als Rohund Werkstoff, v. 52, n. 2, p. 83-86, 1994. LARSSON, P.; TILLMANN, A. M. Acetylation of lignocellulosic materials. In: The International Group on Wood Preservation, Document No. IRG/WP/3516, 1989. LI, M.Y.; CHENG, S.C.; LI, D.; WANG, S.N.; HUANG, A.M.; SUN, S.Q. Structural characterization of steam-heat treated Tectona grandis wood analysed by FT-IR and 2D-IR correlation spectroscopy. Chinese Chemical Letters, v. 26, p. 221-225, 2015. LI, J.Z.; FURUNO, T.; KATOH, S. Dimensional stability and flame resistance of silicate acetylated and propionylated wood composites. Journal of Wood Chemistry and Technology, v. 20, n. 4, p. 441-453, 2000. LI, J. Z.; FURUNO, T.; ZHOU, W. R.; REN, Q.; HAN, X.Z; ZHAO, J. P. Properties of acetylated wood prepared at low temperature in the presence of catalysts. Journal of Wood Chemistry and Technology, v. 29, p. 241-250, 2009. LIN, S.Y.; KRINGSTAD, K. P. Photosensitive groups in lignin and lignin model compounds, Tappi, v.53, p.658-663, 1970. LINO, A. G. Composição química e estrutural da lignina e lipídios do bagaço e palha da cana-de-açúcar. 2015, 97 p. Tese (Doutorado) - Universidade Federal de Viçosa, Viçosa, MG, 2015. LOPES, J. O. Caracterização físico-química e molhabilidade da superfície da madeira juvenil de teca modificada termicamente. 2018, 127 p. Tese (Doutorado em Ciências Ambientais e Florestais) - Instituto De Florestas, Universidade Federal Rural Do Rio De Janeiro, Seropédica, Rio de Janeiro, 2018. 96 MARTINS, T.F.R.M. Dimensionamento de Estruturas em Madeira: coberturas e Pavimentos. 2010, 165 p. Dissertação (Mestrado em Engenharia Civil (Estruturas)) – Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal, 2010. MANTANIS, G.I.; YOUNG, R.A. Wetting of wood. Wood Science and Technology, v. 31, p. 339-353, 1997. MARRA, A.A. Technology of wood bonding. Nova York: Van Nostrand Reinhold, 1992. 453 p. MARTINS, S. B.; SANTOS, C. M.; GONÇALEZ, J. C.; CAMARGOS, J. A. Envelhecimento artificial acelerado por radiação ultravioleta de madeiras de Eucalyptus benthamii e Pinus caribaea var. hondurensis. Floresta, v. 41, n. 1, p. 87-96, 2011. MATSUDA. H. Chemical modification of solid wood. In: HON. D. N. S.; SHIRAISHI. N. (Ed.). Chemical modification of lignocellulosic materials. New York: Marcel Dekker. p. 159- 184. 1996. MITSUI, K.; MURATA, A.; TOLVAJ, L. Changes in the properties of light irradiated wood with heat treatment: Part 3. monitoring by DRIFT spectroscopy. Holz Roh Werkst., v. 62, p. 164-168, 2004. MOHEBBY, B.; MILITZ, H. Microbial attack of acetylated wood in field soil trials. Int. Biodeter. Biodegr. 64, 41–50 , 2010. MOLNÁR, S.; PESZLEN, I.; PAUKÓ, A. Faanatómia. Budapest: Szaktudás Kiadó Ház, 2007. MOREIRA, E.L.; FAZION, H.; RIBEIRO, E.S. Variação dos teores de extrativos de três espécies florestais. Biodiversidade, v. 15, n. 2, p. 163, 2016. MELO, J.E.; SIQUEIRA, M.J. Correlação entre propriedades físicas e mecânicas de madeiras da Amazônia. In: ENCONTRO BRASILEIRO EM MADEIRAS E EM ESTRUTURAS DE MADEIRA, 4., São Carlos, SP, 1992. Anais... São Carlos, USP, EESC, SET, LaMEM, v, 1, p.67-76. 1992. MILLER, E.R.; BOXALL, J. The effectiveness of end-grain sealers in improving paint performance on softwood joinery. Holz als Roh und Werkstoff, v. 42, n. 1, p. 27-34, 1984. MILITZ, H. Die Verbesserung des Schwind- und Quellverhaltens und der Dauerhaftigkeit von Holz mittels Behandlung mit unkatalysiertem Essigsa ̈ureanhydrid. European Journal of Wood and Wood Products, v. 49, p. 147-152, 1991. MILITZ, H.; HILL, C. Wood Modification: Processes, Properties and Commercialization. Germany, 2005. 404 p. MINATO, K.; TAKAZAWA, R.; OGURA, K. Dependence of reaction kinetics and physical and mechanical properties on the reaction systems of acetylation. II: physical and mechanical properties. Journal Wood Science, v. 49, p. 519-524, 2003. 97 NÉMETH, R., GOHÉR, G., HOFMANN, T. and RÁKOSA, R. Physical, mechanical and colour properties of acetylated poplar and robinia wood. In: Proceedings of the 6th IUFRO Symposium Wood Structure and Properties. KÚDELA, J.; LAGANA, R. (eds.), 10, Zvolen: Arbora Publishers, p. 231, 2010. NOGUCHI, T.; OBATAYA, E.; ANDO, K. Effects of aging on the vibrational properties of wood. Journal of Cultural Heritage, v. 13, n. 3, S21–S25, 2012. NORIMOTO, M.; GRIL. J. Structure and properties of chemically treated wood. In: Recent developments in materials science. Elsevier: Tokyo, p. 135- 144, 1993. NUOPPONEN, M.; WIKBERG, H.; VUORINEN, T.; MAUNU, S.L; JAMSA, S.; VIITANIEMI, P. Heat treated softwood exposed to weathering. Journal of Applied Polymer Science, v. 91 p. 2128-2134, 2004. NZOKOU, P.; KAMDEM, D. P.; TEMIZ, A. Effect of accelerated weathering on discoloration and roughness of finished ash wood surfaces in comparison with red oak and hard maple. Prog. Org. Coat, v. 71, p. 350-354, 2011.OHKOSHI, M.; KATO, A. 13C-NMR analysis of acetyl groups in acetylated wood II. Acetyl groups in lignin. Makuza Gakkaishi, v. 43, n. 4, 364- 369, 1997. OSS, C.J. van Interfacial forces in aqueous media. New York: Marcel Dekker, 1994. 440p. PAPADOPOULOS, A.N.; HILL, C.A.S. The biological effectiveness of wood modified with linear chain carboxylic acid anhydrides against Coniophora patina. Holz als Roh- und Werkstoff, v. 60, p. 329-332, 2002. PAPADOPOULOS, A.N.; POUGIOULA, G. Mechanical behavior of pine wood chemically modified with a homologous series of linear chain carboxylic acid anhydrides. Bioresource Technology, v. 101, p. 6147-6150, 2010. PAPADOPOULOS, A. N.; TOUNTZIARAKIS, P. Toughness of pine wood chemically modified with acetic anhydride. European Journal of Wood and Wood Products 70: 399- 400. 2012. PEREIRA, P.A. de C. et al. Efficiency of used oil engine as preservative of Amazonian woods submitted to xylophagous termites. Ciência da Madeira, v. 6, n. 3, p. 176-182, 2015. PETTERSON, R. C. The chemical composition of wood. In: ROWELL, R. (ed). The chemistry of solid wood. Washington, American Chemical Society, 1984. PIAO, C.; WINANDY, J.E.; SHUPE, T.F. From hydrophilicity to hydrophobicity: a critical review: part I. Wettability and surface behavior. Wood and Fiber Science, v. 42, 4, p. 490- 510, 2010. PLIURA, A; YU, Q.; ZHANG, S.Y.; MACKAY, J.; PERINET, P E BOUSQUET, J. Variation in wood density and shrinkage and their relationship to growth of selected young poplar hybrid crosses. Forest Science, v. 51, n. 5, p. 472-482, 2005. 98 PONNUCHAMY, V.; SANDAK, A.; SANDAK, J. Multiscale modelling investigation of wood modification with acetic anhydride. Physical Chemistry Chemical Physics. V. 22, P. 28448— 28458. 2020. doi:10.1039/d0cp05165a POPESCU, C. M.; POPESCU, M. C. A near infrared spectroscopic study of the structural modifications of lime (Tilia cordata Mill.) wood during hydro-thermal treatment. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 115, p. 227- 233, 2013. RAMSDEN, M.J.; BLAKE, F.S.R.; FEY, N.J. The effect of acetylation on the mechanical properties, hydrophobicity and dimensional stability of Pinus sylvestris. Wood Science and Technology, v. 31, n. 2, p. 97-104, 1997. RAVEN, P.H.; EVERT, R. F.; GICHHORN, S. E. Biologia vegetal. 6. ed. Rio de Janeiro: Guanabara Koogan, 906p. 2001. REINOSO, F. A. M. Caracterização físico-química do bagaço de cana-de-açúcar pré- tratado com sulfito alcalino, extração enzimática da hemicelulose e sacarificação dos polissacarídeos residuais. 2017, 152p. Tese (Doutorado em Ciências) - Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, 2017. REITERER, A.; SINN, G. Fracture behaviour of modified spruce wood: a study using linear and non-linear fracture mechanics. Holzforschung, v. 56, n. 2, p. 191-198, 2002. REZENDE, R.N. Secagem de toras de clones de Eucalyptus empregados na produção de carvão. 178f., 2009. Dissertação (Mestrado em Ciência e Tecnologia da Madeira) - Universidade Federal de Lavras, Lavras, MG, 2009. ROSS, R. Forest Products Laboratory. Wood handbook - wood as an engineering material. General Technical Report FPL-GTR-282. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 543p. 2021. ROWELL, R.M. Chemical modification of wood: A review. Commonwealth Forestry Bureau, Oxford, England, v. 6, p. 363-382, 1983. ROWELL, R.M. Chemical modification of wood. In: HON, D.N.S.; SHIRAISHI, N. (Ed.). Wood and cellulosic chemistry. New York: Marcel Dekker, p.703-756. 1990. ROWELL, R.M. Acetylation of wood: A journey from analytical technique to commercial reality. Forest Products Journal, v. 56, n. 9, p. 4-12, 2006. Rowell, R.M. Handbook of wood chemistry and wood composites (2nd edn). CRC Press, Taylor and Francis Group, Boca Raton, FL, USA, pp. 703. 2012. ROWELL, R.M. Acetylation of wood - A review, International Journal of Lignocellulosic Products, v. 1, n. 1, p. 1-27, 2014. ROWELL, R.M. Correlation between equilibrium moisture content and resistance to decay by brown-rot fungi on acetylated wood. In: Proceedings: 8th European conference on wood modification, Oct 26-27, Helsinki, Finland. 2015. 99 ROWELL, R.M. Dimensional stability and fungal durability of acetylated wood. Drewno, v. 59, n. 197, p. 139-150, 2016. ROWELL, R.M. Innovation in wood preservation. Polymers, v. 12, p. 1511, 2020. ROWELL, R.M.; BONGERS, F. Coating acetylated wood. Coatings, v. 5, p. 792-801, 2015. ROWELL, R.M., SIMONSEN, R., HESS, S., PLACKETT, D.V., CRONSHAW, D. and DUNNINGHAM, E. Acetyl distribution in acetylated whole wood and reactivity of isolated cell wall components to acetic anhydride. Wood and Fiber Science, 26(1), 11–18. 1994. ROWELL, R.M., YOUNGQUIST, J.A., ROWELL, J.S. and HYATT, J.A. Dimensional stability of aspen fiberboard made from acetylated fiber. Wood and Fiber Science, 23(4), 558– 566. 1991. SADEGHIFAR, H.; DICKERSON, J.P.; ARGYROPOULOS, D.S. Quantitative 31P NMR analysis of solid wood offers an insight into the acetylation of its components. Carbohydrate Polymers, v. 113, p. 552-560, 2014. SANDER, C.; KOCH, G. Effects of acetylation and hydrothermal treatment on lignin as revealed by cellular UV-spectroscopy in Norway spruce (Picea abies [L.] Karst.) Holzforschung, v. 55, n. 2, p. 193-198, 2001. SARGENT, R. Evaluating dimensional stability in modified wood: An experimental comparison of test methods. Forests, v. 13, n. 4, 613, 2022. SARKANEN, K.V.; LUDWIG, C.H. Lignins: Ocurrence, formation, structure and reactions. Wiley Science, New York, NY, USA. 1971. SEGUNDINHO, P. G. A.; COSSOLINO, L. C.; PEREIRA, A. H. A.; CALIL JUNIOR, C. Aplicação do método de ensaio das frequências naturais de vibração para obtenção do módulo de elasticidade de peças estruturais de madeira. Revista Árvore, Viçosa-MG, v.36, n.6, p.1155- 1161, 2012. (DOI: 10.1590/S0100-67622012000600016). SETHY, A.K.; VINDEN, P.; TORGOVNIKOV, G.; MILITZ, H.; MAI, C.; KLOESER, L.; PRZEWLOKA, S. Catalytic acetylation of Pinus radiata (D. Don) with limited supply of acetic anhydride using conventional and microwave heating. Journal of Wood Chemistry and Technology, v. 32, n. 1, p. 1-11, 2012. SCHMIDT, O. Wood and tree fungi: Biology, damage, protection, and use. Berlim: Springer, 2006. 334p SILVA, R.; HARAGUCHI, S.K.; MUNIZ, E.C.; RUBIRA, A.F. Applications of lignocellulosic fibers in polymer chemistry and in composites. Química Nova, v. 32, n. 3, p. 661-671, 2009. SJÖSTRÖM, E. Wood chemistry: fundamentals and applications. 2. ed. San Diego: Elsevier, 289 p. 1993. SIXTA, H. Handbook of Pulp. 1. ed., Weinheim: Wiley-VCH Verlag, 1316p. 2006. 100 STAMM, A.J. Wood and cellulose science. The Ronald Press Co.: New York. 1964. STAMM, M. Polymer Surfaces and Surfaces. 1 a ed, 339 p. Alemanha: Springer, 2008. SCHEIKL, M.; DUNKY, M. Measurements of dynamic and static contact angles on wood for the determination of its surface tension and penetration of liquids into the wood surface. Holzforshung, v. 52, p. 89-94, 1998. SHELDON, S.; GARDNER, D. Dynamic adhesive wettability of wood. Wood and Fiber Science, v. 33, n. 1, p. 58-68, 2001. SRINIVAS, K.; PANDEY, K. K. Photodegradation of thermally modified wood. J. Photochem. Photobiol., v. 117, p. 140-145, 2012. STANGERLIN, D.M.; COSTA, A.F.; GARLET, A.; PASTORE, T.C.M. Molhabilidade da madeira de três espécies amazônicas submetidas a ensaios de apodrecimento acelerado. Revista Brasileira de Ciências Agrárias, v. 8, n. 2, p. 7, 2013. SUN, B.; CHAI, Y.; LIU, J.; MILITZ, H. Acetylation of plantation softwood without catalysts or solvents. Wood Research, v. 64, n. 5, p. 799-810, 2019. TARGA, L.A.; BALLARIN, A.W.; BIAGGIONI, M.A.M. Avaliação do módulo de elasticidade da madeira com uso de método não-destrutivo de vibração transversal. Engenharia Agrícola, v. 25, n. 2, p. 291-299,2005. TARKOW, H.; STAMM, A.J.; ERICKSON, E.C.O. Acetylated wood. Report, Forest Products Laboratory, USDA Forest Service. 1946. TEIXEIRA, P.S.; SILVA, A.J.; FEITEIRA, J.F.S. Avaliação e comparação de características de amortecimento de sinais gerados de diferentes violões. Cadernos UniFOA, , n. 26, p. 17- 30, 2014. TELEMAN, A. Hemicelluloses and Pectins. In: GELLERSTEDT, M.E.K.G.; HENRIKSSON, G. Wood Chemistry and Wood Botechnology. Stockholm: De Gruyter, .v. 1, p. 102-120, 2009. TIEMANN, H.D. Wood Technology. Second Edition, Pitman Publishing Company: New York City, 1944. TORRES, B.B.M. Filmes finos do ácido poli 3-tiofeno acético. 2011, 108f. Dissertação (Mestrado em Ciência e Engenharia de Materiais) - Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, 2011. TSOUMIS, G. Science and technology of wood: structure, properties, utilization. New York, Van Nostrand Reinold, 494 p. 1991. VAN DER LUG, T.P.; BONGERS, F.; VOGTLÄNDER, J. Environmental impact of constructions made of acetylated wood. In: Proceedings of the “WCTE 2016 - World Conference on Timber Engineering”. Vienna (Austria) 22-25 Aug. 2016, p. 1-6, 2016. 101 WALINDER, M. Wetting phenomena on wood: factors influencing measurements of wood wettability. 2000, 70p. (Doctoral Thesis) - KTH-Royal Institute of Technology, Stockholm, Sweden, 2000. WÅLINDER, M.; SEGERHOLM, K.; LARSSON-BRELID, P.; WESTIN, M. Liquids and coatings wettability and penetrability of acetylated scots pine sapwood. In: Proceedings 5th European Conference on Wood Modification, Riga, Latvia, 381-388. 2010. WALKER, J.C.F.; BUTTERFIELD, B.G.; LANGRISH, T.A.G.; HARRIS, J.M.; UPRICHARD, J.M. Primary Wood Processing. Chapman and Hall: London. 595p. 1993. WENZEL, R.N. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry Research., v. 28, n. 8, 1936. WILLIAMS, R.S. Weathering of Wood. In: ROWELL, R. M. (Ed.). Handbook of wood chemistry and wood composites. Florida: CRC Press, p. 139-185, 2010. WINANDY, J.E.; ROWELL, R.M. Chemistry of solid wood. American Chemical Society Advances in Chemistry. Series N. 207, Washington: D.C., p. 211-255, 1996. VERNOIS, M. Heat treatment of wood. Presentation at Heat Treatment Conference, Stockholm. 2000. YOUNGQUIST, J.A.; KRZYSIK, A. ROWELL, R.M. Dimensional stability of acetylated aspen flakeboard. Wood Fiber Science, v. 8, p. 90-98, 1986. YUAN, Y.; LEE, T.R. Contact angle and wetting properties. In: BRACCO, G.; HOLST, B. (Eds.) Surface Science Techniques. Springer Series in Surface Sciences, v. 51, p. 3- 34, 2013. ZABEL, R.A.; MORRELL, J.J. Wood microbiology: decay and its prevention. San Diego: Academic Press, 1992. 476p. ZHAO, G.; NORIMOTO, M.; TANAKA, F.; YAMADA, T.; ROWELL, R.M. Structure and properties of acetylated wood. I. Changes in the degree of crystallinity and dielectric properties by acetylation. Mokuzai Gakkaishi, v. 33, p. 136-142, 1987.pt_BR
dc.subject.cnpqRecursos Florestais e Engenharia Florestalpt_BR
Appears in Collections:Doutorado em Ciências Ambientais e Florestais

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2023 - DAIANA SOUZA DE JESUS.pdf2.09 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.