Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/18743
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Azevedo, Luisa Andrade | - |
dc.date.accessioned | 2024-10-18T13:43:56Z | - |
dc.date.available | 2024-10-18T13:43:56Z | - |
dc.date.issued | 2023-12-18 | - |
dc.identifier.citation | AZEVEDO, Luisa Andrade. Efeito de fungos entomopatogênicos sobre Aedes aegypti: influência na oviposição e perfil lipídico de adultos e avaliação de atividade antimicrobiana em larvas. 2023. 57 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2023. | pt_BR |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/18743 | - |
dc.description.abstract | O mosquito Aedes aegypti possui grande importância na cadeia epidemiológica de arboviroses que afetam a Saúde Pública. Pensando na resistência a inseticidas químicos e soluções de controle mais ecológicas, estuda-se cada vez mais o uso de fungos entomopatogênicos como alternativa de controle de A. aegypti. Esse trabalho investigou os efeitos de Metarhizium anisopliae e Beauveria bassiana sobre a oviposição, morfologia ovariana e perfil lipídico no corpo gorduroso e ovários de fêmeas expostas aos fungos, além de investigar a atividade antimicrobiana em larvas de A. aegypti desafiada por esses fungos. Para avaliar o efeito da exposição fúngica sobre a oviposição e morfologia de ovários, fêmeas com 6 a 8 dias pós- emergência foram alimentadas com sangue de camundongo e expostas ou não a M. anisopliae CG 153 na concentração 1×107 conídios/mL por 24h, sendo formados os seguintes grupos: G1= exposto ao fungo minutos antes da alimentação; G2= alimentado 24h antes da exposição fúngica; G3= alimentado 24h após exposição fúngica; CTR= exposto à Tween 80 a 0,03% minutos antes da alimentação. Ovários foram dissecados em 0, 24, 48 e 72h e a investigação foi realizada por histopatologia. Não foi observada diferença estatística nos seguintes parâmetros: quantidade de fêmeas ingurgitadas em cada grupo (P=0,6358); quantidade de ovos totais produzidos (P~0,5948); comparação entre a quantidades de ovos por fêmea alimentada (P=0,3191); ou na quantidade de mosquitos vivos no final dos experimentos (P=0,7507). Os folículos ovarianos dos mosquitos expostos a M. anisopliae CG 153 apresentaram perda da arquitetura tecidual após 48h de tratamento, com rompimento do epitélio folicular, redução do número de ovócitos e alterações na morfologia de nurse cells. Para avaliar o efeito da exposição fúngica sobre o perfil lipídico, fêmeas foram expostas a M. anisopliae CG 153 ou B. bassiana CG 479 na concentração 1×107 conídios/mL ou Tween 80 a 0,03%. Após 24, 48 ou 72h de exposição, os ovários e corpo gorduroso das fêmeas foram dissecados para extração de lipídios e posterior análise de lipídios neutros por cromatografia em camada delgada unidimensional. Não houve diferença estatística no perfil de ácido graxo e colesterol no corpo gorduroso (P=0,7705 e P~0,8365) e ovários (P=0,9798 e P>0,9999) nos tempos observados após a exposição. Grupos de 700 larvas de segundo estádio foram imersas em 700 mL de suspensão de B. bassiana CG 479 na concentração 1×106 conídios/mL ou Tween 80 a 0,03%. Após 16, 24, 40 e 48h de exposição, um pool de 60 larvas foram maceradas para avaliação da atividade antimicrobiana através da realização de antibiograma sobre cepas de Escherichia coli, Staphylococcus aureus e Pseudomonas sp. resistentes e sensíveis a betalactâmicos. No entanto, não foi identificada atividade antimicrobiana em macerado de larvas mesmo após 48 horas de exposição a B. bassiana CG 479. Assim, a exposição de fêmeas de A. aegypti com M. anisopliae CG 153 por 24 horas não influenciou na oviposição, mas foi capaz de alterar a morfologia dos ovários no tratamento 48 horas após a alimentação; o tratamento com M. anisopliae CG 153 e B. bassiana CG 479 por 24, 48 ou 72 horas não interferiu na quantidade de AG e CHO em ovário e corpo gorduroso de fêmeas de A. aegypti; e a exposição a B. bassiana CG 479 durante 48 horas não foi capaz de estimular a ação antimicrobiana por larvas de A. aegypti. | pt_BR |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
dc.subject | Controle biológico | pt_BR |
dc.subject | mosquitos | pt_BR |
dc.subject | morfologia de ovários | pt_BR |
dc.subject | Biological control | pt_BR |
dc.subject | mosquitoes | pt_BR |
dc.subject | ovarian morphology | pt_BR |
dc.title | Efeito de fungos entomopatogênicos sobre Aedes aegypti: influência na oviposição e perfil lipídico de adultos e avaliação de atividade antimicrobiana em larvas | pt_BR |
dc.title.alternative | Effect of entomopathogenic fungi on Aedes aegypti: influence on oviposition and lipid profile of adults and evaluation of antimicrobial activity in larvae | en |
dc.type | Dissertação | pt_BR |
dc.description.abstractOther | The Aedes aegypti mosquito is of great importance in the epidemiological chain of arboviruses that affect Public Health. Thinking about resistance to chemical insecticides and more ecological control solutions, the use of entomopathogenic fungi is increasingly being studied as an alternative to control A. aegypti. This work investigated the effects of Metarhizium anisopliae and Beauveria bassiana on oviposition, ovarian morphology and lipid profile in the fat body and ovaries of females exposed to the fungi, in addition to investigating the antimicrobial activity in A. aegypti larvae challenged by these fungi. To evaluate the effect of fungal exposure on oviposition and ovary morphology, females 6 to 8 days post-emergence were fed with mouse blood and exposed or not to M. anisopliae CG 153 at a concentration of 1×107 conidia/mL for 24h. , with the following groups being formed: G1= exposed to the fungus minutes before feeding; G2= fed 24h before fungal exposure; G3= fed 24h after fungal exposure; CTR= exposed to 0.03% Tween 80 minutes before feeding. Ovaries were dissected at 0, 24, 48 and 72h and investigation was carried out by histopathology. No statistical difference was observed in the following parameters: number of engorged females in each group (P=0,6358); quantity of total eggs produced (P~0.5948); comparison between the quantity of eggs per female fed (P=0,3191); or the number of live mosquitoes at the end of the experiments (P=0,7507). The ovarian follicles of mosquitoes exposed to M. anisopliae CG 153 showed loss of tissue architecture after 48 hours of treatment, with rupture of the follicular epithelium, reduction in the number of oocytes and changes in the morphology of nurse cells. To evaluate the effect of fungal exposure on the lipid profile, females were exposed to M. anisopliae CG 153 or B. bassiana CG 479 at a concentration of 1×107 conidia/mL or Tween 80 at 0.03%. After 24, 48 or 72 hours of exposure, the ovaries and fat body of the females were dissected for lipid extraction and subsequent analysis of neutral lipids by one-dimensional thin layer chromatography. There was no statistical difference in the fatty acid and cholesterol profile in the fat body (P=0,7705 and P~0.8365) and ovaries (P=0,9798 and P>0.9999) at the times observed after exposure. Groups of 700 second stage larvae were immersed in 700 mL of B. bassiana CG 479 suspension at a concentration of 1×106 conidia/mL or 0.03% Tween 80. After 16, 24, 40 and 48h of exposure, a pool of 60 larvae were macerated to evaluate antimicrobial activity by performing an antibiogram on strains of Escherichia coli, Staphylococcus aureus and Pseudomonas sp. resistant and sensitive to beta-lactams. However, no antimicrobial activity was identified in larvae macerate even after 48 hours of exposure to B. bassiana CG 479. Therefore, the exposure of A. aegypti females to M. anisopliae CG 153 for 24 hours did not influence oviposition, but was able to alter the morphology of the ovaries in the treatment 48 hours after feeding; treatment with M. anisopliae CG 153 and B. bassiana CG 479 for 24, 48 or 72 hours did not affect the amount of FA and CHO in ovaries and fat bodies of A. aegypti females; and exposure to B. bassiana CG 479 for 48 hours was unable to stimulate antimicrobial action by A. aegypti larvae. | en |
dc.contributor.advisor1 | Angelo, Isabele da Costa | - |
dc.contributor.advisor1ID | https://orcid.org/0000-0003-3698-8340 | pt_BR |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/5028095543336052 | pt_BR |
dc.contributor.advisor-co1 | Bitencourt, Ricardo de Oliveira Barbosa | - |
dc.contributor.advisor-co1ID | https://orcid.org/0000-0002-6298-2869 | pt_BR |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/2283094033746986 | pt_BR |
dc.contributor.referee1 | Angelo, Isabele da Costa | - |
dc.contributor.referee1ID | https://orcid.org/0000-0003-3698-8340 | pt_BR |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/5028095543336052 | pt_BR |
dc.contributor.referee2 | Gôlo, Patrícia Silva | - |
dc.contributor.referee2ID | https://orcid.org/0000-0003-1854-7488 | pt_BR |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/3935275742919097 | pt_BR |
dc.contributor.referee3 | Fernandes, Éverton Kort Kamp | - |
dc.contributor.referee3ID | https://orcid.org/0000-0001-7062-3295 | pt_BR |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/2135541732341157 | pt_BR |
dc.contributor.referee4 | Camargo, Mariana Guedes | - |
dc.contributor.referee4ID | https://orcid.org/0000-0003-4132-8910 | pt_BR |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/1797246939020030 | pt_BR |
dc.contributor.referee5 | Perinotto, Wendell Marcelo de Souza | - |
dc.contributor.referee5ID | https://orcid.org/0000-0002-8712-7850 | pt_BR |
dc.contributor.referee5Lattes | http://lattes.cnpq.br/1812730341180904 | pt_BR |
dc.creator.ID | https://orcid.org/0000-0002-3270-6986 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/2902759787924414 | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Instituto de Veterinária | pt_BR |
dc.publisher.initials | UFRRJ | pt_BR |
dc.publisher.program | Programa de Pós-Graduação em Ciências Veterinárias | pt_BR |
dc.relation.references | ABRAR, A.; SARWAR, S.; ABBAS, M.; CHAUDHRY, H.; GHANI, N.; FATIMA, A.; TAHIRA, A. Identification of locally isolated entomopathogenic Fusarium species from the soil of Changa Manga Forest, Pakistan and evaluation of their larvicidal efficacy against Aedes aegypti. Brazilian Journal of Biology, 83, e246230, 2023. ADAM, A.; JASSOY, C. Epidemiology and Laboratory Diagnostics of Dengue, Yellow Fever, Zika, and Chikungunya Virus Infections in Africa. Pathogens, 10, 1324, 2021. AKINSANYA, B.; OLALERU, F.; SAMUEL, O.B.; AKEREDOLU, E.; ISIBOR, P.O.; ADENIRAN, O.S.; SALIU1, J.K.; AKHIROMEN, D.I. Bioaccumulation of Organochlorine Pesticides, Procamallanus sp. (Baylis, 1923) infections, and Microbial Colonization in African Snakehead fish Sampled from Lekki Lagoon, Lagos, Nigeria. Brazilian Journal of Biology, 81(4), p.1095-1105, 2021. ALBENY, D.S.; MARTINS, G.F.; ANDRADE, M.R.; KRÜGER, R.F.; VILELA, E.F. Aedes aegypti survival in the presence of Toxorhynchites violaceus (Diptera: Culicidae) fourth instar larvae. Zoologia, 28(4): 538-540, 2011. ALLMAN, M.J.; FRASER, J.E.; RITCHIE, S.A.; JOUBERT, D.A.; SIMMONS, C.P.; FLORES, H.A. Wolbachia’s Deleterious Impact on Aedes aegypti Egg Development: The Potential Role of Nutritional Parasitism. Insects, 11(735), 2020. ALVES, S.B., Controle Microbiano de Insetos. Piracicaba: FEALQ, 1163p, 1998. ANDREW, J.; BAR, A. Morphology and Morphometry of Aedes aegypti Adult Mosquito. Annual Research & Review in Biology, 3(1), 52-69, 2013. ANGELO, I.C. Avaliação dos perfis protéico e lipídico na resposta de Rhipicephalus microplus à infecção com fungos. Tese (Doutorado em Ciências) - Universidade Federal Rural do Rio de Janeiro. Seropédica, Rio de Janeiro. 2011. ANGELO, I.C.; GÔLO, P.S.; CAMARGO, M.G.; KLUCK, G.E.G.; FOLLY, E.; BITTENCOURT, V.R.E.P. Haemolymph Protein and Lipid Profile of Rhipicephalus (Boophilus) microplus Infected by Fungi. Transboundary and Emerging Diseases, 57, 79- 83, 2010. ANGELO, I.C.; GÔLO, P.S.; PERINOTTO, W.M.S.; CAMARGO, M.G.; COUTINHO- RODRIGUES, C.J.B.; CAMPANHON, I.B.; BRAZ, G.R.C.; SOARES, M.R.; FOLLY, E.; BITTENCOURT, V.R.P. Detection of serpins involved in cellular immune response of Rhipicephalus microplus challenged with fungi. Biocontrol Science and Technology, 24, 351- 360, 2014. 42 ANGELO, I.C.; TUNHOLI-ALVES, V.M.; TUNHOLI, V.M.; PERINOTTO, W.M.S., GÔLO, P.S. CAMARGO, M.G.; BITTENCOURT, V.R.E.P. Physiological changes in Rhipicephalus microplus (Acari: Ixodidae) experimentally infected with entomopathogenic fungi. Parasitology Research, 114(1), 2190-225, 2014. ARÉVALO-CORTÉS, A.; GRANADA, Y.; TORRES, D.; TRIANA-CHAVEZ, O. Differential Hatching, Development, Oviposition, and Longevity Patterns among Colombian Aedes aegypti Populations. Insects, 13, 536, 2022. ARRESE, E.L.; CANAVOSO, L.E.; JOUNI, Z.E.; PENNINGTON, J.E.; TSUCHIDA, K.; WELLS, M.A. Lipid storage and mobilization in insects: current status and future directions. Insect Biochemistry and Molecular Biology, 31, 7-17, 2001. ARRESE, E.L.; SOULAGES, J.L. Insect Fat Body: Energy, Metabolism, and Regulation. Annual Review of Entomology, 55:207-25, 2010. ATELLA, G.C.; MAJEROWICZ, D.; GONDIM, K.C. Metabolismo de Lipídeos. Tópicos Avançados em Entomologia Molecular. Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Capítulo 6, 2012. AVENDANHO, F.C.; SAID, R.F.C. Manejo integrado de vetores. Consensus. Brasília, 34-37, 2019. AW, K.M.S.; HUE, S.M. Mode of Infection of Metarhizium spp. Fungus and Their Potential as Biological Control Agents. Journal of Fungi, 3(30), 2017. BAAK-BAAK, C.M.; CIGARROA-TOLEDO, N.; CRUZ-ESCALONA G.A.; MACHAIN- WILLIAMS, C.; RUBI-CASTELLANOS, R.; TORRES-CHABLE, O.M.; TORRES-ZAPATA R.; GARCIA-REJON, J.E. Human blood as the only source of Aedes aegypti in churches from Merida, Yucatan, Mexico. Journal of Vector Borne Diseases, 55, 2018. BALTZER, S.A.; BROWN, M.H. Antimicrobial Peptides – Promising Alternatives to Conventional Antibiotics. Journal of Molecular Microbiology and Biotechnology, 20(4), 228-235, 2011. BAR, A.; ANDREW, J. Morphology and Morphometry of Aedes aegypti Larvae. Annual Research & Review in Biology, 3(1), 1-21, 2013. BARRERA, R.; AMADOR, M.; MUNOZ, J.; ACEVEDO, V. Integrated vector control of Aedes aegypti mosquitoes around target houses. Parasites & Vectors, 11:88, 2018. BAYMAN, P.; MARIÑO, Y.A.; GARCÍA-RODRÍGUEZ, N.M.; ODUARDO-SIERRA, O.F.; REHNER, S.A. Local isolates of Beauveria bassiana for control of the coffee berry borer 43 Hypothenemus hampei in Puerto Rico: Virulence, efficacy and persistence. Biological Control, 155, 104533, 2021. BECKER, N.; PETRIC, D.; ZGOMBA, M.; BOASE, C.; DAHL, C.; LANE, J.; KAISER, A. Mosquitoes and Their Control, Springer Science+Business Media, NY, 2003. BESERRA, E.B.; CASTRO JR., F.P. Biologia Comparada de Populações de Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) da Paraíba. Neotropical Entomology, 37(1), 2008. BHARATHITHASAN, M.; RAVINDRAN, D.R.; RAJENDRAN, D.; CHUN, S.K.; ABBAS, S.A.; SUGATHAN, S.; YAHAYA, Z.S.; SAID, A.R.; OH, W-D.; KOTRA, V.; MATHEWS, A.; AMIN, M.F.M.; ISHAK, I.H.; RAVII, R. Analysis of chemical compositions and larvicidal activity of nut extracts from Areca catechu Linn against Aedes (Diptera: Culicidae). PLoS ONE, 16(11), 2021. BHATT, P.; ZHOU, X.; HUANG, Y; ZHANG, W.; CHEN, S. Characterization of the role of BITENCOURT, R.O.B.; FARIA, F.S.; MARCHESINI, P.; SANTOS-MALLET, J.R.; CAMARGO, M.G.; BITTENCOURT, A.R.E.P.; PONTES, E.G.; PEREIRA, D.B.; DOUGLAS CHAVES, D.S.A.; ANGELO, I.S. Entomopathogenic fungi and Schinus molle essential oil: The combination of two eco-friendly agents against Aedes aegypti larvae. Journal of Invertebrate Pathology, 194, 2022. BITENCOURT, R.O.B.; FARIA, F.S.; MARCHESINI, P.; SANTOS-MALLET, J.R.; CAMARGO, M.G.; BITTENCOURT, V.R.E.P.; PONTES, E.G.; PEREIRA, D.B.; CHAVES, D.S.A.C.; ANGELO, I.C. Entomopathogenic fungi and Schinus molle essential oil: The combination of two eco-friendly agents against Aedes aegypti larvae. Journal of Invertebrate Pathology, 194, 107827, 2022. BITENCOURT, R.O.B.; FARIAS, F.S.; FREITAS, M.C.; BALDUINO, C.J.R.; MESQUITA, E.S.; CORVAL, A.R.C.; GÔLO, P.S.; PONTES, E.G.; BITTENCOURT, V.R.E.P.; ANGELO, I. C. In vitro Control of Aedes aegypti Larvae Using Beauveria bassiana. World Academy of Science, Engineering and Technology. International Journal of Bioengineering and Life Sciences, 12(10), 2018. BITENCOURT, R.O.B.; MALLET, J.R.S.; MESQUITA, E.; GÔLO, P.S.; FIOROTTI, J.; BITTENCOURT, V.R.E.P.; PONTES, E.G.P.; ANGELO, I.C. Larvicidal activity, route of interaction and ultrastructural changes in Aedes aegypti exposed to entomopathogenic fungi. Acta Tropica, 213, 2021 a. 44 BITENCOURT, R.O.B.; SALCEDO-PORRAS, N.; UMAÑA-DIAZ, C.; ANGELO, I.C.; LOWENBERGER, C. Antifungal immune responses in mosquitoes (Diptera: Culicidae): A review. Journal of Invertebrate Pathology, 178, 2021 b. BLANFORD, S. Fungal Pathogen Reduces Potential for Malaria Transmission. Science, 308(5728), 1638-1641, 2005. BOPARI, J.K.; SHARMA, P.K. Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications. Protein & Peptide Letters, 27(1), 2020. BRAGA, I.A.; VALLE, D. Aedes aegypti: History of Control in Brazil. Epidemiologia e Serviços de Saúde. 16(2), 113-118, 2007. BRASIL. Boletim Epidemiológico 01. Secretaria de Vigilância em Saúde. Ministério da Saúde. Monitoramento dos casos de arboviroses até a semana epidemiológica 52 de 2022. Semanas epidemiológicas 1 a 53, 54, 2023 a. BRASIL. Boletim Epidemiológico 13. Secretaria de Vigilância em Saúde. Ministério da Saúde. Monitoramento das arboviroses urbanas: semanas epidemiológicas 1 a 35 de 2023, 54, 2023 b. BRASIL. Boletim Epidemiológico 03. Secretaria de Vigilância em Saúde. Ministério da Saúde. Monitoramento dos casos de arboviroses urbanas causados por vírus transmitidos por Aedes (dengue, chikungunya e zika), semanas epidemiológicas 1 a 53, 2020. Semanas epidemiológicas 1 a 53, 52, 2021 a. BRASIL. Boletim Epidemiológico 48. Secretaria de Vigilância em Saúde. Ministério da Saúde. Monitoramento dos casos de arboviroses urbanas causados por vírus transmitidos pelo mosquito Aedes (dengue, chikungunya e zika), semanas epidemiológicas 1 a 51, 2021. Semanas epidemiológicas 1 a 53, 52, 2021 b. BRASIL. Diretrizes nacionais para prevenção e controle de epidemias de dengue. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância Epidemiológica, Brasília, 2009 a. BRASIL. O agente comunitário de saúde no controle da dengue. Ministério da Saúde. Secretaria de Vigilância em Saúde. Secretaria de Atenção à Saúde. Brasília, 2009 b. BRIEGEL, H.; HEFTI, M.; DIMARCO, E. Lipid metabolism during sequential gonotrophic cycles in large and small female Aedes aegypti. Journal of Insect Physiology, 48, p.547-554. 2002. BROWN, A.W.A. Insecticide resisTance in mosquitoes: a pragmatic review. Journal of the American Mosquito Control Association. 2:123-40, 1986. 45 BUENO, M.R; DA CUNHA, J.P.A.R. Environmental risk for aquatic and terrestrial organisms associated with drift from pesticides used in soybean crops. Anais da Academia Brasileira de Ciências, 92, 2020. CABRAL, S.; PAULA, A.; SAMUELS, R.; FONSECA, R.; GOMES, S.; SILVA, J.R.; MURY, F. Aedes aegypti (Diptera: Culicidae) Immune Responses with Different Feeding Regimes Following Infection by the Entomopathogenic Fungus Metarhizium anisopliae. Insects, 11(95), 2020. CAMPOS, K.B.; ALOMAR, A.A.; EASTMOND, B.H.; OBARA, M.T.; DIAS, L.S.; RAHMAN, R.U.; ALTO, B.W. Assessment of insecticide resistance of Aedes aegypti (Diptera: Culicidae) populations to insect growth regulator pyriproxyfen, in the northeast region of Brazil. Journal of Vector Ecology, 48(1):12-18, 2023. CANSIAN, R.L.; STAUDT, A.; BERNARDI, J.L.; PUTON, B.M.S; OLIVEIRA, D.; OLIVEIRA, J.V.; GOMES, A.A.C.; ANDRADE, B.C.O.P.; LEAL, I.C.R.; SIMAS, N.K.; ZENI, J.; JUNGUES, A.; DALLAGO, R.M.; BACKES, G.T.; PAROUL, N. Toxicity and larvicidal activity on Aedes aegypti of citronella essential oil submitted to enzymatic esterification. Brazilian Journal of Biology, 83, e244647, 2023. CAROLINO, A.T.; TEODORO, T.B.P; GOMES, S.A.; SILVA, C.P.; SAMUELS, R.I. Production of conidia using different culture media modifies the virulence of the entomopathogenic fungus Metarhizium against Aedes aegypti larvae. Journal of Vector Borne Diseases, 58, 2021. CARVALHO, K. DA S.; D.R.D.; DUARTE GUEDES, D.R.D.; CRESPO, M.M.; DE MELO‐ SANTOS, M.A.V.; SILVA‐FILHA, M.H.N.L. Aedes aegypti continuously exposed to Bacillus thuringiensis svar. israelensis does not exhibit changes in life traits but displays increased susceptibility for Zika virus. Parasites & Vectors, 14:379, 2021. CASTAÑEDA-GÓMEZ, J.; GONZÁLES-ACOSTA, C.; JAIME-RODRÍGUEZ, J.L.; VILLEGAS-TREJO, A.; MORENO-GARCÍA, M. COVID-19 y su impacto en el control del mosquito Aedes (Stegomyia) aegypti y la vigilancia epidemiológica de infecciones por arbovirus. Gaceta Médica de México, 157:194-200, 2021. CASTILLO, R.M.; STASHENKO, E.; DUQUE, J.E. Insecticidal and Repellent Activity of Several Plant-Derived Essential Oils Against Aedes aegypti. Journal of the American Mosquito Control Association, 33(1):25–35, 2017. CDC. Centers for Disease Control and Prevention. Dengue, Symptoms and Treatment, 2021. Disponível em: https://www.cdc.gov/dengue/symptoms/index.html Acesso em: 13/09/2022 46 CDC. Centers for Disease Control and Prevention. Dengue, Transmission, Through Mosquito Bites, 2019. Disponível em: https://www.cdc.gov/dengue/transmission/index.html Acesso em: 14/09/2022. CDC. Centers for Disease Control and Prevention. Zika and Guillain-Barré Syndrome, 2019. Disponível em: https://www.cdc.gov/zika/healtheffects/gbs-qa.html Acesso em: 14/09/2022. CESARINO, M.B.; DIBO, M.R.; IANNI, A.M.Z.; VICENTINI, M.E.; FERRAZ, A.A.; CHIARAVALLOTI-NETO, F. A difícil interface controle de vetores - atenção básica: inserção dos agentes de controle de vetores da dengue junto às equipes de saúde das unidades básicas no município de São José do Rio Preto, SP. Saúde Soc. São Paulo, 23(3):1018-1032, 2014. CHEN, L.L.; WILCON, M.E. Yellow fever control: current epidemiology and vaccination strategies. Tropical Diseases, Travel Medicine and Vaccines, 6:1, 2020. CHINO, H.; GILBERT, L.I. The uptake and transport of cholesterol by haemolymph lipoproteins. Insect Biochemistry, 1(3):337-347, 1971. CHOUIN-CARNEIRO, T.; DAVID, M.R.; DE BRUYCKER NOGUEIRA, F.; DOS SANTOS, F.B.; LOURENÇO-DE-OLIVEIRA, R. Zika vector transmission is virus dose and temperature- dependent. PLoS Neglected Tropical Diseases, 14(9), 2020. CHRISTOPHERS, S.S.R. Aedes aegypti (L.) The Yellow Fever Mosquito: Its life history, bionomics and structure. Cambridge University Press, 1960. CHUNG, H.N.; RODRIGUEZ, S.D.; CARPENTER, V.K.; VULCAN, J.; BAILEY, C.D.; NAGESWARA-RAO, M.; LI, Y., ATTARDO, G.M.; HANSEN, I.A. Fat Body Organ Culture System in Aedes aegypti, a Vector of Zika Virus. Journal of Visualized Experiments, 126, e55508, 2017. CLEMENTS, A.N. Development, nutrition and reproduction. The Biology of Mosquitos, v.1, Chapman & Hall, 1992. CLEMENTS, A.N. The physiology of mosquitoes. International Series of Monographs on Pure and Applied Biology. Zoology Division. Volume 17. Pergamon Press. Oxford, England, United Kingdom, 2013. CLSI. Performance Standards for Antimicrobial Susceptibility Testing: Fifteenth Informational Supplement. CLSI document M100-S15. Clinical and Laboratory Standards Institute, Pennsylvania, USA, 2005. COLLINS, L.E.; BLACKWELL, A. The biology of Toxorhynchites mosquitoes and their potential as biocontrol agents. Biocontrol News and Information, 21(4), 2000. 47 CONSOLI, R.A.G.B.; OLIVEIRA, R.L. Principais mosquitos de importância sanitária no Brasil. Rio de Janeiro: Editora FIOCRUZ, 228p, 1994. CORRÊA-DA-SILVA, M.S.; FAMPA, P.; LESSA, L.P.; SILVA, E.R.; MALLET, J.R.S.; SARAIVA, E.M.B.; MOTTA, M.C.M. Colonization of Aedes aegypti midgut by the endosymbiont-bearing trypanosomatid Blastocrithidia culicis. Parasitology Research, 99:384-391, 2006. COSTA, Z.G.A.; ELKHOURY, A.N.M.; ROMANO, A.P.M.; FLANNERY, B. Evolução histórica da vigilância epidemiológica e do controle da febre amarela no Brasil. Revista Pan- Amazônica de Saúde, 2(1):11-26, 2011. COURET, J.; NOTARANGELO, M.; VEERA, S.; LECLAIRE‐CONWAY, N.; GINSBERG, H.S.; LEBRUN, R.L. Biological control of Aedes mosquito larvae with carnivorous aquatic plant, Utricularia macrorhiza. Parasites & Vectors, 13:208, 2020. CRUZ, J.; RONDON-VILLARREAL, P.; TORRES, R.G.; URQUIZA, M.; GUZMAN, F.; LVAREZ, C.; ABENGOZAR, M.A.; SIERRA, D.A.; RIVAS, L.; FERNANDEZ- LAFUENTE, R.; ORTIZ, C.C. Design of Bactericidal Peptides Against Escherichia coli O157:H7, Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Medicinal Chemistry, 14(7), 2018. DA SILVA, J.F.L.M.; REIS, K.M.N., SILVA, L.V.; SILVA, A.H.; CRUZ, A.R.; PADILHA, J.B.; FREITAS, R.B. Aspectos epidemiológicos e distinção entre Chikungunya, Dengue e Zika Vírus. Revista Científica UNIFAGOC-Saúde, 5(2):39-49, 2021. DANIEL, J.F.S.; SILVA, A.A.; NAKAGAWA, D.H.; MEDEIROS, L.S.; CARVALHO, M.G.; TAVARES, L.J.; ABREUD, L.M.; RODRIGUES-FILHO, E. Larvicidal Activity of Beauveria bassiana Extracts against Aedes aegypti and Identification of Beauvericins. Journal of the Brazilian Chemical Society, 28(6), 2017. DARBRO, J.M.; RITCHIE, S.A.; THOMAS, M.B.; JOHNSON, P.H.; RYAN, P.A.; KAY, B.H. Effects of Beauveria bassiana on Survival, Blood-Feeding Success, and Fecundity of Aedes aegypti in Laboratory and Semi-Field Conditions. The American Journal of Tropical Medicine and Hygiene, 86(4):656-664, 2012. DONG, Y.; MORTON, J.C.; RAMIREZ, J.L.; SOUZA-NETO, J.A.; DIMOPOULOS, G. The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti. Insect Biochemistry and Molecular Biology, 42(2):126:132, 2012. 48 DOS SANTOS, A.R.; SANTOS, A.M.; DE ALMEIDA, F.H.O.; DE MEDEIROS, V.F.A.; MATOS, A.A.; DE CARVALHO, T.F.; SOUZA, C.A.S.; LIMA, T.C.; DA SILVA, F.A. Medicinal plants with mosquitoes repellent activity: a systematic review. Research, Society and Development, 11(1), 2022. DUTRA, H.L.C.; ROCHA, M.N.; DIAS, F.B.S.; MANSUR, S.B.; CARAGATA, E.P.; MOREIRA, L.A. Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes. Cell Host & Microbe, 19:771-774, 2016. ENTRINGER, P.F.; MAJEROWICZ, D.; GONDIM, K.C. The Fate of Dietary Cholesterol in the Kissing Bug Rhodnius prolixus. Frontiers in Physiology. 12:654565, 2021. esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides, Journal of Hazardous Materials, 411:125026, 2021. FALVO, M.L.; MUSSO, A.; ORDOQUI, E.; LASTRA, C.C.L.; LUZ, C.; GARCÍA, J.J. Adulticidal Activity of Metarhizium anisopliae s.l. (Hypocreales: Clavicipitaceae) Native Strains From Argentina Against Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 57(2), 2020. FARIA, M.; MAGALHÃES, B.P. O uso de fungos entomopatogênicos no Brasil. Biotecnologia Ciência & Desenvolvimento, 22:18-21, 2001. FARNESI, L.C.; VARGAS, H.C.M.; VALLE; D. REZENDE, G.L. Darker eggs of mosquitoes resist more to dry conditions: Melanin enhances serosal cuticle contribution in egg resistance to desiccation in Aedes, Anopheles and Culex vectors. PLoS Neglected Tropical Diseases, 11(10):e0006063, 2017. FENG, X.; FENG, J.; ZHANG, L.; TU, H.; XIA, Z. Vector control in China, from malaria endemic to elimination and challenges ahead. Infectious Diseases of Poverty, 11:54, 2021. FERNANDES, K.M.; DE MAGALHÃES JÚNIOR, M.J.; BARACAT-PEREIRA, M.C.; MARTINS, G.F. Proteomic analysis of Aedes aegypti midgut during post-embryonic development and of the female mosquitoes fed different diets. Parasitology International, 2016. FORATTINI, O.P. Entomologia Médica. Vol. 1. Faculdade de Higiene e Saúde Pública. São Paulo, 662p, 1962. FORATTINI, O.P. Família Cuclidae - Morfologia. Cuclidologia Médica, 1, São Paulo: Edusp, 1996. 49 FORATTINI, O.P; GOMES, A. DE C.; NATAL, D; KAKTIANI, I.; MARUCCI, D. Preferências alimentares de mosquitos Culicidae no Vale do Ribeira, São Paulo, Brasil. Revista Saúde pública, São Paulo, 21:171-87, 1987. FUNASA. Fundação Nacional de Saúde. Dengue – Instruções para Pessoal de Combate ao Vetor – Manual de Normas Técnicas, 3a ed. Brasília, DF, 84p, 2001. FUNASA. Fundação Nacional de Saúde. Plano de Intensificação das Ações de Controle da Dengue. Brasília. Funasa, 2001. GARCÍA-MUNGUÍA, A.M.; GARZA-HERNÁNDEZ, J.A.; REBOLLAR-TELLEZ, E.A.; RODRÍGUEZ-PÉREZ, M.A.; REYES-VILLANUEVA, F. Transmission of Beauveria bassiana from male to female Aedes aegypti mosquitoes. Parasites & Vectors, 4:24, 2011. GEBREMARIAM, A.; CHEKOL, Y.; FASSIL ASSEFA, F. Extracellular enzyme activity of entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae and their pathogenicity potential as a bio-control agent against whitefy pests, Bemisia tabaci and Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). BMC Research Notes, 15:117, 2022. GERBER, R.; SMIT, N.J.; VUREN, J.H.J.V.; NAKAYAMA, S.M.M.; YOHANNES, Y.B.; IKENAKA, Y.; ISHIZUKA, M.; WEPENER, V. Bioaccumulation and human health risk assessment of DDT and other organochlorine pesticides in an apex aquatic predator from a premier conservation area. Science of the Total Environment, 550:522–533, 2016. GHOSH, C.; HALDAR, J. Membrane-active small molecules: designs inspired by antimicrobial peptides. ChemMedChem, 10(10):1606-1624, 2015. GOMES, C.R.P. Estratégias de controle biológico de larvas de mosquito Aedes aegypti com fungos entomopatogênicos. Tese (Doutorado em Produção Vegetal) - Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes. Rio de Janeiro, p.50, 2009. GONDIM, K.C.; ATELLA, G.C.; PONTES, E.G.; MAJEROWICZ, D. Lipid metabolism in insect disease vectors. Insect Biochemistry and Molecular Biology, 2018. GRAULT, C.E.; COSTA, M.A.M.; SANTOS, V.V.C.M.; SILVA, C.C.M. Políticas públicas para doenças transmitidas por vetores: situação atual e Educação como alternativa. Revista de Políticas Públicas, 22:1172-1193, 2018. GREGORY, G.E. Alcoholic Bouin fixation of insect nervous systems for bodian silver staining. III. A shortened, single impregnation method. Stain Technology, 55:161-165, 1980. HAMED, A.M.R.; EL-SHERBINI, M.S.; ABDELTAWAB, M.S.A. Eco-Friendly Mosquito- Control Strategies: Advantages and Disadvantages. Egyptian Academic Journal of Biological Sciences, 14(1):17-31, 2022. 50 HAYD, R.L.N.; GUIMARÃES, T.M.; HABERT, E.N.; ALMEIDA, N.C.V. Impacto econômico das principais arboviroses urbanas transmitidas pelo Aedes aegypti em um estado do extremo Norte do Brasil. Revista Brasileira de Ciência da Amazônia, 9(1):9-18, 2020. HEMINGWAY, J.; RANSON, H. Insecticide Resistance in Insect Vectors of Human Disease. Annual Review of Entomology, 45(1):371-391, 2000. HOFFMANN, A.A.; MONTGOMERY, B.L.; POPOVICI, J.; ITURBE-ORMAETXE, I.; JOHNSON, P.H.; MUZZI, F.; GREENFIELD, M.; DURKAN, M.; LEONG, Y.S.; DONG, Y.; COOK, H.; AXFORD, J.; CALLAHAN, A.G.; KENNY, N.; OMODEI, C.; MCGRAW, E.A.; RYAN, P.A.; RITCHIE, S.A., TURELLI, M.; O’NEILL, S.L. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature, 476(7361):454-457, 2011. HONÓRIO, N.A.; CÂMARA, D.C.P.; CALVET, G.A.; BRASIL, P. Chikungunya: uma arbovirose em estabelecimento e expansão no Brasil. Cadernos de Saúde Pública, 31(5): 906- 908, 2015. HUANG, Y.S.; HIGGS, S.; VANLANDINGHAM, D.L. Biological Control Strategies for Mosquito Vectors of Arboviruses. Insects, 2017. ITURBE-ORMAETXE, I.; WALKER, T.; O’ NEILL, S.L. Wolbachia and the biological control of mosquito-borne disease. EMBO Reports, 12(6):508-518, 2011. JIANG, W.; LUO, Y.; CONKLE, J.L.; LI, J.; GAN, J. Pesticides on residential outdoor surfaces: environmental impacts and aquatic toxicity. Pest Management Science, 72(7):1411- 1420, 2015. JING, X.; BEHMER, S.T. Insect Sterol Nutrition: Physiological Mechanisms, Ecology, and Applications. Annual Review of Entomology, 65:251-271, 2020. KAMAL, M.; KENAWY, M.A.; RADY, M.H.; KHALED, A.S.; SAMY, A.M. Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate. PLoS ONE, 13(12):e0210122, 2018. KARABÖRKLÜ, S. Biocontrol potential of Beauveria bassiana and Metarhizium anisopliae isolates from turkey against Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) larvae under laboratory and field conditions. Bioscience Journal, 38:e38015, 2022. KAWOOYA, J. K.; LAW, J.H. Role of lipophorin in lipid transport to insect egg. The Journal of Biological Chemistry, 263:8748-8753, 1988. 51 KERWIN, J.L. Fatty acid regulation of the germination of Erynia variabilis conidia on adults and puparia of the lesser housefly, Fannia canicularis. Canadian Journal of Microbiology, 30(2):158-161, 1984. KOSASIH, C.E.; LUKMAN, M.; SOLEHATI, T.; MEDIANI, H.S. Effect of dengue hemorrhagic fever health education on knowledge and attitudes, in elementary school children in West Java, Indonesia. Linguistics and Culture Review, 5(S1):191-200, 2021. KURNIAWAN, E.; MULIA, Y. S.; DEWI, N. U.; SANITAVIA, W. H.; KRISTIYANTI, Y. AKTIVITAS LARVASIDA JAMUR Metarhizium anisopliae TERHADAP LARVA Aedes aegypti DI LABORATORIUM DAN UJI COBA LAPANGAN. JURNAL RISET KESEHATAN POLTEKKES DEPKES BANDUNG, 13(1):64-73, 2021. LACEY, L.A.; GRZYWACZ, D.; SHAPIRO-ILAN, D.I.; FRUTOS, R., BROWNBRIDGE, M.; GOETTEL, M.S. Insect pathogens as biological control agents: back to the future. Journal of Invertebrate Pathology, 132:1-41, 2015. LEE, G.-H.; CHOI, K.-C. Adverse effects of pesticides on the functions of immune system. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 235:108789, 2020. LEE, Y.-H.; KIM, H.-H.; LEE, J.-I.; LEE, J.-H.; KANG, H.; LEE, J.-Y. Indoor contamination from pesticides used for outdoor insect control. Science of The Total Environment, 625:994- 1002, 2018. LI, Y.; XIANG, Q.; ZHANG, Q.; HUANG, Y.; SU, Z. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides, 37:207-215, 2012. LIMA, E.P.; GOULART, M.O.F.; ROLIM NETO, M.L. Meta-analysis of studies on chemical, physical and biological agents in the control of Aedes aegypti. BMC Public Health, 15(1):858, 2015. LITVOC, M.N.; NOVAES, C.T.G.; LOPES, M.I.B.F. Yellow Fever. Revista da Associação Médica Brasileira 2018, 64(2):106-113, 2017. LOVE, R.R.; SIKDER, J.R.; VIVERO, R.J.; MATUTE, D.R.; SCHRIDER, D.R. Strong Positive Selection in Aedes aegypti and the Rapid Evolution of Insecticide Resistance. Molecular Biology and Evolution, 40(4), 2023. MAHMOOD, F.; WALTERS, L.L.; GUZMAN, H.; TESH, R.B. Effect of Ivermectin on the Ovarian Development of Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 28(5), 1991. 52 MARTINA, B.E.E.; KORAKA, P.; OSTERHAUS, A.D.M.E. Dengue Virus Pathogenesis: an Integrated View. Clinical Microbiology Reviews, 22(4):564-581, 2009. MARTINS, G.F.; SERRÃO, J.E.; RAMALHO-ORTIGÃO, J.M.; PIMENTA, P.F.P. A comparative study of fat body morphology in five mosquito species. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro, 106(6):742-747, 2011. MCGREGOR, B.; CONNELLY, R. A Review of the Control of Aedes aegypti (Diptera: Culicidae) in the Continental United States. Journal of Medical Entomology, 12;58(1):10-25, 2021. MEHMOOD, N.; HASSAN, A.; ZHOU, W.; USMAN, H.M.; HUI AI, H.; HUANG, Q. Behavioural alterations in female Aedes aegypti mosquito in response to entomopathogenic fungal infections. Pest Management Science, 78(5), 2022. MICHEREFF FILHO, M.; FARIA, M.; WRAIGHT, S.P.; SILVA, K.F.A.S. Micoinseticidas e micoacaricidas no brasil: como estamos após quatro décadas? Arquivos do Instituto Biológico, 76(4), 2009. MORA, M.A.E.; CASTILHO, A.M.C.; FRAGA, M.E. Fungos entomopatogenicos: enzimas, toxinas e fatores que afetam a diversidade. Revista Brasileira de Produtos Agroindustriais, Campina Grande, 18(3):335-349, 2016. MOREIRA, H.V.S. Atividade de Metarhizium anisopliae e Beauveria bassiana contra Aedes aegypti em condições in vitro e em semicampo. Dissertação (Mestrado em Ciências Veterinárias) - Universidade Federal Rural do Rio de Janeiro. Seropédica, Rio de Janeiro, p.62, 2022. MOSTAFALOU, S.; ABDOLLAHI, M. Pesticides and Human Chronic Diseases; Evidences, Mechanisms, and Perspectives. Toxicology and Applied Pharmacology, 268(2):157-177, 2013. MULLEN, G.R.; DURDEN, L.A. Medical and Veterinary Entomology. Third Edition. Academic Press, Elsevier Inc, 2019. NAQQASH, M.N.; GÖKÇE, A.; BAKHSH, A.; SALIM, M. Insecticide resistance and its molecular basis in urban insect pests. Parasitology Research, 115(4):1363-1373, 2016. NAVARRO, J.P.; ESPINOSA, M.M.; TERÇAS-TRETTE, A.C.P.; DA SILVA, J.H.; SCHULER-FACCINI, L.; ATANAKA, M. Knowledge and actions for the control of the vector Aedes aegypti in a municipality in the Legal Amazon. Revista do Instituto de Medicina Tropical de São Paulo, 63:e64, 2021. 53 NELSON, M.J. Aedes aegypti: Biology and Ecology. Pan American Health Organization. Washington, DC, 1986. NOBRE, A.; ANTEZANA, D.; TAUIL, P.L. Febre Amarela e Dengue no Brasil: epidemiologia e controle. Revista da Sociedade Brasileira de Medicina Tropical, (Supl. III):59-66, 1994. Nogueira, M.R.S.; Camargo, M.G.; Rodrigues, C.J.B.C.; Marciano, A.F.; Quinelato, S.; Freitas, M.C.; FIOROTTI, J, SÁ. F.A.; PERINOTTO, W.M.S.; BITTENCOURT, V.R.E.P. In vitro efficacy of two commercial products of Metarhizium anisopliae s.l. for controlling the cattle tick Rhipicephalus microplus. Brazilian Journal of Veterinary Parasitology, 29(2):e000220, 2020. NOGUEIRA, M.R.S; CAMARGO, M.G.; RODRIGUES, C.J.B.C.; MARCIANO, A.F.; QUINELATO, S.; DE FREITAS, M.C.; FIOROTTI, J.; DE SÁ, F.A; PERINOTTO, W.M.S.; BITTENCOURT, V.R.E.P. In vitro efficacy of two commercial products of Metarhizium anisopliae s.l. for controlling the cattle tick Rhipicephalus microplus. Brazilian Journal of Veterinary Parasitology, 29(2), 2020. NOREEN, M.; ARIJO, A.G.; AHMAD, L.; SETHAR, A.; LEGHARI, M.F.; BHUTTO, M.B.; LEGHARI, I.H.; MEMON, K.H.; SHAHANI, S.; VISTRO, W.A.; SETHAR, G.H.; KHAN, N. Biological control of mosquito larvae using edible fish. International Journal of Innovative and Applied Research, 5(8), 2017. NORRIS, E.J.; BLOOMQUIST, J.R. Co-Toxicity Factor Analysis Reveals Numerous Plant Essential Oils Are Synergists of Natural Pyrethrins against Aedes aegypti Mosquitoes. Insects, 12:154, 2021. OECD. Safety Assessment of Transgenic Organisms in the Environment, Volume 8: OECD Consensus Document of the Biology of Mosquito Aedes aegypti. Harmonisation of Regulatory Oversight in Biotechnology, OECD Publishing, Paris, 2018. OPAS. Controle do Aedes aegypti em cenário de transmissão simultânea de COVID-19. Organização Pan-Americana da Saúde, 2020. Disponível em: https://www.paho.org/pt/documentos/control-aedes-aegypti-escenario-transmision- simultanea-covid-19 Acesso em: 18/10/2023 OPAS. Documento operacional para a execução do manejo integrado de vetores adaptado ao contexto das Américas. Organização Pan-Americana da Saúde, 2019. Disponível em: https://iris.paho.org/handle/10665.2/51762 Acesso em: 18/10/2023 ORTIZ-URQUIZA, A.; LUO, A.; KEYHANI, N.O. Improving mycoinsecticides for insect biological control. Applied Microbiology and Biotechnology, 99(3):1057-1068, 2014. 54 PAIVA, C.N.; LIMA, J.W.O.; CAMELO, S.S.; LIMA, C.F.; PAMPLONA, L.G.C. Survival of larvivorous fish used for biological control of Aedes aegypti (Diptera: Culicidae) combined with different larvicides. Tropical Medicine & International Health, 19(9):1082-1086, 2014. PAIXÃO, E.S.; TEIXEIRA, M.G.; RODRIGUES, L.C. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ Global Health, 3:e000530, 2017. PAL, S.; ST LEGER, R.J.; WU, L.P. Fungal peptide destruxin A plays a specific role in suppressing the innate immune response in Drosophila melanogaster, Journal of Biological Chemistry, 282:8969-8977, 2007. PAMPLONA, L.C.G.; DE PAULA JÚNIOR, F.J.; PONTES, R.J.S.; HEUKELBACH, J.; LIMA, J.W.O. Survival of Larvivorous Fish Used for Biological Control of Aedes aegypti Larvae in Domestic Containers With Different Chlorine Concentrations. Journal of Medical Entomology, 46(4):841-844, 2009. PAMPLONA, L.C.G.; DE PAULA, F.J.; PONTES, R.J.S.; REGAZZI, A.C.F.; DE PAULA JÚNIOR, F.J.; FRUTUOSO, R.L.; SOUZA, E.P.; DANTAS FILHO; F.F.; LIMA, J.W.O. Competência de peixes como predadores de larvas de Aedes aegypti, em condições de laboratório. Revista de Saúde Pública, 41(4):638-644, 2007. PARKS, J.J.; LARSEN, J.R. A Morphological Study of the Female Reproductive System and Follicular Development in the Mosquito Aedes aegypti (L.). Transactions of the American Microscopical Society, 84(1):88-98, 1965. PARRA, J.R.P.; COELHO, A. Applied Biological Control in Brazil: From Laboratory Assays to Field Application. Journal of Insect Science, 19(2), 2019. PATTERSON, J.; SAMMON, M.; GARG, M. Dengue, Zika and Chikungunya: Emerging Arboviruses in the New World. Western Journal of Emergency Medicine, 17(6), 2016. PAULA, A.R., SILVA, L.E.I., RIBEIRO, A. DA SILVA, G.A.; SILVA, C.P.; BUTT, T.M.; SAMUELS, R.I. Metarhizium anisopliae blastospores are highly virulent to adult Aedes aegypti, an important arbovirus vector. Parasites Vectors, 14:555, 2021. PAULA, A.R.; CAROLINO, A.T.; SILVA, C.P.; SAMUELS, R.I. Susceptibility of adult female Aedes aegypti (Diptera: Culicidae) to the entomopathogenic fungus Metarhizium anisopliae is modified following blood feeding. Parasites & Vectors, 4:91, 2011. PEREIRA, S.L. REIS, T.C.; DE OLIVEIRA, I.T.; FERREIRA, E.A.; CASTRO, B.M.C.; SOARES, M.A.; RIBEIRO, V.H.V. Pathogenicity of Metarhizium anisopliae and Beauveria 55 bassiana fungi to Tetranychus ludeni (Acari: Tetranychidae). Arquivos do Instituto Biológico, 86(7):e0272018, 2019. PETERSON, G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical Biochemistry, 356:346-356. 1977. PICOLI, T.; PETER, C.M.; ZANI, J.L.; WALLER, S.B.; LOPES, M.G.; BOESCHE, K.N.; VARGAS, G.D’A., HÜBNER, S.O.; FISCHER, G. Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk. Microbial Pathogenesis, 112:57-62, 2017. PONLAWAT, A.; HARRINGTON, L.C. Blood Feeding Patterns of Aedes aegypti and Aedes albopictus in Thailand. Journal of Medical Entomology, 42(5), 2005. PORUSIA, M.; SEPTIYANA, D. Larvicidal Activity of Melaleuca leucadendra Leaves Extract Against Aedes aegypti. Journal of Chemical Health Risks, 12(1):63-71, 2022. POWELL, J.R.; GLORIA-SORIA, A.; KOTSAKIOZI, P. Recent History of Aedes aegypti: Vector Genomics and Epidemiology Records. BioScience, 68(11), 2018. POWELL, J.R.; TABACHNICK, W.J. History of domestication and spread of Aedes aegypti - A Review. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro, 108:11-17, 2013. PREFEITURA MUNICIPAL DE RIBEIRÃO PRETO. Manual de diretrizes e procedimentos no controle do Aedes aegypti. Secretaria Municipal de Saúde. Centro de Controle de Zoonozes, Divisão de controle de vetores e animais peçonhentos. Ribeirão Preto, 2001. QUINTERO-ZAPATA, I.; FLORES-GONZÁLEZ, M.S.; LUNA-SANTILLANA, E. J.; ARROYO-GONZÁLEZ, N.; GANDARILLA-PACHECO, F.L. Late effects of Beauveria bassiana on larval stages of Aedes aegypti Linneo, 1762 (Diptera: Culicidae). Brazilian Journal of Biology, 82:e237789, 2022. RAGHAVENDRA, K.; BARIK, T.K.; REDDY, B.P.N.; SHARMA, P.; DASH, A.P. Malaria vector control: from past to future. Parasitology Research, 108(4):757-779, 2011. RANATHUNGE, T.; KUSUMAWATHIE, P.H.D.; ABEYEWICKREME, W. UDAYANGA, L.; FERNANDO, T.; HAPUGODA, M. Biocontrol potential of six locally available fish species as predators of Aedes aegypti in Sri Lanka, Biological Control, 160:e104638, 2021. RÍOS, N.; STASHENKO E.E.; DUQUE, J.E. Evaluation of the insecticidal activity of essential oils and their mixtures against Aedes aegypti (Diptera: Culicidae). Revista Brasileira de Entomologia, 61:307-311, 2017. 56 ROCHA, I.U. Uso de fungos entomopatogênicos e óleo essencial de Illicium verum (Illiciaceae) no controle in vitro de Aedes aegypti. Dissertação (Mestrado em Ciências Veterinárias) - Universidade Federal Rural do Rio de Janeiro. Seropédica, Rio de Janeiro, 2022. ROSE, R.I. Pesticides and public health: integrated methods of mosquito management. Emerging Infectious Diseases, 7(1), 2001. ROSILAWATI, R.; NABILA, R.; SITI FUTRI FARAHININAJUA, F.; NAZNI, W.A.; LEE, H.L. A preliminary proteomic study of permethrin resistant and susceptible Aedes aegypti (L.). Tropical Biomedicine, 36(4):855-865, 2019. SAMUELS, R.I.; CHARNLEY, A.K.; REYNOLDS, S.E. The role of destruxins in the pathogenicity of 3 strains of Metarhizium anisopliae for the tobacco hornworm Manduca sexta. Mycopathologia, 104:51-58, 1988. SÁNCHEZ; E.; LIRIA, J. Dimorfismo sexual alar en Aedes (Stegomyia) aegypti (Diptera: Culicidae) de Venezuela. Acta Biologica Venezuelica, 37(2):163-170, 2018. SCHOLTE, E.J.; KNOLS, B.G.; TAKKEN, W. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. Journal of Invertebrate Pathology, 91(1):43-49, 2006. SCHRANK, A.; VAINSTEIN, M.H. Metarhizium anisopliae enzymes and toxins. Toxicon, 56:1267-1274, 2010. SEYFI, R.; KAHAKI, F.A.; EBRAHIMI, T.; MONTAZERSAHEB, S.; EYVAZI, S.; BABAEIPOUR, V.; TARHRIZ, V. Antimicrobial Peptides (AMPs): Roles, Functions and Mechanism of Action. International Journal of Peptide Research and Therapeutics, 2019. SOUZA, R.L.; MUGABE, V.A.; PAPLOSKI, I.A.D.; RODRIGUES, M.S.; MOREIRA, P.S.S.; NASCIMENTO, L.C.J.; RIBEIRO, G.S. Effect of an intervention in storm drains to prevent Aedes aegypti reproduction in Salvador, Brazil. Parasites & Vectors, 10(1), 2017. SOWJANYA, K.; PADMAJA, V. Oxidative stress induced by destruxin from Metarhizium anisopliae (Metch) involves changes in glutathione and ascorbate metabolism and instigates ultrastructural changes in the salivary glands of Spodoptera litura (Fab.) larvae. Toxicon, 51:1140-1150, 2008. TAWIDIAN, P.; RHODES, V.L.; MICHEL, K. Mosquito-fungus interactions and antifungal immunity. Insect Biochemistry and Molecular Biology, 111:e103182, 2019. TEENUS, S.R.; SRUTHI, M.R.; SAJU, C.R.; MOHAMMED RAFI, M. The Role of Health Education on Larval Indices and Fever Cases from Rural Area of Thrissure District, Kerala: A 57 Quasi Randamized Control Study. Clinical Medicine and Health Research Journal, 2(2):87- 91, 2022. TEICH, R. A., FAHHAM, L. Aedes aegypti e sociedade: o impacto econômico das arboviroses no Brasil Aedes aegypti and society: the economic burden of arboviruses in Brazil Vanessa. Jornal Brasileiro de Economia da Saúde, 9(3):267-276, 2017. TEICH, V.; ARINELLI, R.; FAHHAM, L. Aedes aegypti e sociedade: o impacto econômico das arboviroses no Brasil. Jornal Brasileiro de Economia da Saúde, 9(3):267-276, 2017. TOPRAK, U.; HEGEDUS, D.; DOĞAN, C.; GÜNEY, G. A journey into the world of insect lipid metabolism. Archives of Insect Biochemistry and Physiology, e21682, 2020. TSUNODA, T.; FUKUCHI, A.; NANBARA, S.; TAKAGI, M. Effect of body size and sugar meals on oviposition of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). Journal of Vector Ecology, 35:56-60, 2010. VALLE, D.; AGUIAR, R.; PIMENTA, D.N.; FERREIRA, V. Aedes de A a Z. Temas em Saúde Collection. Rio de Janeiro: Editora FIOCRUZ, 2021. VERA, S.S.; ZAMBRANO, D.F.; MÉNDEZ-SANCHEZ, S.C.; RODRÍGUEZ-SANABRIA, F.; STASHENKO, E.E.; DUQUE LUNA, J.E. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitology Research, 113(7):2647-2654, 2014. VEY, A.; HOAGLAND, R.E.; BUTT, T.M. Toxic metabolites of fungal biocontrol agents. Fungi as biocontrol agents progress: problems and potential, CABI Publishing, Wallingford, 311-346, 2001. VINIGRADOV, D.D.; SINEV, A.Y.; TIUNOV, A.A. Predators as Control Agents of Mosquito Larvae in Micro-Reservoirs (Review). Inland Water Biology, 15(1):39-53, 2022. WANG, G; WANG, S. Insect Pathogenic Fungi: Genomics, Molecular Interactions, and Genetic Improvements. Annual Review of Entomology, 62:73-90, 2017. WEI, D.; Li, R.; ZHANG, M.-Y.; LIU, Y.-W.; ZHANG, Z.; SMAGGHE, G.; WANG, J.-J. Comparative Proteomic Profiling Reveals Molecular Characteristics Associated with Oogenesis and Oocyte Maturation during Ovarian Development of Bactrocera dorsalis (Hendel). International Journal of Molecular Sciences, 18(7):1379, 2017. WHO. World Health Organization. Dengue and severe dengue, 2021. Disponível em: https://www.who.int/en/news-room/fact-sheets/detail/dengue-and-severe-dengue Acesso em: 12/07/2021. 58 WHO. World Health Organization. Global Strategic Framework for Integrated Vector Management, 2004. Disponível em https://apps.who.int/iris/bitstream/handle/10665/68624/ WHO_CDS_CPE_PVC_%202004%20_10.pdf?sequence=1 Acesso em: 30/08/2022. WHO. World Health Organization. Global Vector Control Response (GVCR) 2017–2030, 2017. Disponível em: https://www.who.int/publications/i/item/9789241512978 Acesso em: 30/08/2022. WHO. World Health Organization. Global Vector Control Response (GVCR) 2017–2030, 2017. Disponível em: https://www.who.int/publications/i/item/9789241512978 Acesso em: 30/08/2022. WHO. World Health Organization. Rift Valley fever, 2018. Disponível em: https://www.who.int/news-room/fact-sheets/detail/rift-valley-fever Acesso em: 13/09/22. WHO. World Health Organization. Vector control. Regional Committee Document, 2017. Disponível em https://apps.who.int/iris/bitstream/handle/10665/258546/sea--rc70-10.pdf?sequ ence=1&isAllowed=y Acesso em: 30/08/2022. WHO. World Health Organization. Vector-borne diseases, 2020. Disponível em: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases Acesso em: 13/07/2021. WHO. World Health Organization. Yellow fever, 2019. Disponível em: https://www.who.int/news-room/fact-sheets/detail/yellow-fever Acesso em: 15/09/2022. WOLMARANS, N.J.; BERVOETS, L.; GERBER, R.; YOHANNES, Y.B.; NAKAYAMA, S.M.; IKENAKA, Y.; WEPENER, V. Bioaccumulation of DDT and other organochlorine pesticides in amphibians from two conservation areas within malaria risk regions of South Africa. Chemosphere, 274:129956, 2021. WYCKHUYS, K.; SASIPRAPA, W.; TAEKUL, C.; KONDO, T. Unsung heroes: fixing multifaceted sustainability challenges through insect biological control. Current Opinion in Insect Science, 2020. XAVIER, M.A. Metabolismo de lipídeos na reprodução de carrapatos. Tese (Doutorado em Ciências) - Universidade Federal Rural do Rio de Janeiro. Porto Alegre, Rio Grande do Sul, 2019. ZAMORA-AVILÉS, N.; OROZCO-FLORES, A.A.; GOMEZ-FLORES, R.; DOMÍNGUEZ- GÁMEZ, M.; RODRÍGUEZ-PÉREZ, M.A.; TAMEZ-GUERRA, P. Increased Attraction and Stability of Beauveria bassiana-Formulated Microgranules for Aedes aegypti Biocontrol. Journal of Fungi, 8:828, 2022. | pt_BR |
dc.subject.cnpq | Medicina Veterinária | pt_BR |
Appears in Collections: | Mestrado em Ciências Veterinárias |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2023 - LUISA ANDRADE AZEVEDO.pdf | 2.13 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.