Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/18836
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ferreira, Marcus Vinicius da Silva | - |
dc.date.accessioned | 2024-10-29T16:09:31Z | - |
dc.date.available | 2024-10-29T16:09:31Z | - |
dc.date.issued | 2023-12-19 | - |
dc.identifier.citation | FERREIRA, Marcus Vinicius da Silva. Construção e avaliação de um nariz eletrônico (e-nose) de baixo custo para uso no controle de qualidade de produtos agrícolas. 2023. 147 f. Tese (Doutorado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2023. | pt_BR |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/18836 | - |
dc.description.abstract | O nariz eletrônico (e-nose) é um dispositivo cujo intuito é otimizar o sistema olfativo das células dos mamíferos e é projetado para identificar odores. Esse equipamento é baseado na capacidade dos sensores em detectar a presença de odores (compostos voláteis) nos alimentos e transformá-los em sinal elétrico (tensão). Na indústria de alimentos, o nariz eletrônico tem sido amplamente utilizado para avaliação de produtos agrícolas, especialmente em frutas e commodities vegetais, onde seu uso aumentou nos últimos anos. Outras técnicas baseadas em sensores, como os óticos tais como infra vermelho próximo (NIR) e imagem RGB (dentro da visão computacional) também são técnicas empregadas em análises de alimentos no intuito de se obter informação química. O funcionamento do NIR envolve a interação da radiação luminosa com uma amostra, onde suas propriedades físicas e químicas são refletidas nos espectros NIR resultantes. Já o sistema de sensors RGB é uma tecnologia que usa computadores para extrair dados úteis de entradas visuais (ex., imagens), uma vez que os métodos para determinação de fitoquímicos (ex., compostos fenolicos) nessas culturas são onerosas e demoradas, como cromatografia gasosa (CG-MS), além desse método requerr a destruição do analito. O objetivo do trabalho foi investigar o efeito de parâmetros do nariz eletrônico de baixo custo (NEBC) (ex., temperatura dos sensores, espaço da câmara, fluxo de ar e tempo de aquisição) aplicando analise multivariada, prinicipal componetent analysis PCA, partial least square regression PLSR, PLS-DA partial least square discriminant Analysis para avaliação de produtos agrícolas, além de investigar a performance do nariz eletrônico de baixo custo frente a outras tecnologias (NIR e camera RGB dentro do conceito de computer vision). O NEBC mostrou-se uma poderosa ferramenta analítica na classificação de estágios de maturação na pitaya além de potencial de predição de parâmetros como acidez e sólidossolúveis RPD>2 para acidez titulável e pH. Também de chás preto com base na origem (Brasil, Índia e Estados Unidos). Desempenho este compatível com outros sensores opticos, como o infravermelho próximo (NIR) (para pitaya e chá) e Imagem RGB comparada à análise da pitaya. A otimização do tempo de aquisição da amostra em 2 minutos tanto para a pitaya quanto para os chás foram suficientes para obtenção dos dados bem como a implementação das condições de temperatura e umidade em 25 ◦ C e 40% respectivamente foram bem sucedidas. O nariz eletrônico de baixo custo se mostrou como uma alternativa para a indústria de alimentos e pode ser considerado para o controle de qualidade, como vida de prateleira em frutas e autenticação em chá preto. | pt_BR |
dc.description.sponsorship | Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq | pt_BR |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
dc.subject | Sensores olfativos | pt_BR |
dc.subject | sensores ópticos | pt_BR |
dc.subject | Machine learning | pt_BR |
dc.subject | produtos agrícola | pt_BR |
dc.subject | Olfactive sensors | pt_BR |
dc.subject | optical sensors | pt_BR |
dc.subject | agricultural products | pt_BR |
dc.subject | machine learning | pt_BR |
dc.title | Construção e avaliação de um nariz eletrônico (e-nose) de baixo custo para uso no controle de qualidade de produtos agrícolas | pt_BR |
dc.title.alternative | Construction of a low-cost electronic nose (e-nose) for use in the quality control of agricultural products | en |
dc.type | Tese | pt_BR |
dc.description.abstractOther | The electronic nose (e-nose) is a device designed to optimize the olfactory system of mammalian cells and is intended to identify odors. This equipment is based on the ability of sensors to detect the presence of odors (volatile compounds) in food and convert them into an electrical signal (voltage). In the food industry, the electronic nose has been widely used for the evaluation of agricultural products, especially in fruits and vegetable commodities, where its use has increased in recent years. Other sensor-based techniques, such as optical ones like near-infrared (NIR) and RGB imaging (inside o f computer vision), are also employed in food analysis to obtain chemical information. The operation of NIR involves the interaction of light radiation with a sample, where its physical and chemical properties are reflected in the resulting NIR spectra. On the other hand, the RGB sensor system is a technology that uses computers to extract useful data from visual inputs (e.g., images), as methods for determining phytochemicals (e.g., phenolic compounds) in these crops are costly and time- consuming, such as gas chromatography (GC-MS), and this method requires the destruction of the analyte. The aim of the study was to investigate the effect of low-cost electronic nose parameters (LCEC) (e.g., sensor temperature, chamber space, air flow, and acquisition time) by applying multivariate analysis such as principal component analysis (PCA), partial least square regression (PLSR), and PLS-DA (partial least square discriminant analysis) for the evaluation of agricultural products. Additionally, the study aimed to investigate the performance of the low-cost electronic nose compared to other technologies (NIR and RGB camera within the concept of computer vision). The LCEC proved to be a powerful analytical tool in the classification of ripening stages in pitaya, as well as the prediction potential of parameters such as acidity and soluble solids with RPD>2 for titratable acidity and pH. It also demonstrated effectiveness in distinguishing black teas based on origin (Brazil, India, and the United States). This performance was comparable to other optical sensors, such as near- infrared (NIR) (for pitaya and tea) and RGB imaging compared to pitaya analysis. Optimizing the sample acquisition time to 2 minutes for both pitaya and teas was sufficient for obtaining data, as well as successfully implementing temperature and humidity conditions at 25°C and 40%, respectively. The low-cost electronic nose proves to be an alternative for the food industry and can be considered for quality control, shelf-life assessment in fruits, and authentication in black tea. | en |
dc.contributor.advisor1 | Barbosa Junior, Jose Lucena | - |
dc.contributor.advisor1ID | https://orcid.org/0000-0001-8496-1404 | pt_BR |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/5228796959263366 | pt_BR |
dc.contributor.advisor-co1 | Barbin, Douglas Fernandes | - |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/9895686206333109 | pt_BR |
dc.contributor.referee1 | Barbosa Junior, Jose Lucena | - |
dc.contributor.referee1ID | https://orcid.org/0000-0001-8496-1404 | pt_BR |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/5228796959263366 | pt_BR |
dc.contributor.referee2 | Rodrigues, Flavio Napole | - |
dc.contributor.referee2ID | http://orcid.org/0000-0001-8303-2865 | pt_BR |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/5930350614206693 | pt_BR |
dc.contributor.referee3 | Nunes, Cleiton Antônio | - |
dc.contributor.referee3ID | https://orcid.org/0000-0002-5147-7357 | pt_BR |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/4872364161265799 | pt_BR |
dc.contributor.referee4 | Bigansolli, Antonio Renato | - |
dc.contributor.referee4ID | https://orcid.org/0000-0002-0142-5989 | pt_BR |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/5868109671445446 | pt_BR |
dc.contributor.referee5 | Nicolini, João Victor | - |
dc.contributor.referee5ID | https://orcid.org/0000-0002-2690-9533 | pt_BR |
dc.contributor.referee5Lattes | http://lattes.cnpq.br/0525713504125196 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/3978801796246855 | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Instituto de Tecnologia | pt_BR |
dc.publisher.initials | UFRRJ | pt_BR |
dc.publisher.program | Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos | pt_BR |
dc.relation.references | AGUSTIKA, D. K. et al. Steady-state response feature extraction optimization to enhance electronic nose performance. In: IEEE. 2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI). [S.l.: s.n.], 2020. p. 144–149. ALEIXANDRE, M. et al. A wireless and portable electronic nose to differentiate musts of different ripeness degree and grape varieties. Sensors, MDPI, v. 15, n. 4, p. 8429–8443, 2015. ALI, M. M. et al. Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends in Food Science & Technology, 2020 Elsevier, v. 99, p. 1–10. ATTAR, Ş. H. et al. Nutritional analysis of red-purple and white-fleshed pitaya (Hylocereus) species. Molecules, 2022, MDPI, v. 27, n. 3, p. 80.. BINSON, V. A.; SUBRAMONIAM, M. Design and development of an e-nose system for the diagnosis of pulmonary diseases. Acta of Bioengineering & Biomechanics, v. 23, n. 1, 2021. BOROWIK, P. et al. Application of a low-cost electronic nose for differentiation between pathogenic oomycetes pythium intermedium and phytophthora plurivora. Sensors, MDPI,2021 v. 21, n. 4, p. 1326. BROOKS, C. et al. A review of food fraud and food authenticity across the food supply chain, with an examination of the impact of the COVID-19 pandemic and Brexit on food industry, 2021 v. 130, p. 108171. BURATTI, S. et al. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue. Analytica chimica acta 2021, Elsevier, v. 697, n. 1-2, p. 67–74. CANO MARCHAL, P. et al. Prediction of fruity aroma intensity and defect presence in virgin olive oil using an electronic nose. Sensors,2021 MDPI, v. 21, n. 7, p. 2298. CHARUMPORN, B. et al. Compact electronic nose systems using metal oxide gas sensors for fire detection systems. In: IEEE. THE 2006 IEEE International Joint Conference on Neural Network Proceedings. [S.l.: s.n.], 2006. p. 2214–2217. CHEAH, L. K. et alPhytochemical properties and health benefits of Hylocereus undatus. . 2016), v. 1, p. 100-120 CHEN, K. et al. Recognizing lung cancer and stages using a self-developed electronic nose system. Computers in Biology and Medicine,2021 Elsevier, v. 131, p. 104294, CHENG, H. et al. Characterization of aroma-active volatiles in three Chinese bayberry (Myrica rubra) cultivars using GC–MS–olfactometry and an electronic nose combined with principal component analysis. Food Research International, 2015, Elsevier, v. 72, p. 8–15, 2015. CHENG, L. et al. Development of compact electronic noses: A review. Measurement Science and Technology, 2021 IOP Publishing, v. 32, n. 6, p. 062002, 2021. CHI, X. et al. Distinction of volatile flavor profiles in various skim milk products via HS- SPME–GC–MS and E-nose. European Food Research and Technology, 2021, Springer, v. 247, p. 1539–1551. CHILO, J. et al. E-nose application to food industry production. IEEE Instrumentation & Measurement Magazine,2016 IEEE, v. 19, n. 1, p. 27–33, 2016 CHOPRA, V. L.; KRISHNAKUMAR, V.; PETER, K. V. Plantation Crops and Plantations. , 2016, v. 3, p 230-270. 9 CHOWDHURY, S. R. et al. Analysis of a data acquisition system for a compact electronic nose. In: SPRINGER. PROCEEDINGS of the 2nd International Conference on Communication, Devices and Computing: ICCDC, 2019. [S.l.: s.n.],. p. 615–628. DING, Y. et al. Classification of tea quality levels using near-infrared spectroscopy based on CLPSO-SVM. Foods, 2022 MDPI, v. 11, n. 11, p. 1658. DONG, C. et al. Prediction of congou black tea fermentation quality indices from color features using non-linear regression methods. Scientific reports, 2018, Nature Publishing Group UK London, v. 8, n. 1, p. 10535. EMERSON. Electrochemical vs. Semiconductor Gas Detection – a Critical Choice., 2019, [S.l.]: Emerson. p. 1–6. Disponível em: <<https://www.emerson.com/documents/automation/white-paper-electrochemical-vs- semiconductor-gas-detection-en-5351906.pdf>>. Acesso em: 21 jun. 2022. FAN, S. et al. Effect of spectrum measurement position variation on the robustness of NIR spectroscopy models for soluble solids content of apple. Biosystems Engineering, 2016 Elsevier, v. 143, p. 9–19. FENG, X. et al. Preliminary study on classification of rice and detection of paraffin in the adulterated samples by Raman spectroscopy combined with multivariate analysis. Talanta, 2013 Elsevier, v. 115, p. 548–555. GONZALEZ VIEJO, C. et al. Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sensors and Actuators B: Chemical, 2020. Elsevier, v. 308, p. 127688, GONZALEZ VIEJO, C. FUENTES, S. Low-cost methods to assess beer quality using artificial intelligence involving robotics, an electronic nose, and machine learning, 2021. v. 21, n. 6, p. 2016 GONZALEZ VIEJO, C.; TONGSON, E.; FUENTES, S. Integrating a low-cost electronic nose and machine learning modelling to assess coffee aroma profile and intensity. Sensors, 2021. MDPI, v. 308, p. 127688 HARUN, F. K. C.; COVINGTON, J. A.; GARDNER, J. W. Portable e-Mucosa System: Mimicking the biological olfactory. Procedia Chemistry,2009 Elsevier, v. 1, n. 1, p. 991–994 HOMER, M. L. et al. Compensating for relative humidity changes while monitoring air quality using an electronic nose. Jet Propulsion Laboratory Report,2002, p. 209 JIA, W. et al. Advances in electronic nose development for application to agricultural products. Food Analytical Methods, 2029, Springer, v. 12, p. 2226–2240. JIANG, H. et al. Maturity Stage Discrimination of Camellia oleifera fruit using visible and near-infrared hyperspectral imaging. Molecules, 2022 MDPI, v. 27, n. 19, p. 6318. JIMÉNEZ-CARVELO, A. M. et al. Alternative data mining/machine learning methods for the analytical evaluation of food quality and authenticity–A review. Food Research International, , 2019, Elsevier, v. 122, p. 25–39 JULIAN, T. et al. Intelligent mobile electronic nose system comprising a hybrid polymer-functionalized quartz crystal microbalance sensor array. ACS omega, , ACS Publications, 2020. v. 5, n. 45, p. 29492–29503. LI, D. et al. A novel headspace integrated E-nose and its application in discrimination of Chinese medical herbs. Sensors and Actuators B: Chemical, 2015, Elsevier, v. 221, p. 556– 563. 10 LI, H. et al. Non-destructive evaluation of pork freshness using a portable electronic nose (E-nose) based on a colorimetric sensor array. Analytical Methods, 2014 Royal Society of Chemistry, v. 6, n. 16, p. 6271–6277. LIPPOLIS, V. et al. Screening of deoxynivalenol contamination in durum wheat by MOS-based electronic nose and identification of the relevant pattern of volatile compounds. Food Control, 2014, Elsevier, v. 37, p. 263–271. LIU, T. et al. A data-driven meat freshness monitoring and evaluation method using rapid centroid estimation and hidden Markov models. Sensors and Actuators B: Chemical,2020 Elsevier, v. 311, p. 127868. LIU, T. et al. A novel multi-odour identification by electronic nose using non-parametric modelling-based feature extraction and time-series classification. Sensors and Actuators B: Chemical,2019 Elsevier, v. 298, p. 126690. MA, L. et al. A low-cost compact measurement system constructed using a smart electrochemical sensor for the real-time discrimination of fruit ripening. Sensors, MDPI, v. 16, MACÍAS, M. M. et al. A compact and low cost electronic nose for aroma detection. Sensors, Molecular Diversity Preservation International (MDPI),2013 v. 13, n. 5, p. 5528–5541. MATATAGUI, D. et al. Portable low-cost electronic nose based on surface acoustic wave sensors for the detection of BTX vapors in air. Sensors, MDPI,2019 v. 19, n. 24, p. 5406. Mimicking the biological olfactory. Procedia Chemistry, Elsevier, v. 1, n. 1, p. 991–994, 2009. MOS-based electronic nose and identification of the relevant pattern of volatile compounds. 2016, n. 4, p. 501. NAKE, A. et al. Outdoor in situ monitoring of volatile emissions from wastewater treatment plants with two portable technologies of electronic noses. Sensors and Actuators B: Chemical,2005 Elsevier, v. 106, n. 1, p. 36–39. NI, K. et al. Multi-element composition and isotopic signatures for the geographical origin discrimination of green tea in China: A case study of Xihu Longjing. Journal of Food Composition and Analysis, 2018 Elsevier, v. 67, p. 104–109. NICOLAI, B. M. et al. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest biology and technology,2007 Elsevier, v. 46, n. 2, p. 99–118 OLIVEIRA, G. A. et al. Comparison of NIRS approach for prediction of internal quality traits in three fruit species. Food Chemistry, 2014. Elsevier, v. 143, p. 223–230. PAN, C.-H.; HSIEH, H.-Y.; TANG, K.-T. An analog multilayer perceptron neural network for a portable electronic nose. Sensors, 2013. MDPI, v. 13, n. 1, p. 193–207. PANDISELVAM, R. et al. Recent advancements in NIR spectroscopy for assessing the quality and safety of horticultural products: A comprehensive review. Frontiers in Nutrition, , 2022. Frontiers, v. 9, p. 973457. PAPADOPOULOU, O. S. et al. Sensory and microbiological quality assessment of beef fillets using a portable electronic nose in tandem with support vector machine analysis. Food Research International,2013 Elsevier, v. 50, n. 1, p. 241–249. PHUKKAPHAN, N. et al. The application of gas sensor array based electronic nose for milk spoilage detection. In: IEEE. 2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST), 2021 [S.l.: s.n.]. p. 273–276. FOOD Quality, Safety and Technology. [S.l.: s.n.], 2013. p. 77–87. 11 QIU, S.; WANG, J.; GAO, L. Qualification and quantisation of processed strawberry juice based on electronic nose and tongue. LWT-Food Science and Technology, 2015. Elsevier, v. 60,n. 1, p. 115–123. RAHIMZADEH, H. et al. On the feasibility of metal oxide gas sensor based electronic nose software modification to characterize rice ageing during storage. Journal of Food Engineering, 2019. Elsevier, v. 245, p. 1–10. RALISNAWATI, D. et al. Detecting aroma changes of local flavored green tea (Camellia sinensis) using electronic nose. In: IOP PUBLISHING, 1. IOP Conference Series: Earth and Environmental Science. 2018. v. 131, p. 012004. RODRÍGUEZ-MÉNDEZ, M. L. et al. Electronic noses and tongues in wine industry. Frontiers in Bioengineering and Biotechnology, 2016. Frontiers Media SA, v. 4, p. 81 RUSSO, M. et al. Non-destructive flavour evaluation of red onion (Allium cepa L.) Ecotypes: An electronic-nose-based approach. Food Chemistry, 2013 v. 141, n. 2, p. 896–899. I SALUNKHE, R. P.; PATIL, A. A. Image processing for mango ripening stage detection: RGB and HSV method. In: IEEE, 2015 Third International Conference on Image Information Processing (ICIIP). [S.l.: s.n.], 2015. p. 362–365. SANAEIFAR, A. et al. Early detection of contamination and defect in foodstuffs by electronic nose: A review. TrAC Trends in Analytical Chemistry, 2017 v. 97, p. 257–271. SHAH, S. S. A. et al. Towards fruit maturity estimation using NIR spectroscopy. Infrared Physics & Technology, 2020 Elsevier, v. 111, p. 103479. SPINELLE, L. et al. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds. Sensors,2017 v. 17, n. 7, p.100-110. SPRINGER, A. E. Wine authentication: a fingerprinting multiclass strategy to classify red varietals through profound chemometric analysis of volatiles. European Food Research and Technology,2019 v. 245, p. 179–190. TAN, J.; KERR, W. L. Determining degree of roasting in cocoa beans by artificial neural network (ANN)-based electronic nose system and gas chromatography/mass spectrometry (GC/MS). Journal of the Science of Food and Agriculture,2018 Wiley Online Library, v. 98, n. 10, p. 3851–3859. TAN, J.; XU, J. Applications of Electronic Nose (e-Nose) and Electronic Tongue (e-Tongue) in Food Quality-Related Properties Determination: A Review. Artificial Intelligence in Agriculture, 2020, v. 4, p. 104–115. TANG, K.-T.; LIN, Y. S.; SHYU, J. M. A Local Weighted Nearest Neighbor Algorithm and a Weighted and Constrained Least-Squared Method for Mixed Odor Analysis by Electronic Nose Systems. Sensors, 2010 v. 10, n. 11, p. 10467–10483. 12 TANG, K.-T. et al. Development of a portable electronic nose system for the detection and classification of fruity odors. Sensors,2010 v. 10, n. 10, p. 9179–9193. THEPUDOM, T.; SRICHAROENCHAI, N.; KERDCHAROEN, T. Classification of instant coffee odors by electronic nose toward quality control of production. In: 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. [S.l.: s.n.], 2013. p. 1–4. TIMSORN, K. et al. Discrimination of chicken freshness using electronic nose combined with PCA and ANN. In: IEEE. 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). [S.l.: s.n.], 2014. p. 1–4. TSENG, T.-S. et al. Utilization of a gas-sensing system to discriminate smell and to monitor fermentation during the manufacture of oolong tea leaves. Micromachines, , 2021. MDPI, v. 12, n. 1,p. 93 TYAGI, P. et al. E-nose: a low-cost fruit ripeness monitoring system. Journal of Agricultural Engineering, , 2023. v. 54, n. 1,p. 100. VIEIRA, G. S. et al. Determination of anthocyanins and non-anthocyanin polyphenols by ultra performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI– MS) in jussara (Euterpe edulis) extracts. Journal of Food Science and Technology, 2017. Springer, v. 54, p. 2135–2144. WEI, X.; SHAO, X. et al. Rapid detection of adulterated peony seed oil by electronic nose. Journal of Food Science and Technology, 2018. Springer, v. 55, p. 2152–2159. WEI, X.; ZHANG, Y. et al. Rapid and non-destructive detection of decay in peach fruit at the cold environment using a self-developed handheld electronic-nose system. Food Analytical Methods, , 2018. Springer, v. 11, p. 2990–3004 WEI, Z.; WANG, J.; ZHANG, W. Detecting internal quality of peanuts during storage using electronic nose responses combined with physicochemical methods. Food Chemistry, , 2015. Elsevier, v. 177, p. 89–96. WILSON, A. D. Applications of electronic-nose technologies for noninvasive early detection of plant, animal and human diseases. Chemosensors, 2018. MDPI, v. 6, n. 4, p. 45. WILSON, A. D. Application of electronic-nose technologies and VOC-biomarkers for the noninvasive early diagnosis of gastrointestinal diseases. Sensors, MDPI, v. 18, n. 8, p. 2613. WOJNOWSKI, W. et al. Portable electronic nose based on electrochemical sensors for food quality assessment. Sensors, 2017 MDPI, v. 17, n. 12, p. 2715. WU, Z. et al. Development of a low-cost portable electronic nose for cigarette brands identification. Sensors, 2020, MDPI, v. 20, n. 15, p. 4239. XIAO, Z. et al. Application of machine vision system in food detection. Frontiers in Nutrition, Frontiers, 2022, v. 9, p. 888245. XU, S. et al. Study of the similarity and recognition between volatiles of brown rice plant hoppers and rice stem based on the electronic nose. Computers and Electronics in Agriculture,2018 Elsevier, v. 152, p. 19–25, 2018. 13 XU, S. et al. Visible/near infrared reflection spectrometer and electronic nose data fusion as an accuracy improvement method for portable total soluble solid content detection of orange. Applied Sciences, MDPI, v. 9, n. 18, p. 3761, 2019. YAN, J. et al. Electronic nose feature extraction methods: A review. Sensors, MDPI, v. 15, n. 11, p. 27804–27831, 2015. YAN, M. et al. Humidity compensation based on power-law response for MOS sensorsto VOCs. Sensors and Actuators B: Chemical, Elsevier, v. 334, p. 129601, 2021. YIN, X. et al. Temperature modulated gassensing E-nose system for low-cost and fast detection. IEEE Sensors Journal, IEEE, v. 16, n. 2, p. 464–474, 2016. ZHANG, W. et al. A study on soluble solids content assessment using electronic nose: persimmon fruit picked on different dates. International Journal of Food Properties, Taylor & Francis, v. 19, n. 1, p. 53–62, 2016. ZHANG, X. et al. The qualitative and quantitative assessment of xiaochaihu granules based on e-eye, e-nose, e-tongue and chemometrics. Journal of Pharmaceutical and Biomedical Analysis, Elsevier, v. 205, p. 114298, 2021. ZHAO, Z. et al. A novel spectrum analysis technique for odor sensing in optical electronic nose. Sensors and Actuators B: Chemical, Elsevier, v. 222, p. 769–779, 2016. WANG,B.,CHEN,Z.,GAO,J.,FU,L.,SU,B.,CUI,Y., The acquisition of kiwifruit feature point coordinates imabased on the spatial coordinates of ge. IFIPAdv. Inf 2016 p. 12-16, TU,S.,XUE,Y.,ZHENG,C.,QI,Y.,WAN,H.,MAO,L., Detection of passion fruit sand maturity classification using Red-Green-Blue Depthimages.Biosyst.Eng. 2018 v.175, p.156–167. WANG,Z.,WALSH,K.B.,VERMA,B., On-tree mango fruit size estimation usingRGB-D images.Sensors 2017 v.17,p. 2738, GENÉ-MOLA,J.,VILAPLANA,V.,ROSELL-POLO,J.R.,MORROS,J.R.,RUIZ- HIDALGO,J.,GREGORIO, E..Multi-modal deep learning for Fuji apple detection using RGB- Dcameras andtheirradiometriccapabilities.Comput.Electron.Agric. 2019 v. 162,p. 689–698. , MILELLA,A.,MARANI,R.,PETITTI,A.,REINA,GIn-field high through put grapevine phenotyping withaconsumer-gradedepthcamera.Comput.Electron.Agric. .,2019. v. 156, p. 293– 306 ARAD,B.,BALENDONCK,J.,BARTH,R.,BEM.,SHAHAR,O.,EDAN,Y.,HELLSTRÖM,T.,HE MMING,J., KURTSER,P.,RINGDAHL,O.,TIELEN,T.,VANTUIJL,B. .Development of a sweet Pepper harvesting robot.J.F.Robot. 2010. p.1–13 LIU, ZHIZHE, LUO SUN, AND QIAN ZHANG.. “High Similarity Image Recognition a Classification Algorithm Based on Convolutional Neural Network.” Computational Intelligence and Neuroscience 2022. YAHUI, L.; XIAOBO, Z.; TINGTING, S.; JIYONG, S.; JIEWEN, Z.; HOLMES, M. Determination of geographical origin and anthocyanin content of black Goji berry (Lycium ruthenicum Murr.) using near-infrared spectroscopy and chemometrics. Food Anal. Methods 2017, v. 10, p. 1034–1044. [CrossRef] 14 STUPPNER, S.; MAYR, S.; BEGANOVIC, A.; BE ́C, K.; GRABSKA, J.; AUFSCHNAITER, U.; GROENEVELD, M.; RAINER, M.; JAKSCHITZ, T.; BONN, G.K.; ET AL. Near-infrared spectroscopy as a rapid screening method for the determination of total anthocyanin content in sambucus fructus. Sensors 2020, v. 20,p. 4983. [CrossRef] CUQ, S.; LEMETTER, V.; KLEIBER, D.; LEVASSEUR-GARCIA, C. Assessing macro- (P, K, Ca, Mg) and micronutrient (Mn, Fe, Cu, Zn, B) concentration in vine leaves and grape berries of Vitis vinifera by using near-infrared spectroscopy and chemometrics. Comput. Electron. Agric. 2020, v. 179,p. 105841. [CrossRef] SUMMERSON, V.; VIEJO, C.G.; SZETO, C.; WILKINSON, K.L.; TORRICO, D.D.; PANG, A.; DE BEI, R.; FUENTES, S. Classification of smoke contaminated cabernet sauvignon berries and leaves based on chemical fingerprinting and machine learning algorithms. Sensors 2020, v. 20, p. 5099. [CrossRef] ARSLAN, M.; XIAOBO, Z.; XUETAO, H.; ELRASHEID TAHIR, H.; SHI, J.; KHAN, M.R.; ZAREEF, M. NEAR infrared spectroscopy coupled with chemometric algorithms for predicting chemical components in black goji berries (Lycium ruthenicum Murr.). J. Near Infrared Spectrosc. 2018, v. 26,p. 275–286. [CrossRef] MUSINGARABWI, D.M.; NIEUWOUDT, H.H.; YOUNG, P.R.; EYÉGHÈ-BICKONG, H.A.; VIVIER, M.A. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis. Food Chem. 2016, V. 190, p. 253–262 [CrossRef] [PubMed] TINGTING, S.; XIAOBO, Z.; JIYONG, S.; ZHIHUA, L.; XIAOWEI, H.; YIWEI, X.; WU, C. Determination Geographical Origin and Flavonoids Content of Goji Berry Using Near-Infrared Spectroscopy and Chemometrics. Food Anal. Methods 2016, v. 9, p. 68–79. [CrossRef] REICH, G. Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications. Adv. Drug Deliv. 2005 Rev. 57, p. 1109–1143, [CrossRef] [PubMed] TEIXEIRA DOS SANTOS, C.A.; LOPO, M.; PÁSCOA, R.N.M.J.; LOPES, J.A. A review on the applications of portable near-infrared spectrometers in the agro-food industry. Appl. Spectrosc. 2013, v. 6.(7), p. 1215–1233. [CrossRef] Ozaki, Y., T. GENKAWA, FUTAMI Y. Encyclopedia of Spectroscopy and Spectrometry Near-Infrared Spectroscopy. 3rd ed. Elsevier Ltd. 2016. BROWN, STEVEN, TAULER, R, BEATA WALCZAK, R.. “Comprehensive Chemometrics.” Comprehensive Chemometrics p. 1–4, 2010. FAN J., LEE J. AND Y. LEE, "Image Classification Using Fusion of Multiple Neural Networks," 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Jeju, Korea (South), 2021, p. 1-4, doi: 10.1109/ITC- CSCC52171.2021.9501468. 15 Yan, X.; Xie, Y.; Chen, J.; Yuan, T.; Leng, T.; Chen, Y.; Xie, J.; Yu, Q. NIR Spectrometric Approach for Geographical Origin Identification and Taste Related Compounds Content Prediction of Lushan Yunwu Tea. Foods 2022, v. 11, p. 2976. WANG J, Xiaohong WU Jun ZHENG, Bin WU, Rapid identification of green tea varieties based on FT-NIR spectroscopy and LDA/QR, Food Science and Technology, 2022,v 42. | pt_BR |
dc.subject.cnpq | Ciência e Tecnologia de Alimentos | pt_BR |
Appears in Collections: | Doutorado em Ciência e Tecnologia de Alimentos |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2023 - MARCUS VINICIUS DA SILVA FERREIRA.pdf | 32.58 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.