Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/20015
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Santos Junior, Jailton Ribeiro Dos | - |
dc.date.accessioned | 2025-02-07T16:33:46Z | - |
dc.date.available | 2025-02-07T16:33:46Z | - |
dc.date.issued | 2023-09-05 | - |
dc.identifier.citation | Santos Junior, Jailton Ribeiro Dos. Desenvolvimento e caracterização de filme compósito e sua aplicação na conservação de frutas do maracujazeiro – amarelo (passiflora edulis sims f. Flavicarpa). 2023. 78f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2023. | pt_BR |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/20015 | - |
dc.description.abstract | O maracujá (Passiflora edulis Sims f. flavicarpa DEG) é uma fruta de origem tropical, difundida no Brasil, maior produtor e consumidor. É um fruto climatério que continua seu processo de amadurecimento após destacado da planta. Característico do fruto climatérico, o maracujá apresenta vida útil curta, com problemas pós-colheita, sendo o murchamento e a susceptibilidade ao ataque de microrganismos como os fungos, alguns deles. Mediante a isso, este trabalho teve como objetivo desenvolver compósitos a base de quitosana a serem utilizados como revestimento em frutos de maracujá visando a manutenção da sua qualidade pós-colheita. Para isso, seis soluções filmogênicas foram preparadas usando quitosana (Q) como base polimérica, glicerol como plastificante, cera de carnaúba e resina colofônica como agentes promotores de hidrofobicidade e nanopartículas de óxido de zinco como agente antimicrobiano. Ácido acético e Tween 80 também foram utilizados para facilitar a dissolução e mistura dos componentes. As seis soluções filmogênicas contêm Q a 1,2% p/v, variação da presença de cera (QC) ou resina (QR)a 0,6% m/v e ZnOnano a 0,05% m/v. Os filmes foram produzidos por casting e caracterizados quanto às suas propriedades químicas, mecânicas e ópticas. Soluções contendo cera ou resina, com ou sem a presença de ZnOnano foram aplicadas em frutos do maracujazeiro. Para determinar o efeito no processo de amadurecimento, os frutos foram submetidos a análises de perda de massa, textura, cor, pH, acidez, sólidos solúveis totais, açúcares e índice de perdas pós-colheita. Foram gerados filmes flexíveis, com espessura variando de 85,71 ± 5,35 a 152,86 ± 7,56 μm. Os filmes controle (Q) apresentaram maior transparência, quando comparados aos adicionados de cera ou resina. A adição de ZnOnano aumentou a resistência à tração. Referentes as propriedades ópticas, todos os tratamentos apresentaram baixa ou nenhuma transmissão a luz UV, na região da luz visível (350-800 nm), os filmes de resina apresentaram os menores valores de transmitância. As adições de cera ou resina diminuíram a solubilidade em água e a permeabilidade ao vapor d’água. Após a caracterização dos filmes, em uma primeira etapa, revestimentos com QC e QR com e sem a presença de ZnOnano foram avaliados e os resultados demonstraram que revestimentos QR foram mais eficazes em proteger os frutos contra a perda de peso e apresentaram melhor aspecto visual, menor perda de frutos por lesões e ataques de microrganismos. Assim, os revestimentos com resina foram selecionados para uma segunda etapa de experimento, onde avaliou-se o efeito do aumento da concentração da resina de 0,6 para 0,8% na formulação dos revestimentos. Esse aumento na concentração propiciou melhor proteção aos frutos contra a perda excessiva de massa e retardaram as alterações físico- químicas relacionadas à maturação (Acidez, pH, sólidos solúveis, firmeza) quando comparados aos frutos sem revestimento. Portanto, revestimentos contendo resina de colofônia proporcionaram os melhores resultados em aplicações pós-colheita para controlar os problemas de armazenamento de frutos do maracujazeiro. | pt_BR |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
dc.subject | Resina | pt_BR |
dc.subject | maracujá | pt_BR |
dc.subject | pós-colheita | pt_BR |
dc.subject | Resin | pt_BR |
dc.subject | passion fruit | pt_BR |
dc.subject | post-harvest | pt_BR |
dc.title | Desenvolvimento e caracterização de filme compósito e sua aplicação na conservação de frutas do maracujazeiro – amarelo (passiflora edulis sims f. Flavicarpa) | pt_BR |
dc.title.alternative | Development and characterization of composite film and its application in the conservation of passion fruit fruits – yellow (passiflora edulis sims f. Flavicarpa) | en |
dc.type | Dissertação | pt_BR |
dc.description.abstractOther | Passion fruit (Passiflora edulis Sims f. flavicarpa DEG) is a fruit of tropical origin, widespread in Brazil, its largest producer and consumer. It is a climacteric fruit that continues its ripening process after being detached from the plant. Characteristic of the climacteric fruit, passion fruit has a short shelf life, with post-harvest problems, with wilting and susceptibility to attack by microorganisms such as fungi, some of them. Therefore, this work aimed to develop chitosan-based composites to be used as a coating on passion fruit to maintain its post-harvest quality. For this, six filmogenic solutions were prepared using chitosan (Q) as polymeric base, glycerol as plasticizer, carnauba wax and rosin as hydrophobicity promoting agents and zinc oxide nanoparticles as antimicrobial agent. Acetic acid and Tween 80 were also used to facilitate dissolution and mixing of the components. The six filmogenic solutions contain Q at 1.2% w/v, variation in the presence of wax (QC) or resin (QR) at 0.6% m/v and ZnOnano at 0.05% m/v. The films were produced by casting and characterized according to their chemical, mechanical and optical properties. Solutions containing wax or resin, with or without the presence of ZnOnano, were applied to passion fruit. To determine the effect on the ripening process, the fruits were submitted to analysis of mass loss, texture, color, pH, acidity, total soluble solids, sugars and post-harvest loss index. Flexible films were generated, with thickness ranging from 85.71 ± 5.35 to 152.86 ± 7.56 μm. The control films (Q) showed greater transparency when compared to those added with wax or resin. The addition of ZnOnano increased the tensile strength. Regarding the optical properties, all treatments showed low or no UV light transmission, in the visible light region (350-800 nm), the resin films showed the lowest transmittance values. Wax or resin additions decreased water solubility and water vapor permeability. After the characterization of the films, in a first step, coatings with QC and QR with and without the presence of ZnOnano were evaluated and the results showed that QR coatings were more effective in protecting the fruits against weight loss and presented a better visual appearance, less fruit loss due to injuries and microorganism attacks. Thus, the resin coatings were selected for a second stage of the experiment, where the effect of increasing the resin concentration from 0.6 to 0.8% on the formulation of the coatings was evaluated. This increase in concentration provided better protection to the fruits against excessive weight loss and delayed the physicochemical changes related to maturation (acidity, pH, soluble solids, firmness) when compared to uncoated fruits. Therefore, rosin-containing coatings provided the best results in postharvest applications to control passion fruit storage problems. | en |
dc.contributor.advisor1 | Cabral, Lourdes Maria Correa | - |
dc.contributor.advisor1ID | https://orcid.org/0000-0003-2513-0381 | pt_BR |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/7249897840870537 | pt_BR |
dc.contributor.advisor-co1 | Tonon, Renata Valeriano | - |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/3777203586166795 | pt_BR |
dc.contributor.advisor-co2 | Soares, Antonio Gomes | - |
dc.contributor.advisor-co2ID | https://orcid.org/0000-0001-5796-2516 | pt_BR |
dc.contributor.advisor-co2Lattes | http://lattes.cnpq.br/1977907459111090 | pt_BR |
dc.contributor.referee1 | Silva, Otniel Freitas | - |
dc.contributor.referee1ID | https://orcid.org/0000-0002-7658-8010 | pt_BR |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/4067206563384738 | pt_BR |
dc.contributor.referee2 | Cabral, Lourdes Maria Correa | - |
dc.contributor.referee2ID | https://orcid.org/0000-0003-2513-0381 | pt_BR |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/7249897840870537 | pt_BR |
dc.contributor.referee3 | Ramos, Andresa Viana | - |
dc.contributor.referee3ID | https://orcid.org/0000-0003-3876-595X | pt_BR |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/6521360661286527 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/7687454728174765 | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Instituto de Tecnologia | pt_BR |
dc.publisher.initials | UFRRJ | pt_BR |
dc.publisher.program | Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos | pt_BR |
dc.relation.references | ABDEEN, Z. I.; EL FARARGY, A. F.; NEGM, N. A. Nanocomposite framework of chitosan/polyvinyl alcohol/ZnO: Preparation, characterization, swelling and antimicrobial evaluation. Journal of Molecular Liquids, v. 250, p. 335–343, 2018. Disponível em: https://doi.org/10.1016/j.molliq.2017.12.032 AGARWAL, S. Major factors affecting the characteristics of starch based biopolymer films. [S. l.]: Elsevier Ltd, 2021. Disponível em: https://doi.org/10.1016/j.eurpolymj.2021.110788 AISYAH, Y.; IRWANDA, L. P.; HARYANI, S.; SAFRIANI, N. Characterization of corn starch-based edible film incorporated with nutmeg oil nanoemulsion. In: 2018, IOP Conference Series: Materials Science and Engineering. : Institute of Physics Publishing, 2018.Disponível em: https://doi.org/10.1088/1757-899X/352/1/012050 ALAMDARI, S.; MIRZAEE, O.; NASIRI JAHROODI, F.; TAFRESHI, M. J.; GHAMSARI, M. S.; SHIK, S. S.; ARA, M. H. M.; LEE, K. Y.; PARK, H. H. Green synthesis of multifunctional ZnO/chitosan nanocomposite film using wild Mentha pulegium extract for packaging applications. Surfaces and Interfaces, v. 34, 2022. Disponível em: https://doi.org/10.1016/j.surfin.2022.102349 ALMEIDA, I. de S. A.; DADAZIO, T. S.; NOGUEIRA, P. E.; DE ANDRADE, S. C. dos R. B.; SUSSAI, J. F.; HAMAMURA, H.; DOMINGUES, R. de N. D.; SCARAMUSSA, A. S. Monitoramento de doenças na cultura do maracujá (Passiflora spp.) Em duas diferentes cultivares submetidas a adubações distintas / Monitoring diseases in the crop of passion fruti (Passiflora spp.) In two different cultivars submitted to different fertilizations. Brazilian Journal of Development, v. 7, n. 9, p. 91224–91233, 2021. Disponível em: https://doi.org/10.34117/bjdv7n9-332 AL-NAAMANI, L.; DOBRETSOV, S.; DUTTA, J. Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innovative Food Science and Emerging Technologies, v. 38, p. 231–237, 2016. Disponível em: https://doi.org/10.1016/j.ifset.2016.10.010 ARAGÜEZ, L.; COLOMBO, A.; BORNEO, R.; AGUIRRE, A. Active packaging from triticale flour films for prolonging storage life of cherry tomato. Food Packaging and Shelf Life, v. 25, 2020. Disponível em: https://doi.org/10.1016/j.fpsl.2020.100520 ASTM D882-18. Método de teste padrão para propriedades de tração de folhas de plástico finas. [s. l.], 2018. Disponível em: https://www.astm.org/d0882-18.html. Acesso em: 23 out. 2022. ASTM E96/E96M. Métodos de teste padrão para determinação gravimétrica da taxa de transmissão de vapor de água de materiais. [s. l.], 2022. Disponível em: https://www.astm.org/e0096_e0096m-22.html. Acesso em: 23 out. 2022. AZADI, A.; RAFIEIAN, F.; SAMI, M.; REZAEI, A. Fabrication, characterization and antimicrobial activity of chitosan/tragacanth gum/polyvinyl alcohol composite films incorporated with cinnamon essential oil nanoemulsion. International Journal of Biological 52 Macromolecules, v. 245, p. 125225, 2023. Disponível em: https://doi.org/10.1016/J.IJBIOMAC.2023.125225. Acesso em: 20 ago. 2023. BALLESTEROS, S.; SALAMANCA, M. C.; SIERRA, C. A.; PALOMEQUE, L. A.; CASTELLANOS, D. A. Determination of changes in physicochemical and sensory characteristics of purple passion fruit with the application of different packaging systems, including an ethylene scavenger additive. Journal of Food Science, v. 86, n. 4, p. 1372–1383, 2021. Disponível em: https://doi.org/10.1111/1750-3841.15673 BARMAN, K.; ASREY, R.; PAL, R. K. Putrescine and carnauba wax pretreatments alleviate chilling injury, enhance shelf life and preserve pomegranate fruit quality during cold storage. Scientia Horticulturae, v. 130, n. 4, p. 795–800, 2011. Disponível em: https://doi.org/10.1016/j.scienta.2011.09.005 BATISTA SILVA, W.; COSME SILVA, G. M.; SANTANA, D. B.; SALVADOR, A. R.; MEDEIROS, D. B.; BELGHITH, I.; DA SILVA, N. M.; CORDEIRO, M. H. M.; MISOBUTSI, G. P. Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chemistry, v. 242, p. 232–238, 2018. Disponível em: https://doi.org/10.1016/j.foodchem.2017.09.052 BHARDWAJ, H.; SUMANA, G.; MARQUETTE, C. A. A label-free ultrasensitive microfluidic surface Plasmon resonance biosensor for Aflatoxin B1 detection using nanoparticles integrated gold chip. Food Chemistry, v. 307, 2020. Disponível em: https://doi.org/10.1016/j.foodchem.2019.125530 BOTREL, N. Pós-colheita de hortaliças. Hortaliças em Revista, p. 1–2, 2017. Disponível em: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1085641. Acesso em: 20 ago. 2023. BRAGANÇA, T. G. Efeito da atmosfera modificada na conservação pós-colheita de frutos do maracujazeiro-amarelo (Passiflora edulis F. Flavicarpa) / Effect of modified atmosphere on post-harvest conservation of yellow passion fruit (Passiflora edulis F. Flavicarpa). Brazilian Journal of Development, v. 7, n. 8, p. 82181–82198, 2021. Disponível em: https://doi.org/10.34117/bjdv7n8-431 CAZÓN, P.; VÁZQUEZ, M.; VELAZQUEZ, G. Composite Films with UV-Barrier Properties Based on Bacterial Cellulose Combined with Chitosan and Poly(vinyl alcohol): Study of Puncture and Water Interaction Properties. Biomacromolecules, v. 20, n. 5, p. 2084–2095, 2019. Disponível em: https://doi.org/10.1021/acs.biomac.9b00317 CHANG, P. R.; JIAN, R.; YU, J.; MA, X. Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chemistry, v. 120, n. 3, p. 736–740, 2010. Disponível em: https://doi.org/10.1016/j.foodchem.2009.11.002 CHEN, J.; LUO, L.; CEN, C.; LIU, Y.; LI, H.; WANG, Y. The nano antibacterial composite film carboxymethyl chitosan/gelatin/nano ZnO improves the mechanical strength of food packaging. International Journal of Biological Macromolecules, v. 220, p. 462–471, 2022. Disponível em: https://doi.org/10.1016/j.ijbiomac.2022.08.005 53 CHI, H.; SONG, S.; LUO, M.; ZHANG, C.; LI, W.; LI, L.; QIN, Y. Effect of PLA nanocomposite films containing bergamot essential oil, TiO 2 nanoparticles, and Ag nanoparticles on shelf life of mangoes. Scientia Horticulturae, v. 249, p. 192–198, 2019. Disponível em: https://doi.org/10.1016/j.scienta.2019.01.059 CHIUMARELLI, M.; HUBINGER, M. D. Stability, solubility, mechanical and barrier properties of cassava starch - Carnauba wax edible coatings to preserve fresh-cut apples. Food Hydrocolloids, v. 28, n. 1, p. 59–67, 2012. Disponível em: https://doi.org/10.1016/j.foodhyd.2011.12.006 COSTA, C. L.; ROCHA, L. S.; AYUMI, M. S. Aplicação de diferentes revestimentos comestíveis na conservação pós-colheita de goiabas (Psidium guajava L.) RESUMOBrazilian Journal of Food Research. [S. l.: s. n.]. CUSHEN, M.; KERRY, J.; MORRIS, M.; CRUZ-ROMERO, M.; CUMMINS, E. Nanotechnologies in the food industry - Recent developments, risks and regulation. [S. l.: s. n.] Disponível em: https://doi.org/10.1016/j.tifs.2011.10.006 DE FREITAS, C. A. S.; DE SOUSA, P. H. M.; SOARES, D. J.; DA SILVA, J. Y. G.; BENJAMIN, S. R.; GUEDES, M. I. F. Carnauba wax uses in food – A review. Food Chemistry, v. 291, p. 38–48, 2019. Disponível em: https://doi.org/10.1016/J.FOODCHEM.2019.03.133. Acesso em: 23 out. 2022. DE MORAES CRIZEL, T.; DE OLIVEIRA RIOS, A.; D. ALVES, V.; BANDARRA, N.; MOLDÃO-MARTINS, M.; HICKMANN FLÔRES, S. Active food packaging prepared with chitosan and olive pomace. Food Hydrocolloids, v. 74, p. 139–150, 2018. Disponível em: https://doi.org/10.1016/j.foodhyd.2017.08.007 DE OLIVEIRA FILHO, J. G.; ALBIERO, B. R.; CIPRIANO, L.; DE OLIVEIRA NOBRE BEZERRA, C. C.; OLDONI, F. C. A.; EGEA, M. B.; DE AZEREDO, H. M. C.; FERREIRA, M. D. Arrowroot starch-based films incorporated with a carnauba wax nanoemulsion, cellulose nanocrystals, and essential oils: a new functional material for food packaging applications. Cellulose, v. 28, n. 10, p. 6499–6511, 2021. Disponível em: https://doi.org/10.1007/s10570-021-03945-0 DHUMAL, C. V.; SARKAR, P. Composite edible films and coatings from food-grade biopolymers. [S. l.]: Springer, 2018. Disponível em: https://doi.org/10.1007/s13197-018- 3402-9 DI GIUSEPPE, F. A.; VOLPE, S.; CAVELLA, S.; MASI, P.; TORRIERI, E. Physical properties of active biopolymer films based on chitosan, sodium caseinate, and rosemary essential oil. Food Packaging and Shelf Life, v. 32, 2022. Disponível em: https://doi.org/10.1016/j.fpsl.2022.100817 DOS SANTOS, F. K. G.; DE OLIVEIRA SILVA, K. N.; XAVIER, T. D. N.; DE LIMA LEITE, R. H.; AROUCHA, E. M. M. Effect of the addition of carnauba wax on physicochemical properties of Chitosan films. In: 2017, Materials Research. : Universidade Federal de Sao Carlos, 2017. p. 485–491.Disponível em: https://doi.org/10.1590/1980-5373- mr-2016-1010 54 DOTTO, G. L.; VIEIRA, M. L. G.; PINTO, L. A. A. Use of chitosan solutions for the microbiological shelf life extension of papaya fruits during storage at room temperature. LWT, v. 64, n. 1, p. 126–130, 2015. Disponível em: https://doi.org/10.1016/j.lwt.2015.05.042 DULTA, K.; KOŞARSOY AĞÇELI, G.; THAKUR, A.; SINGH, S.; CHAUHAN, P.; CHAUHAN, P. K. Development of Alginate-Chitosan Based Coating Enriched with ZnO Nanoparticles for Increasing the Shelf Life of Orange Fruits (Citrus sinensis L.). Journal of Polymers and the Environment, v. 30, n. 8, p. 3293–3306, 2022. Disponível em: https://doi.org/10.1007/s10924-022-02411-7 ESPITIA, P. J. P.; DE FÁTIMA FERREIRA SOARES, N.; TEÓFILO, R. F.; DOS REIS COIMBRA, J. S.; VITOR, D. M.; BATISTA, R. A.; FERREIRA, S. O.; DE ANDRADE, N. J.; MEDEIROS, E. A. A. Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers, v. 94, n. 1, p. 199–208, 2013. Disponível em: https://doi.org/10.1016/J.CARBPOL.2013.01.003. Acesso em: 23 out. 2022. FAKHOURI, F. M.; MARTELLI, S. M.; CAON, T.; VELASCO, J. I.; MEI, L. H. I. Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biology and Technology, v. 109, p. 57–64, 2015. Disponível em: https://doi.org/10.1016/j.postharvbio.2015.05.015 FALEIRO, F. G.; JUNQUEIRA, N. T. V. Coleção 500 Perguntas 500 Respostas O produtor pergunta, a Embrapa responde. [S. l.: s. n.]. FALGUERA, V.; QUINTERO, J. P.; JIMÉNEZ, A.; MUÑOZ, J. A.; IBARZ, A. Edible films and coatings: Structures, active functions and trends in their use. [S. l.: s. n.] Disponível em: https://doi.org/10.1016/j.tifs.2011.02.004 FDA. CFR - Código de Regulamentos Federais Título 21. [s. l.], 2022a. Disponível em: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=182. Acesso em: 23 out. 2022. FDA. CFR - Code of Federal Regulations Title 21. [s. l.], 2022b. Disponível em: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1978. Acesso em: 23 out. 2022. FORTUNATI, E.; GIOVANALE, G.; LUZI, F.; MAZZAGLIA, A.; KENNY, J. M.; TORRE, L.; BALESTRA, G. M. Effective postharvest preservation of kiwifruit and romaine lettuce with a chitosan hydrochloride coating. Coatings, v. 7, n. 11, 2017. Disponível em: https://doi.org/10.3390/coatings7110196 FULZELE, S. V; SATTURWAR, P. M.; DORLE, A. K. Polymerized rosin: novel film forming polymer for drug delivery. p. 175–184, 2002. Disponível em: www.elsevier.com/locate/ijpharm GAILLARD, Y.; MIJA, A.; BURR, A.; DARQUE-CERETTI, E.; FELDER, E.; SBIRRAZZUOLI, N. Green material composites from renewable resources: Polymorphic transitions and phase diagram of beeswax/rosin resin. Thermochimica Acta, v. 521, n. 1–2, p. 90–97, 2011. Disponível em: https://doi.org/10.1016/j.tca.2011.04.010 55 GALUS, S.; GAOUDITZ, M.; KOWALSKA, H.; DEBEAUFORT, F. Effects of candelilla and carnauba wax incorporation on the functional properties of edible sodium caseinate films. International Journal of Molecular Sciences, v. 21, n. 24, p. 1–19, 2020. Disponível em: https://doi.org/10.3390/ijms21249349 GASTI, T.; DIXIT, S.; HIREMANI, V. D.; CHOUGALE, R. B.; MASTI, S. P.; VOOTLA, S. K.; MUDIGOUDRA, B. S. Chitosan/pullulan based films incorporated with clove essential oil loaded chitosan-ZnO hybrid nanoparticles for active food packaging. Carbohydrate Polymers, v. 277, 2022. Disponível em: https://doi.org/10.1016/j.carbpol.2021.118866 GUERREIRO, A. C.; GAGO, C. M. L.; FALEIRO, M. L.; MIGUEL, M. G. C.; ANTUNES, M. D. C. The effect of alginate-based edible coatings enriched with essential oils constituents on Arbutus unedo L. fresh fruit storage. Postharvest Biology and Technology, v. 100, p. 226–233, 2015. Disponível em: https://doi.org/10.1016/j.postharvbio.2014.09.002 GUTIÉRREZ-PACHECO, M. M.; ORTEGA-RAMÍREZ, L. A.; SILVA-ESPINOZA, B. A.; CRUZ-VALENZUELA, M. R.; GONZÁLEZ-AGUILAR, G. A.; LIZARDI-MENDOZA, J.; MIRANDA, R.; AYALA-ZAVALA, J. F. Individual and combined coatings of Chitosan and Carnauba wax with oregano essential oil to avoid water loss and microbial decay of fresh cucumber. Coatings, v. 10, n. 7, 2020. Disponível em: https://doi.org/10.3390/coatings10070614 HAFSA, J.; SMACH, M. ali; BEN KHEDHER, M. R.; CHARFEDDINE, B.; LIMEM, K.; MAJDOUB, H.; ROUATBI, S. Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. LWT, v. 68, p. 356–364, 2016. Disponível em: https://doi.org/10.1016/j.lwt.2015.12.050 HAGHIGHI, H.; BIARD, S.; BIGI, F.; DE LEO, R.; BEDIN, E.; PFEIFER, F.; SIESLER, H. W.; LICCIARDELLO, F.; PULVIRENTI, A. Comprehensive characterization of active chitosan-gelatin blend films enriched with different essential oils. Food Hydrocolloids, v. 95, p. 33–42, 2019. Disponível em: https://doi.org/10.1016/j.foodhyd.2019.04.019 HAJJI, S.; SALEM, R. B. S. Ben; HAMDI, M.; JELLOULI, K.; AYADI, W.; NASRI, M.; BOUFI, S. Nanocomposite films based on chitosan–poly(vinyl alcohol) and silver nanoparticles with high antibacterial and antioxidant activities. Process Safety and Environmental Protection, v. 111, p. 112–121, 2017. Disponível em: https://doi.org/10.1016/j.psep.2017.06.018 HAN LYN, F.; CHIN PING, T.; ZAWAWI, R. M.; NUR HANANI, Z. A. Effect of sonication time and heat treatment on the structural and physical properties of chitosan/graphene oxide nanocomposite films. Food Packaging and Shelf Life, v. 28, 2021. Disponível em: https://doi.org/10.1016/j.fpsl.2021.100663 HANDFORD, C. E.; DEAN, M.; HENCHION, M.; SPENCE, M.; ELLIOTT, C. T.; CAMPBELL, K. Implications of nanotechnology for the agri-food industry: Opportunities, benefits and risks. Trends in Food Science & Technology, v. 40, n. 2, p. 226–241, 2014. Disponível em: https://doi.org/10.1016/J.TIFS.2014.09.007. Acesso em: 9 ago. 2023. HARUNA, M. H.; WANG, Y.; PANG, J. Konjac glucomannan-based composite films fabricated in the presence of carnauba wax emulsion: hydrophobicity, mechanical and 56 microstructural properties evaluation. Journal of Food Science and Technology, v. 56, n. 11, p. 5138–5145, 2019. Disponível em: https://doi.org/10.1007/s13197-019-03932-1 HASSAN, B.; CHATHA, S. A. S.; HUSSAIN, A. I.; ZIA, K. M.; AKHTAR, N. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, v. 109, p. 1095–1107, 2018. Disponível em: https://doi.org/10.1016/j.ijbiomac.2017.11.097 HONG, K.; XIE, J.; ZHANG, L.; SUN, D.; GONG, D. Effects of chitosan coating on postharvest life and quality of guava (Psidium guajava L.) fruit during cold storage. Scientia Horticulturae, v. 144, p. 172–178, 2012. Disponível em: https://doi.org/10.1016/j.scienta.2012.07.002 ISO 750. ISO - ISO 750:1998 - Fruit and vegetable products — Determination of titratable acidity. [s. l.], 1998. Disponível em: https://www.iso.org/standard/22569.html. Acesso em: 23 out. 2022. ISO 1842. ISO - ISO 1842:1991 - Fruit and vegetable products — Determination of pH. [s. l.], 1991. Disponível em: https://www.iso.org/standard/6500.html. Acesso em: 23 out. 2022. ISO 2173. ISO - ISO 2173:1978 - Fruit and vegetable products — Determination of soluble solids content — Refractometric method. [s. l.], 1978. Disponível em: https://www.iso.org/standard/6970.html. Acesso em: 23 out. 2022. JOSÉ CAMPOS, A. DE; MANOEL, L.; RAFAEL DAMATTO JÚNIOR, E.; LOPES VIEITES, R.; LEONEL, S.; MARTA EVANGELISTA, R. TRATAMENTO HIDROTÉRMICO NA MANUTENÇÃO DA QUALIDADE PÓS-COLHEITA DE MARACUJÁ-AMARELO 1. Rev. Bras. Frutic., Jaboticabal-SP, n. 3, p. 383–385, 2005. KALIA, A.; KAUR, M.; SHAMI, A.; KAUR JAWANDHA, S.; ALGHUTHAYMI, M. A.; THAKUR, A.; ABD-ELSALAM, K. A. Nettle-Leaf Extract Derived ZnO/CuO Nanoparticle- Biopolymer-Based Antioxidant and Antimicrobial Nanocomposite Packaging Films and Their Impact on Extending the Post-Harvest Shelf Life of Guava Fruit. 2021. Disponível em: https://doi.org/10.3390/biom KOUHI, M.; PRABHAKARAN, M. P.; RAMAKRISHNA, S. Edible polymers: An insight into its application in food, biomedicine and cosmetics. Trends in Food Science and Technology, v. 103, p. 248–263, 2020. Disponível em: https://doi.org/10.1016/j.tifs.2020.05.025 KOWALCZYK, D.; GUSTAW, W.; ZIEBA, E.; LISIECKI, S.; STADNIK, J.; BARANIAK, B. Microstructure and functional properties of sorbitol-plasticized pea protein isolate emulsion films: Effect of lipid type and concentration. Food Hydrocolloids, v. 60, p. 353– 363, 2016. Disponível em: https://doi.org/10.1016/j.foodhyd.2016.04.006 KRAŚNIEWSKA, K.; GALUS, S.; GNIEWOSZ, M. Biopolymers‐based materials containing silver nanoparticles as active packaging for food applications–A review. [S. l.]: MDPI AG, 2020. Disponível em: https://doi.org/10.3390/ijms21030698 57 KUMAR, S.; MUKHERJEE, A.; DUTTA, J. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. [S. l.]: Elsevier Ltd, 2020. Disponível em: https://doi.org/10.1016/j.tifs.2020.01.002 KUMARIHAMI, H. M. P. C.; KIM, Y. H.; KWACK, Y. B.; KIM, J.; KIM, J. G. Application of chitosan as edible coating to enhance storability and fruit quality of Kiwifruit: A Review. Scientia Horticulturae, v. 292, 2022. Disponível em: https://doi.org/10.1016/j.scienta.2021.110647 LI, H.; LI, W.; ZHANG, J.; XIE, G.; XIONG, T.; XU, H. Preparation and characterization of sodium alginate/gelatin/Ag nanocomposite antibacterial film and its application in the preservation of tangerine. Food Packaging and Shelf Life, v. 33, 2022. Disponível em: https://doi.org/10.1016/j.fpsl.2022.100928 LI, J. H.; HONG, R. Y.; LI, M. Y.; LI, H. Z.; ZHENG, Y.; DING, J. Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Progress in Organic Coatings, v. 64, n. 4, p. 504–509, 2009. Disponível em: https://doi.org/10.1016/j.porgcoat.2008.08.013 LIU, Y.; KIM, H. Il. Characterization and antibacterial properties of genipin-crosslinked chitosan/poly(ethylene glycol)/ZnO/Ag nanocomposites. Carbohydrate Polymers, v. 89, n. 1, p. 111–116, 2012. Disponível em: https://doi.org/10.1016/j.carbpol.2012.02.058 LIU, Z.; DU, M.; LIU, H.; ZHANG, K.; XU, X.; LIU, K.; TU, J.; LIU, Q. Chitosan films incorporating litchi peel extract and titanium dioxide nanoparticles and their application as coatings on watercored apples. Progress in Organic Coatings, v. 151, 2021. Disponível em: https://doi.org/10.1016/j.porgcoat.2020.106103 MAHFOUDHI, N.; HAMDI, S. Use of Almond Gum and Gum Arabic as Novel Edible Coating to Delay Postharvest Ripening and to Maintain Sweet Cherry (Prunus avium) Quality during Storage. Journal of Food Processing and Preservation, v. 39, n. 6, p. 1499–1508, 2015. Disponível em: https://doi.org/10.1111/JFPP.12369. Acesso em: 24 jul. 2023. MANDAOGADE, P. M.; SATTURWAR, P. M.; FULZELE, S. V; GOGTE, B. B.; DORLE, A. K. Rosin derivatives: novel film forming materials for controlled drug delivery a a aReactive & Functional Polymers. [S. l.: s. n.]. Disponível em: www.elsevier.com/locate/react. MARANGONI JÚNIOR, L.; DA SILVA, R. G.; ANJOS, C. A. R.; VIEIRA, R. P.; ALVES, R. M. V. Effect of low concentrations of SiO2 nanoparticles on the physical and chemical properties of sodium alginate-based films. Carbohydrate Polymers, v. 269, 2021. Disponível em: https://doi.org/10.1016/j.carbpol.2021.118286 MOGHIMI, R.; ALIAHMADI, A.; RAFATI, H. Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging. Carbohydrate Polymers, v. 175, p. 241–248, 2017. Disponível em: https://doi.org/10.1016/j.carbpol.2017.07.086 58 MOHAMED, S. A. A.; EL-SAKHAWY, M.; EL-SAKHAWY, M. A. M. Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydrate Polymers, v. 238, 2020. Disponível em: https://doi.org/10.1016/j.carbpol.2020.116178 MOHAMMADI, L.; RAMEZANIAN, A.; TANAKA, F.; TANAKA, F. Impact of Aloe vera gel coating enriched with basil (Ocimum basilicum L.) essential oil on postharvest quality of strawberry fruit. Journal of Food Measurement and Characterization, v. 15, n. 1, p. 353– 362, 2021. Disponível em: https://doi.org/10.1007/s11694-020-00634-7 MOTELICA, L.; FICAI, D.; FICAI, A.; TRUŞCĂ, R. D.; ILIE, C. I.; OPREA, O. C.; ANDRONESCU, E. Innovative antimicrobial chitosan/zno/ag nps/citronella essential oil nanocomposite—potential coating for grapes. Foods, v. 9, n. 12, p. 1–26, 2020. Disponível em: https://doi.org/10.3390/foods9121801 MUSCAT, D.; ADHIKARI, R.; MCKNIGHT, S.; GUO, Q.; ADHIKARI, B. The physicochemical characteristics and hydrophobicity of high amylose starch-glycerol films in the presence of three natural waxes. Journal of Food Engineering, v. 119, n. 2, p. 205–219, 2013. Disponível em: https://doi.org/10.1016/j.jfoodeng.2013.05.033 NAYIK, G. A.; MAJID, I.; KUMAR, V. Developments in Edible films and Coatings for the extension of Shelf Life of Fresh Fruits. American Journal of Nutrition and Food Science, p. 16–20, 2015. Disponível em: https://doi.org/10.12966/ajnfs NGUYEN, V. T.; DANG-THI, M. S.; TRINH, K. S. Antifungal Activity of Gelatin-Tapioca Starch Film and Coating Containing Copper Nanoparticles against Colletotrichum gloeosporioides Causing Anthracnose. Journal of Chemistry, v. 2020, 2020. Disponível em: https://doi.org/10.1155/2020/6667450 NOR, S.; DING, P. Trends and advances in edible biopolymer coating for tropical fruit: A review. Food Research International, v. 134, p. 109208, 2020. Disponível em: https://doi.org/10.1016/J.FOODRES.2020.109208. Acesso em: 20 ago. 2023. NUR FATIN, R. N.; NUR HANANI, Z. A. Physicochemical characterization of kappa- carrageenan (Euchema cottoni) based films incorporated with various plant oils. Carbohydrate Polymers, v. 157, p. 1479–1487, 2017. Disponível em: https://doi.org/10.1016/J.CARBPOL.2016.11.026. Acesso em: 20 ago. 2023. ONIAS, E. A.; TEODOSIO, A. E. M. M.; BOMFIM, M. P.; ROCHA, R. H. C.; LIMA, J. F. de; MEDEIROS, M. L. S. de. Revestimento biodegradável à base de Spirulina platensis na conservação pós-colheita de goiaba Paluma mantidas sob diferentes temperaturas de armazenamento. Revista de Ciências Agrárias, v. 41, n. 3, p. 849–860, 2018. Disponível em: https://doi.org/10.19084/rca17201 PAIDARI, S.; ZAMINDAR, N.; TAHERGORABI, R.; KARGAR, M.; EZZATI, S.; SHIRANI, N.; MUSAVI, S. H. Edible coating and films as promising packaging: a mini review. [S. l.]: Springer, 2021. Disponível em: https://doi.org/10.1007/s11694-021-00979-7 PINHEIRO, N. M. S. Revestimentos com cera de carnaúba incorporados de antimicrobianos em caju (anacardium occidentale l) e goiaba (psidium guajava). 2012. - UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA - MINAS GERAIS, 2012. 59 POVERENOV, E.; ZAITSEV, Y.; ARNON, H.; GRANIT, R.; ALKALAI-TUVIA, S.; PERZELAN, Y.; WEINBERG, T.; FALLIK, E. Effects of a composite chitosan-gelatin edible coating on postharvest quality and storability of red bell peppers. Postharvest Biology and Technology, v. 96, p. 106–109, 2014. Disponível em: https://doi.org/10.1016/j.postharvbio.2014.05.015 PRIYADARSHI, R.; KIM, H. J.; RHIM, J. W. Effect of sulfur nanoparticles on properties of alginate-based films for active food packaging applications. Food Hydrocolloids, v. 110, 2021. Disponível em: https://doi.org/10.1016/j.foodhyd.2020.106155 RAEISI, M.; TABARAEI, A.; HASHEMI, M.; BEHNAMPOUR, N. Effect of sodium alginate coating incorporated with nisin, Cinnamomum zeylanicum, and rosemary essential oils on microbial quality of chicken meat and fate of Listeria monocytogenes during refrigeration. International Journal of Food Microbiology, v. 238, p. 139–145, 2016. Disponível em: https://doi.org/10.1016/j.ijfoodmicro.2016.08.042 RAHMAN, P. M.; MUJEEB, V. M. A.; MURALEEDHARAN, K. Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat. International Journal of Biological Macromolecules, v. 97, p. 382–391, 2017. Disponível em: https://doi.org/10.1016/j.ijbiomac.2017.01.052 REGATTIERI, A. B.; SENA, G. L.; SILVA FILHO, E. A. Preparation and characterization of ternary emulsion chitosan/SDS/hexane. Revista Virtual de Quimica, v. 8, n. 3, p. 622–633, 2016. Disponível em: https://doi.org/10.5935/1984-6835.20160047 RINALDI, M. M.; COSTA, A. M.; FALEIRO, F. G.; JUNQUEIRA, N. T. V. Conservação pós-colheita de frutos de Passiflora setacea DC. submetidos a diferentes sanitizantes e temperaturas de armazenamento. Brazilian Journal of Food Technology, v. 20, n. 0, 2017. Disponível em: https://doi.org/10.1590/1981-6723.4616 RODRIGUES, J. P. Desenvolvimento e caracterização de Biocompósito para uso no tratamento Pós-Colheita de Mamão (Carica Papaya L.). 2022. - UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO, SEROPÈDICA - RJ, 2022. ROMANAZZI, G.; FELIZIANI, E.; SANTINI, M.; LANDI, L. Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharvest Biology and Technology, v. 75, p. 24–27, 2013. Disponível em: https://doi.org/10.1016/j.postharvbio.2012.07.007 ROSA, J. S. da; GODOY, R. L. de O.; OIANO NETO, J.; CAMPOS, R. da S.; MATTA, V. M. da; FREIRE, C. A.; SILVA, A. S. da; SOUZA, R. S. de. Desenvolvimento de um método de análise de vitamina C em alimentos por cromatografa líquida de alta eficiência e exclusão iônica. Ciência e Tecnologia de Alimentos, v. 27, n. 4, p. 837–846, 2007. Disponível em: https://doi.org/10.1590/S0101-20612007000400025. Acesso em: 9 ago. 2023. SAHARAN, V.; SHARMA, G.; YADAV, M.; CHOUDHARY, M. K.; SHARMA, S. S.; PAL, A.; RALIYA, R.; BISWAS, P. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules, v. 75, p. 346–353, 2015. Disponível em: https://doi.org/10.1016/j.ijbiomac.2015.01.027 60 SANI, M.; MALEKI, M.; EGHBALJOO-GHAREHGHESHLAGHI, H.; KHEZERLOU, A.; MOHAMMADIAN, E.; LIU, Q.; JAFARI, S. M. Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films. [S. l.]: Elsevier B.V., 2022. Disponível em: https://doi.org/10.1016/j.cis.2021.102593 SANUJA, S.; AGALYA, A.; UMAPATHY, M. J. Synthesis and characterization of zinc oxide- neem oil-chitosan bionanocomposite for food packaging application. International Journal of Biological Macromolecules, v. 74, p. 76–84, 2015. Disponível em: https://doi.org/10.1016/j.ijbiomac.2014.11.036 SEDAYU, B. B.; CRAN, M. J.; BIGGER, S. W. A Review of Property Enhancement Techniques for Carrageenan-based Films and Coatings. Carbohydrate Polymers, v. 216, p. 287–302, 2019. Disponível em: https://doi.org/10.1016/J.CARBPOL.2019.04.021. Acesso em: 20 ago. 2023. SHANKAR, S.; KHODAEI, D.; LACROIX, M. Effect of chitosan/essential oils/silver nanoparticles composite films packaging and gamma irradiation on shelf life of strawberries. Food Hydrocolloids, v. 117, 2021. Disponível em: https://doi.org/10.1016/j.foodhyd.2021.106750 SILVA, M. S.; ATAÍDE, E. M.; SANTOS, A. K. E.; SOUZA, J. M. A. QUALIDADE DE FRUTOS DE MARACUJAZEIRO AMARELO PRODUZIDOS NA SAFRA E ENTRESSAFRA NO VALE DO SÃO FRANCISCO. Revista Iberoamericana de Tecnología Postcosecha, v. 17, n. 1, p. 41–49, 2016. Disponível em: http://www.redalyc.org/articulo.oa?id=81346341006 SILVESTRE, A. J. D.; GANDINI, A. Rosin: Major Sources, Properties and Applications. In: Monomers, Polymers and Composites from Renewable Resources. [S. l.: s. n.]. p. 67–88. SINGH, M.; SAHAREEN, T. Investigation of cellulosic packets impregnated with silver nanoparticles for enhancing shelf-life of vegetables. LWT, v. 86, p. 116–122, 2017. Disponível em: https://doi.org/10.1016/j.lwt.2017.07.056 SINGH, S.; KHEMARIYA, P.; RAI, A.; RAI, A. C.; KOLEY, T. K.; SINGH, B. Carnauba wax-based edible coating enhances shelf-life and retain quality of eggplant (Solanum melongena) fruits. LWT, v. 74, p. 420–426, 2016. Disponível em: https://doi.org/10.1016/j.lwt.2016.08.004 SODERBERG, T. A.; GREF, R.; HOLM, S.; ELMROS4, T.; HALLMANSS, G. ANTIBACTERIAL ACTIVITY OF ROSIN AND RESIN ACIDS IN VITROScand J Plast Reconstr Hand Surg. [S. l.: s. n.]. SOLIMAN, T. S.; VSHIVKOV, S. A. Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films. Journal of Non-Crystalline Solids, v. 519, 2019. Disponível em: https://doi.org/10.1016/j.jnoncrysol.2019.05.028 SONG, W.; XU, J.; REN, L.; GUO, L.; TONG, J.; WANG, L.; CHANG, Z. Traditional sensory evaluation and bionic electronic nose as innovative tools for the packaging performance evaluation of chitosan film. Polymers, v. 12, n. 10, p. 1–22, 2020. Disponível em: https://doi.org/10.3390/polym12102310 61 SUSMITA DEVI, L.; KALITA, S.; MUKHERJEE, A.; KUMAR, S. Carnauba wax-based composite films and coatings: recent advancement in prolonging postharvest shelf-life of fruits and vegetables. Trends in Food Science & Technology, 2022. Disponível em: https://doi.org/10.1016/j.tifs.2022.09.019 SYAHIDA, N.; FITRY, I.; ZURIYATI, A.; HANANI, N. Effects of palm wax on the physical, mechanical and water barrier properties of fish gelatin films for food packaging application. Food Packaging and Shelf Life, v. 23, 2020. Disponível em: https://doi.org/10.1016/j.fpsl.2019.100437 TUMWESIGYE, K. S.; SOUSA, A. R.; OLIVEIRA, J. C.; SOUSA-GALLAGHER, M. J. Evaluation of novel bitter cassava film for equilibrium modified atmosphere packaging of cherry tomatoes. Food Packaging and Shelf Life, v. 13, p. 1–14, 2017. Disponível em: https://doi.org/10.1016/j.fpsl.2017.04.007 VIEIRA, A. C. F.; DE MATOS FONSECA, J.; MENEZES, N. M. C.; MONTEIRO, A. R.; VALENCIA, G. A. Active coatings based on hydroxypropyl methylcellulose and silver nanoparticles to extend the papaya (Carica papaya L.) shelf life. International Journal of Biological Macromolecules, v. 164, p. 489–498, 2020. Disponível em: https://doi.org/10.1016/j.ijbiomac.2020.07.130 VITAL, A. C. P.; GUERRERO, A.; ORNAGHI, M. G.; KEMPINSKI, E. M. B. C.; SARY, C.; MONTESCHIO, J. de O.; MATUMOTO-PINTRO, P. T.; RIBEIRO, R. P.; DO PRADO, I. N. Quality and sensory acceptability of fish fillet (Oreochromis niloticus) with alginate-based coating containing essential oils. Journal of Food Science and Technology, v. 55, n. 12, p. 4945–4955, 2018. Disponível em: https://doi.org/10.1007/s13197-018-3429-y WANG, H.; GONG, X.; MIAO, Y.; GUO, X.; LIU, C.; FAN, Y. Y.; ZHANG, J.; NIU, B.; LI, W. Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles. Food Chemistry, v. 283, p. 397– 403, 2019. Disponível em: https://doi.org/10.1016/j.foodchem.2019.01.022 WANG, L.; DONG, Y.; MEN, H.; TONG, J.; ZHOU, J. Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocolloids, v. 32, n. 1, p. 35–41, 2013. Disponível em: https://doi.org/10.1016/j.foodhyd.2012.11.034 WU, J.; SUN, Q.; HUANG, H.; DUAN, Y.; XIAO, G.; LE, T. Enhanced physico-mechanical, barrier and antifungal properties of soy protein isolate film by incorporating both plant- sourced cinnamaldehyde and facile synthesized zinc oxide nanosheets. Colloids and Surfaces B: Biointerfaces, v. 180, p. 31–38, 2019. Disponível em: https://doi.org/10.1016/j.colsurfb.2019.04.041 XAVIER, T. D. N.; DE OLIVEIRA, V. R. L.; LEITE, R. H. de L.; AROUCHA, E. M. M.; DOS SANTOS, F. K. G. Characterization of biopolymeric films based on cassava starch, chitosan and carnauba wax. Revista Materia, v. 25, n. 4, p. 1–12, 2020. Disponível em: https://doi.org/10.1590/S1517-707620200004.1166 XIANG, F.; XIA, Y.; WANG, Y.; WANG, Y.; WU, K.; NI, X. Preparation of konjac glucomannan based films reinforced with nanoparticles and its effect on cherry tomatoes 62 preservation. Food Packaging and Shelf Life, v. 29, 2021. Disponível em: https://doi.org/10.1016/j.fpsl.2021.100701 XU, T.; GAO, C. C.; FENG, X.; YANG, Y.; SHEN, X.; TANG, X. Structure, physical and antioxidant properties of chitosan-gum arabic edible films incorporated with cinnamon essential oil. International Journal of Biological Macromolecules, v. 134, p. 230–236, 2019. Disponível em: https://doi.org/10.1016/j.ijbiomac.2019.04.189 YADAV, B. K.; GIDWANI, B.; VYAS, A. Rosin: Recent advances and potential applications in novel drug delivery system. Journal of Bioactive and Compatible Polymers, v. 31, n. 2, p. 111–126, 2016. Disponível em: https://doi.org/10.1177/0883911515601867 YADAV, S.; MEHROTRA, G. K.; DUTTA, P. K. Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chemistry, v. 334, 2021. Disponível em: https://doi.org/10.1016/j.foodchem.2020.127605 YOU, M.; DUAN, X.; LI, X.; LUO, L.; ZHAO, Y.; PAN, H.; GONG, W.; YANG, L.; XIANG, Z.; LI, G. Effect of 1-Methylcyclopropene combined with chitosan-coated film on storage quality of passion fruit. Sustainable Chemistry and Pharmacy, v. 27, 2022. Disponível em: https://doi.org/10.1016/j.scp.2022.100679 YOUSSEF, A. M.; EL-SAYED, S. M.; EL-SAYED, H. S.; SALAMA, H. H.; DUFRESNE, A. Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film. Carbohydrate Polymers, v. 151, p. 9–19, 2016. Disponível em: https://doi.org/10.1016/j.carbpol.2016.05.023 YU, F.; NI, Z.; SHAO, X.; YU, L.; LIU, H.; XU, F.; WANG, H. Differences in Sucrose Metabolism in Peach Fruit Stored at Chilling Stress versus Nonchilling Stress TemperaturesHORTSCIENCE. [S. l.: s. n.]. YUE, T. T.; LI, X.; WANG, X. X.; YAN, X.; YU, M.; MA, J. W.; ZHOU, Y.; RAMAKRISHNA, S.; LONG, Y. Z. Electrospinning of Carboxymethyl Chitosan/Polyoxyethylene Oxide Nanofibers for Fruit Fresh-Keeping. Nanoscale Research Letters, v. 13, 2018. Disponível em: https://doi.org/10.1186/s11671-018-2642-y ZEHRA, A.; WANI, S. M.; BHAT, T. A.; JAN, N.; HUSSAIN, S. Z.; NAIK, H. R. Preparation of a biodegradable chitosan packaging film based on zinc oxide, calcium chloride, nano clay and poly ethylene glycol incorporated with thyme oil for shelf-life prolongation of sweet cherry. International Journal of Biological Macromolecules, v. 217, p. 572–582, 2022. Disponível em: https://doi.org/10.1016/j.ijbiomac.2022.07.013 ZERAIK, M. L.; SERTEYN, D.; DEBY-DUPONT, G.; WAUTERS, J. N.; TITS, M.; YARIWAKE, J. H.; ANGENOT, L.; FRANCK, T. Evaluation of the antioxidant activity of passion fruit (Passiflora edulis and Passiflora alata) extracts on stimulated neutrophils and myeloperoxidase activity assays. Food Chemistry, v. 128, n. 2, p. 259–265, 2011. Disponível em: https://doi.org/10.1016/j.foodchem.2011.03.001 ZHANG, R.; LAN, W.; DING, J.; AHMED, S.; QIN, W.; HE, L.; LIU, Y. Effect of PLA/PBAT antibacterial film on storage quality of passion fruit during the shelf-life. Molecules, v. 24, n. 18, 2019. Disponível em: https://doi.org/10.3390/molecules24183378 63 ZHANG, Z. J.; LI, N.; LI, H. Z.; LI, X. J.; CAO, J. M.; ZHANG, G. P.; HE, D. L. Preparation and characterization of biocomposite chitosan film containing Perilla frutescens (L.) Britt. essential oil. Industrial Crops and Products, v. 112, p. 660–667, 2018. Disponível em: https://doi.org/10.1016/j.indcrop.2017.12.073 ZHONG, Z.; ZHOU, L.; YU, K.; JIANG, F.; XU, J.; ZOU, L.; DU, L.; LIU, W. Effects of Microporous Packaging Combined with Chitosan Coating on the Quality and Physiological Metabolism of Passion Fruit after Harvest. Food and Bioprocess Technology, v. 15, n. 8, p. 1836–1850, 2022. Disponível em: https://doi.org/10.1007/s11947-022-02845-w ZHOU, Y.; ZHONG, Y.; LI, L.; JIANG, K.; GAO, J.; ZHONG, K.; PAN, M.; YAN, B. A multifunctional chitosan-derived conformal coating for the preservation of passion fruit. LWT, v. 163, 2022. Disponível em: https://doi.org/10.1016/j.lwt.2022.113584 ZHU, F. Polysaccharide based films and coatings for food packaging: Effect of added polyphenols. [S. l.]: Elsevier Ltd, 2021. Disponível em: https://doi.org/10.1016/j.foodchem.2021.129871 | pt_BR |
dc.subject.cnpq | Ciência e Tecnologia de Alimentos | pt_BR |
Appears in Collections: | Mestrado em Ciência e Tecnologia de Alimentos |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2023 - Jailton Ribeiro dos Santos Junior.pdf | 1.44 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.