Use este identificador para citar ou linkar para este item: https://rima.ufrrj.br/jspui/handle/20.500.14407/20178
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorTavares, Mayara dos Santos-
dc.date.accessioned2025-02-21T17:38:23Z-
dc.date.available2025-02-21T17:38:23Z-
dc.date.issued2022-12-19-
dc.identifier.citationTAVARES, Mayara dos Santos. Ocorrência de Listeria sp. e Listeria monocytogenes em produtos de pescado prontos para consumo: Correlação com a microbiota acompanhante. 2022. 72 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos, Ciência de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/20178-
dc.description.abstractO consumo de pescado prontos para consumo no Brasil vem aumentando, principalmente devido ao alto valor nutricional e praticidade. Todavia um problema sanitário torna-se evidente, já que alimentos prontos não necessitam de um aquecimento antes do consumo, propiciando casos de listeriose, uma doença causada por Listeria monocytogenes bactéria capaz de crescer sob refrigeração. O objetivo desta pesquisa foi determinar a ocorrência de Listeria sp. e L. monocytogenes em produtos pescado prontos para consumo com pH ≥5,0 e Aa ≥ 0,94, conforme estabelecido pelos padrões microbiológicos para alimentos, assim como correlacionar com a presença da microbiota acompanhante. Foram avaliadas 72 amostras de kani-kama, sendo 3 subunidades do mesmo lote analisados em 3 tempos diferentes e 48 amostras de salmão defumado e fatiado sendo 2 subunidades e dois tempos diferentes, coletados no município do Rio de Janeiro e região metropolitana. As amostras foram examinadas imediatamente após aquisição dos produtos congelados, considerado o dia (zero), e após 7 e 15 dias de armazenamento a 5°C para kani-kama, e por 30 dias para o salmão defumado e fatiado, simulando a possibilidade de armazenamento do produto sob refrigeração a 5°C em sua embalagem original. De 72 amostras de kani-kama, 23,6% e 45,8% testaram positivas para Listeria sp. pelos métodos de cultivo e PCR, respectivamente. Das amostras que apresentaram colônias verde azuladas presuntivas características de Listeria no ágar ALOA, 12,5% correspondiam a bactérias Gram positivas de gêneros interferentes. Com relação a presença de L. monocytogenes 4,2% das amostras de kani-kama foram confirmadas positivas por testes fenotípicos, e 29,2% por qPCR. A contagem mais alta de Listeria sp. em kani kama foi observada na marca kani 1 aos 7 dias de armazenamento a 5°C sendo média de 2 ± 1,1 Log UFC/g. Nenhuma amostra apresentou contaminação com L. monocytogenes acima do limite máximo de 2 Log UFC/g. De 48 amostras de salmão defumado e fatiado 33,3% e 56,2% testaram positivas para Listeria sp pelos métodos de cultivo e PCR, respectivamente. Para L. monocytogenes 10,4% foram confirmadas positivas por testes fenotípicos e 47,9% por qPCR. As contagens de Listeria sp. em salmão foram significativamente maiores após 30 dias de armazenamento (P<0.05), e em duas das marcas comerciais avaliadas o número ultrapassou 2 Log UFC/g. Já para L. monocytogenes com confirmação por qPCR, nenhuma amostra ultrapassou a contagem de 2 Log UFC/g, estando de acordo com os padrões sanitários brasileiros. Como esperado detectou-se população maior de mesófilos aeróbios, psicrotróficos e bactérias láticas no salmão defumado se comparado com kani-kama. Números mais altos de bactérias láticas detectados nas amostras de salmão defumado e fatiado de cerca de 2 Log UFC/g foram muito baixos para exercerem algum tipo de interação com L. monocytogenes. Conclui-se que técnica de PCR mostrou maior sensibilidade para detecção de Listeria sp e L. monocytogenes se comparada com o método tradicional de cultivo. Embora nenhuma amostra de kani-kama ou de salmão defumado e fatiado tenha apresentado números de L. monocytogenes superior a 2 Log UFC/g, observou-se maior número de amostras positivas durante o armazenamento refrigerado comparadas ao tempo zero, indicando que a refrigeração por tempo longo pode representar um risco adicional a sanidade, mesmo para produtos ultra processados como o kani-kama.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectpescado defumadopt_BR
dc.subjectkani-kamapt_BR
dc.subjectpronto para consumopt_BR
dc.subjectbactérias láticas (BAL)pt_BR
dc.subjectListeriapt_BR
dc.subjectsmoked fishpt_BR
dc.subjectkanikamapt_BR
dc.subjectready-to-eatpt_BR
dc.subjectlactic acid bacteria (LAB)pt_BR
dc.subjectListeriapt_BR
dc.titleOcorrência de Listeria sp. e Listeria monocytogenes em produtos de pescado prontos para consumo: correlação com a microbiota acompanhantept_BR
dc.title.alternativeOccurrence of Listeria sp. and Listeria monocytogenes in ready-to-eat fish products: correlation with the background microbiotaen
dc.typeDissertaçãopt_BR
dc.description.abstractOtherThe consumption of ready-to-eat fish has grown significantly in recent years in Brazil, due to its high nutritional value and practicality for consumption. However, a health problem becomes evident, since ready-made products do not require heating before consumption, providing cases of listeriosis, a disease caused by Listeria monocytogenes bacteria capable of growing under refrigeration. . This research aimed to evaluate the incidence of Listeria sp. and L. monocytogenes in ready-to-eat fish products with pH ≥5.0 and Aa ≥ 0.94, as established by the microbiological standards for food, as well as to correlate with the presence of the background microbiota. Seventy-two samples of kani-kama were evaluated, with 3 subunits from the same lot analysed at 3 different times and 48 samples of smoked and sliced salmon, with 2 subunits and two different times, collected in the city of Rio de Janeiro and metropolitan region. The samples were examined immediately after purchasing the frozen products, which was considered the time zero, and after 7 and 15 days of storage at 5°C for kani-kama, and after 30 days for smoked and sliced salmon, simulating the possibility of storing the products under refrigeration in its original packaging. From the 72 kani-kama samples, 23.6% and 45.8% tested positive for Listeria sp. by the culture and PCR methods, respectively. Of the samples that showed presumptive turquoise colonies characteristic of Listeria on ALOA agar, 12.5% corresponded to Gram positive bacteria of interfering genera. Regarding the presence of L. monocytogenes, 4.2% of the kani-kama samples were confirmed positive by phenotypic tests, and 29.2% by qPCR. The highest count of Listeria sp. in kani kama was observed with the brand kani 1 after 7 days of storage at 5°C with an average of 2 ± 1.1 Log CFU/g. No sample showed contamination with L. monocytogenes above the maximum limit of 2 Log CFU/g. From 48 smoked and sliced salmon samples, 33.3% and 56.2% tested positive for Listeria sp by culture and PCR methods, respectively. For L. monocytogenes 10.4% were confirmed positive by phenotypic tests and 47.9% by qPCR. Listeria sp. in salmon were significantly higher after 30 days of storage (P<0.05), and in two of the commercial brands, the number exceeded 2 Log CFU/g. Nevertheless, for L. monocytogenes, no sample exceeded the count of 2 Log CFU/g, which is in accordance with Brazilian health standards. As expected, a larger population of aerobic mesophiles, psychrotrophs and lactic acid bacteria was detected in smoked salmon compared to kani-kama. Although none of these populations exceeded 6 Log CFU/g, the salmon was already sensory compromised. Lactic acid bacteria population was higher in smoked salmon than in kani-kama, reaching ca 2 Log CFU/g, but yet too low to exert any kind of interaction with L. monocytogenes. It was concluded that the PCR technique showed greater sensitivity for the detection of Listeria sp and L. monocytogenes compared to the traditional culture method. Although no sample of kani-kama or smoked salmon showed numbers of L. monocytogenes greater than 2 Log CFU/g, a higher number of positive samples was observed during refrigerated storage compared to time zero, indicating that refrigeration for a long time can pose an additional health threat, even for ultra-processed food like kani-kama.en
dc.contributor.advisor1Luchese, Rosa Helena-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-2059-1368pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7341531211426066pt_BR
dc.contributor.referee1Luchese, Rosa Helena-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-2059-1368pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7341531211426066pt_BR
dc.contributor.referee2Pereira, Karen Signori-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-0521-1582pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/4822892758694707pt_BR
dc.contributor.referee3Oliveira, Gesilene Mendonça de-
dc.contributor.referee3IDhttps://orcid.org/0000-0002-7987-9323pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8045925494960939pt_BR
dc.creator.IDhttps://orcid.org/0000-0002-1430-932Xpt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6167928947728404pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Tecnologiapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospt_BR
dc.relation.referencesABNT - Associação Brasileira de Normas Técnicas. ABNT NBR ISO 11290-1: Microbiologia da cadeia produtiva de alimentos — Método horizontal para a detecção e enumeração de Listeria monocytogenes e de Listeria spp. Parte 1: Método de detecção. Brasil: ABNT, 2020. 38p. ABNT - Associação Brasileira de Normas Técnicas. ABNT NBR ISO 11290-2: Microbiologia da cadeia produtiva de alimentos — Método horizontal para a detecção e enumeração de Listeria monocytogenes e de Listeria spp. Parte 2 Método de enumeração. Brasil: ABNT, 2020. 33p. ABNT - Associação Brasileira de Normas Técnicas. NBR ISO 4833-1:2015 Microbiologia da cadeia produtiva de alimentos – Método horizontal para a enumeração de microrganismos: Parte: 2 Contagem de colônias a 30°C pela técnica de plaqueamento em superfície. Brasil: ABNT, 2015. 13p. AALTO-ARANEDA, M. et al. Processing plant and machinery sanitation and hygiene practices associate with Listeria monocytogenes occurrence in ready-to-eat fish products. Food Microbiology, v. 82, n. September 2018, p. 455–464, 2019. ALFARO, A. et al. Parâmetros de processamento e aceitabilidade de apresuntado elaborado com surimi de pescada- foguete(Macrodon Ancylodon). Brazilian Journal of Food Nutrition, v. 15, p. 259–265, 2004. ANGELIDIS, A. S.; KALAMAKI, M. S.; GEORGIADOU, S. S. Identification of non-Listeria spp. bacterial isolates yielding a β-d-glucosidase-positive phenotype on Agar Listeria according to Ottaviani and Agosti (ALOA). International Journal of Food Microbiology, v. 193, p. 114–129, 2015. ARAUJO, R. et al. Metodologias sensoriais com consumidores em uma abordagem prática: salmão congelado como exemplo. Alimentos: Ciência, Tecnologia e Meio Ambiente, v. 1, p. 215–236, 2020. ARCHER; D. L. The Evolution of FDA’s Policy on Listeria monocytogenes in Ready-to-Eat Foods in the United States. COFS, 2018. ARSLAN, S.; ÖZDEMIR, F. Prevalence and antimicrobial resistance of Listeria spp. in homemade white cheese. Food Control, v. 19, n. 4, p. 360–363, 2008. AYMERICH, M. T. et al. Bacteriocin-producing lactobacilli in Spanish-style fermented sausages: Characterization of bacteriocins. Food Microbiology, v. 17, n. 1, p. 33–45, 2000. AYMERICH, T. et al. Assessment of the bioprotective potential of lactic acid bacteria against Listeria monocytogenes on vacuum-packed cold-smoked salmon stored at 8 °C. Food Microbiology, v. 83, n. April, p. 64–70, 2019. BAKA, M. et al. Critical assessment of the time-to-detection method for accurate estimation of microbial growth parameters. Journal of Food Safety ISSN, p. 14, 2014. 49 BARBOSA, J.; TEIXEIRA, P. Analysis of Alternative Shelf Life-Extending Protocols and. 2022. BEHS, G. Efeito do processamento na composição centesimal e na análise sensorial de salmão selvagem e de cativeiro. 2011.63p. Trabalho de conclusão de curso (Graduação em nutrição) - Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre. BIERNE, H. et al. Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes. Microbes and Infection, v. 9, n. 10, p. 1156–1166, 2007. BIJI, K. B. et al. Biogenic amines in seafood: a review. Journal of Food Science and Technology, v. 53, n. 5, p. 2210–2218, 2016. BOLÍVAR, A. et al. A new expanded modelling approach for investigating the bioprotective capacity of Latilactobacillus sakei CTC494 against Listeria monocytogenes in ready-to-eat fish products. Food Research International, v. 147, 2021. BOULARES, M. et al. Characterisation, identification and technological properties of psychotrophic lactic acid bacteria jfs_385 333..344 originating from tunisian fresh fish. Journal of Food Safety, v. 32, p. 333–344, 2012. BOULARES, M. et al. Anti-Listerial inhibitory lactic acid bacteria in fresh farmed sea bass (Dicentrarchus labrax) fillets during storage at 4 °C under vacuum-packed conditions. Journal of Food Safety, v. 37, n. 3, 2017. BRASIL. Agência Nacional de Vigilância Sanitária. Instrução Normativa no 161, de 1o de julho de 2022. Estabelece os padrões microbiológicos dos alimentos. Diário Oficial da União, Brasília, DF, 2022. BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Portaria no 185, de 13 de maio de 1997, regulamento técnico de identidade e qualidade de peixe fresco (inteiro e eviscerado). Diário Oficial da União, Brasília, DF, 1997. BRILLET, A. et al. Biodiversity of Listeria monocytogenes sensitivity to bacteriocin-producing Carnobacterium strains and application in sterile cold-smoked salmon. Journal of Applied Microbiology, v. 97, p. 1029–1037, 2004. BRILLET, A. et al. Effect of inoculation of Carnobacterium divergens V41, a biopreservative strain against Listeria monocytogenes risk, on the microbiological, chemical and sensory quality of cold-smoked salmon. International Journal of Food Microbiology, v. 104, p. 309– 324, 2005. BUCHANAN;ROBERT et al. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Science Direct, v. 75, p. 1–13, 2017. BUCHRIESER, C. et al. Complete genome sequence of the animal pathogen Listeria ivanovii, which provides insights into host specificities and evolution of the genus Listeria. Journal of Bacteriology, v. 193, n. 23, p. 6787–6788, 2011. CABEDO, L.; PICART I BARROT, L.; TEIXIDÓ I CANELLES, A. Prevalence of Listeria 50 monocytogenes and Salmonella in ready-to-eat food in Catalonia, Spain. Journal of Food Protection, v. 71, n. 4, p. 855–859, 2008. CALO-MATA, P. et al. Current Applications and Future Trends of Lactic Acid Bacteria and their Bacteriocins for the Biopreservation of Aquatic Food Products. Food Bioprocess Technol, v. 1, p. 43–63, 2008. CAMPO-DEAÑO, L.; TOVAR, C. The effect of egg albumen on the viscoelasticity of crab sticks made from Alaska Pollock and Pacific Whiting surimi. Food Hydrocolloids, v. 23, n. 7, p. 1641–1646, 2009. CARVALHO, F.; SOUSA, S.; CABANES, D. How Listeria monocytogenes organizes its surface for virulence. Frontiers in Cellular and Infection Microbiology, v. 4, n. APR, p. 1– 22, 2014. CDC. Listeriosis. CHAILLOU, S. et al. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. International Society for Microbial Ecology, p. 1–14, 2014. CHEN, J. et al. Molecular characteristics and virulence potential of Listeria monocytogenes isolates from Chinese food systems. Food Microbiology, v. 26, n. 1, p. 103–111, 2009. CHEN, R. et al. Pre-growth conditions and strain diversity affect nisin treatment efficacy against Listeria monocytogenes on cold-smoked salmon. International Journal of Food Microbiology, v. 333, n. July, p. 108793, 2020. CORDEIRO, K. S. Micro-organismos indicadores e patogênicos, susceptibilidade à antimicrobianos e histamina em sashimi de salmão (Salmo salar). 2017. CRUZ, C. D. et al. Epidemiological survey of Listeria monocytogenes in a gravlax salmon processing line. Brazilian Journal of Microbiology, v. 39, n. 2, p. 375–383, abr. 2008. CULVER, C., ET AL. Coloring Tecnology for surimi Seafood. American Chemical Society, 2008. DEVER, F.; SCHAFFNER, D.; SLADE, P. Methods for the detection of foodborne listerla monocytogenes in the u.s. Journal of Food Safety, v. 13, p. 263–292, 1993. DIOP, M. et al. Les produits de la mer au Sénégal et le potentiel des bactéries lactiques et des bactériocines pour la conservation. Biotechnol. Agron. Soc. Environ., v. 14, p. 341–350, 2010. EC. Commission regulation (EC) No 1441/2007. Official Journal of the European Union, v. 322, n. 1441, p. 2–29, 2007. ECDC (European Centre for Disease Prevention and Control), EFSA (European Food Safety Authority), and e. (European m. a. ecdc/efsa/ema second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals: Joint Interagency Antimicrobial 51 Consumption and Resistan. EFSA Journal, v. 15, n. 7, 2017. EFSA, E. F. S. A. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU EFSA. Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority, 2018. ESSID, I.; MEDINI, M.; HASSOUNA, M. Technological and safety properties of Lactobacillus plantarum strains isolated from a Tunisian traditional salted meat. Meat Science, v. 81, p. 203–208, 2009. EUMOFA. Eu consumer habits regarding fishery and aquaculture products - annex 1 mapping and analysis of existing studies on consumer habitsEuropeun Market Observatory for fisheries and aquaculture products. [s.l: s.n.]. Disponível em: <https://publications.europa.eu/en/publication-detail/-/publication/a4aa6860-6256-11e7-b2f2- 01aa75ed71a1/language-en/format-PDF>. FAO; WHO. Food control system assessment tool: Introduction and glossary. Food safety and quality series No. 7/1. [s.l: s.n.]. FARBER, . . M.; PETERKIN, . . I. Listeria monocytogenes , a Food-Borne Pathogen. v. 55, n. 3, p. 476–511, 1991. FARBER, J. M. et al. A small outbreak of listeriosis potentially linked to the consumption of imitation crab meat. Letters in Applied Microbiology, v. 31, n. 2, p. 100–104, 2000. FDA. Fish and Fishery Products Hazards and Controls Guidance. Fish and Fishery Products Hazard and Control Guidance Fourth Edition, n. April, p. 1–401, 2011. FDA. Bad Bug Book, Foodborne Pathogenic Microorganisms and Natural Toxins. Second ed. [s.l.] Center for Food Safety and Applied Nutrition (CFSAN) - FDA, 2012. FOGAÇA, F. et al. Caracterização de surimi obtido a partir da carne mecanicamente separada de tilápia do Nilo e elaboração de fishburger. Ciência de Alimentos, v. 36, p. 765–776, 2015a. FOGAÇA, F. H. et al. Restructured products from tilapia industry byproducts: The effects of tapioca starch and washing cycles. Food and Bioproducts Processing, v. 94, n. July, p. 482– 488, 2015b. FRANÇOISE, L. Occurrence and role of lactic acid bacteria in seafood products. Food Microbiology, v. 27, n. 6, p. 698–709, 2010. FUKUDA, Y. Processing technology for walleye pollock: Surimi innovation. Fisheries Science, v. 80, n. 2, p. 205–211, 2014. GAMBARIN, P. et al. Listeria monocytogenes in ready-to-eat seafood and potential Hazards for the consumers. International Journal of Microbiology, v. 2012, 2012. GHORBAN SHIROODI, S. et al. Efficacy of electrolyzed oxidizing water as a pretreatment method for reducing Listeria monocytogenes contamination in cold-smoked Atlantic salmon (Salmo salar). Food Control, v. 60, p. 401–407, 2016. 52 GIMENEZ, B.; DALGAARD, P. Modelling and predicting the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon. Journal of Applied Microbiology, v. 96, p. 96–109, 2004. GONÇALVES, E. et al. Padronização de uma PCR para a autenticação do Salmo salar em pratos da culinária japonesa. Arq. Bras. Med. Vet. Zootec., v. 71, p. 640–646, 2019. GONZÁLEZ, D. et al. Listeria monocytogenes and ready-to-eat seafood in Spain: Study of prevalence and temperatures at retail. Food Microbiology, v. 36, n. 2, p. 374–378, 2013. GRAM, L.; DALGAARD, P. Fish spoilage bacteria - Problems and solutions. Current Opinion in Biotechnology, v. 13, n. 3, p. 262–266, 2002. GUSTAVSSON, J.; CEDERBERG, C.; SONESSON, U. Global food losses and food waste Food and Agriculture Organization of the United Nations. [s.l: s.n.]. HANSEN, L. T.; RØNTVED, S. D.; HUSS, H. H. Microbiological quality and shelf life of cold-smoked salmon from three different processing plants. Food Microbiology, v. 15, n. 2, p. 137–150, 1998. HEIR, E. et al. Organic Acid Salts. Foods, v. 11, 2022. HOEL, S.; VADSTEIN, O.; JAKOBSEN, A. The Significance of Mesophilic Aeromonas spp. in Minimally Processed Ready-to-Eat Seafood. Microorganisms, v. 7, p. 25, 2019. HWANHLEM, N. et al. Application of a nisin Z‐producing Lactococcus lactis subsp. lactis KT2W2L isolated from brackish water for biopreservation in cooked, peeled and ionized tropical shrimps during storage at 8 °C under modified atmosphere packaging. Eur Food Res Technol, 2015. IBRAHIM, F.; VESTERLUND, S. Lactococcus lactis ssp. lactis as protective culture in vacuum-packed raw salmon (Salmo salar). Journal of Aquatic Food Product Technology, p. 22, 2013. ILSI. Achieving continuous improvement in reductions in foodborne listeriosis - A risk-based approach. Journal of Food Protection, v. 68, n. 9, p. 1932–1994, 2005. ISEPPI, R. et al. Characterization of Anti-Listeria monocytogenes Properties of two Bacteriocin-Producing Enterococcus mundtii Isolated from Fresh Fish and Seafood. Current Microbiology, v. 76, n. 9, p. 1010–1019, 2019a. ISEPPI, R. et al. Characterization of Anti‐Listeria monocytogenes Properties of two Bacteriocin‐Producing Enterococcus mundtii Isolated from Fresh Fish and Seafood. Current Microbiology, n. 76, p. 1010–1019, 2019b. JENSEN, N. E. et al. Listeria monocytogenes in bovine mastitis. Possible implication for human health. International Journal of Food Microbiology, v. 32, n. 1–2, p. 209–216, 1996. JEYALETCHUMI, P. et al. Detection of Listeria monocytogenes in foods 1Jeyaletchumi,. 53 International Food Research Journal, v. 17, p. 1–11, 2010. JOFFRAUD, J.-J. et al. Effect of bacterial interactions on the spoilage of cold-smoked salmon. International Journal of Food Microbiology, v. 112, p. 51–61, 2006. JOFFRAUD, J. J. et al. Characterisation of volatile compounds produced by bacteria isolated from the spoilage flora of cold-smoked salmon. International Journal of Food Microbiology, v. 66, n. 3, p. 175–184, 2001. KANG, J. et al. Dynamic model to describe kinetic behavior of Listeria monocytogenes in smoked salmon. Journal of Food Safety, v. 41, n. 5, p. 1–6, 2021. KINOSHITA H. et al. Lactic acid bacterial exopolysaccharides strongly bind histamine and can potentially be used to remove histamine contamination in food. Microbiology, v. 167, n 1, 2021 KNOPE, K.; SLOAN-GARDNER, T. S.; STAFFORD, R. J. Histamine fish poisoning in Australia, 2001 to 2013. Communicable diseases intelligence quarterly report, v. 38, n. 4, p. E285–E293, 2014. LAHIRI, D. et al. Bacteriocin: A natural approach for food safety and food security. Frontiers in Bioengineering and Biotechnology, v. 10, n. October, p. 1–19, 2022. LEE, Y. C. et al. Degradation of histamine by Bacillus polymyxa isolated from salted fish products. Journal of Food and Drug Analysis, v. 23, n. 4, p. 836–844, 2015. LEROI, F. et al. Effect of inoculation with lactic acid bacteria on extending the shelf-life of vacuum-packed cold smoked salmon. International Journal of Food Science and Technology, v. 31, n. 6, p. 497–504, 1996. LEROI, F. et al. Study of microbial ecology of cold-smoked salmon during storage at 8°C. International Journal of Food Microbiology, v. 39, n. 1–2, p. 111–121, 1998. LEROI, F. et al. Research of quality indices for cold-smoked salmon using a stepwise multiple regression of microbiological counts and physico-chemical parameters. Journal of Applied Microbiology, v. 90, p. 578–587, 2001. LEROI, F. Bactéries lactiqueset applications alimentaires. Partie 2 : les produits de la mer. Physiologie, Métabolisme, Génomiques et Applications Industrielles des bactéries lactiques, p. 459–474, 2009. LEROI, F. et al. Selection of bioprotective cultures for preventing cold-smoked salmon spoilage. International Journal of Food Microbiology, v. 213, p. 79–87, 2015. LOMONACO, S.; NUCERA, D.; FILIPELLO, V. The evolution and epidemiology of Listeria monocytogenes in Europe and the United States. Infection, Genetics and Evolution, 2015. LUNDÉN, J. Persistent Listeria monocytogenes contamination in food processing plants. . 2017.60 p. Dissertação (Mestrado em Medicina Veterinária) - Faculdade de Medicina Veterinária, University of Helsinki, Finland, 2017. 54 MAHGOUB, S. A. et al. Identification of Non-Listeria and Presence of Listeria in Processing Line Production of Cold-smoked Salmon. Egyptian Journal of Chemistry, v. 65, n. 7, p. 241– 250, 2022. MARTIN-SANCHEZ, A. et al. Alternatives for Efficient and Sustainable Production of Surimi: A Review. Comprehensive Reviews in Food Science and Food Safety, v. 8, p. 359–374, 2009. MARTINS, E. A.; LEAL GERMANO, P. M. Listeria monocytogenes in ready-to-eat, sliced, cooked ham and salami products, marketed in the city of São Paulo, Brazil: Occurrence, quantification, and serotyping. Food Control, v. 22, n. 2, p. 297–302, 2011. MATLE, I.; MBATHA, K. R.; MADOROBA, E. A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. Onderstepoort Journal of Veterinary Research, v. 87, n. 1, p. 1–20, 2020. MAZZOTTA, A. S. Thermal inactivation of stationary-phase and salt-adapted Listeria monocytogenes during postprocess pasteurization of surimi-based imitation crab meat. Journal of Food Protection, v. 64, n. 4, p. 483–485, 2001. MEDINA, J. R.; GARROTE, R. L. The effect of two cryoprotectant mixtures on frozen surubí surimi. Brazilian Journal of Chemical Engineering, v. 19, p. 419–424, 2002. MINOZZO, M. Processamento e Conservação do Pescado. 2011. MIYASAKI, K. et al. High prevalence, low counts and uncommon serotypes of Listeria monocytogenes in linguiça, a Brazilian fresh pork sausage. Meat Science, p. 523–527, 2009. MORGANO, M. et al. As, Cd, Cr, Pb and Hg in seafood species used for sashimi and evaluation of dietary exposure. Food Control, v. 36, p. 24–29, 2014. NÚÑEZ-MONTERO, K. et al. Listeria costaricensis sp. Nov. International Journal of Systematic and Evolutionary Microbiology, v. 68, n. 3, p. 844–850, 2018. OF, T. H. E. S. In Brief to The State of World Fisheries and Aquaculture 2022. [s.l: s.n.]. PILET, M.; LEROI, F. Applications of protective cultures, bacteriocins and bacteriophages in fresh seafood and seafood products. Protective Cultures, Antimicrobial Metabolites and Bacteriophages for Food and Beverage Biopreservation, p. 324–347, 2011. PRESENZA, L. Desenvolvimento de Fishburguer utilizando salmão do atlântico (salmo salar - linnaeus, 1758): Caracterização microbiológica, físico-química e sensorial. 2019. 63 p. Trabalho de conclusão de curso (Engenharia de pesca) Instituto Federaldo Espirito Santo, Piuma. RAENGPRADUB, S.; WIEDMANN, M.; BOOR, K. J. Comparative analysis of the σB- dependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions. Applied and Environmental Microbiology, v. 74, n. 1, p. 158–171, 2008. 55 RANTSIOU, K. et al. Expression of virulence genes of Listeria monocytogenes in food. Journal of Food Safety, v. 32, n. 2, p. 161–168, 2012. REIS, F. B. et al. Use of Carnobacterium maltaromaticum cultures and hydroalcoholic extract of Lippia sidoides Cham. against Listeria monocytogenes in fish model systems. International Journal of Food Microbiology, v. 146, n. 3, p. 228–234, 2011. REN, S. et al. Bacteriocin from Lacticaseibacillus rhamnosus sp. A5: Isolation, Purification, Characterization, and Antibacterial Evaluation for Sustainable Food Processing. Sustainability (Switzerland), v. 14, n. 15, 2022. RIPPEN, T. .; HACKNEY, C. . Seafood pasteurization: potencial for shelf life extension and control of pathogenes. Food Technology, v. 46, n. 0015–6639, p. 88–90, 1992. RØRVIK, L. M.; YNDESTAD, M.; SKJERVE, E. Growth of Listeria monocytogenes in vacuum-packed, smoked salmon, during storage at 4° C. International Journal of Food Microbiology, v. 14, n. 2, p. 111–117, 1991. ROTARIU, O. et al. Smoked salmon industry practices and their association with Listeria monocytogenes. Food Control, v. 35, n. 1, p. 284–292, 2014. SALES, P.; SALES, V.; OLIVEIRA, E. Avaliação sensorial de duas formulações de hambúrguer de peixe. Revista Brasileira de Produtos Agroindustriais, v. 17, p. 17–23, 2015. SARAOUI, T. et al. Improving simultaneously the quality and safety of cooked and peeled shrimp using a cocktail of bioprotective lactic acid bacteria. International Journal ofFood Microbiology, 2016a. SARAOUI, T. et al. Lactococcus piscium: a psychrotrophic lactic acid bacterium with bioprotective or spoilage activity in food—a review. Journal of Applied Microbiology, v. 121, p. 907–918, 2016b. SHARMA, H. et al. Recent development in the preservation effect of lactic acid bacteria and essential oils on chicken and seafood products. Frontiers in Microbiology, v. 13, n. December, p. 1–17, 2022. SHIN, J. H.; KANG, D. H.; RASCO, B. Effect of different packaging methods and storage temperatures on the growth of Listeria monocytogenes in raw and hot smoked rainbow trout (oncorhynchus mykiss). Journal of Aquatic Food Product Technology, v. 17, n. 2, p. 137– 155, 2008. SILVA, M. Avaliação microbiológica e de indicadores sensoriais de aparas de salmão-do- atlântico (Salmo salar - Linnaeus, 1758). 2011. 42 p. Dissertação (Mestrado em Veterinária e Zootecnia) - Universidade Federal de Góias, Goiânia. SIVERTSVIK, M.; ROSNES, J.; KLEIBERG, G. Effect of Modified Atmosphere Packaging and Superchilled Storage on the Microbial and Sensory Quality of Atlantic Salmon (Salmo salar) Fillets. Journal of Food Science ·, v. 68, p. 1467–1472, 2003. 56 SOMJID, P. et al. Reduced washing cycle for sustainable mackerel (Rastrelliger kanagurta) surimi production: Evaluation of bio-physico-chemical, rheological, and gel-forming properties. Foods, v. 10, n. 11, 2021. SOUZA, A. L. M. DE et al. Histamina e rastreamento de pescado: revisão de literatura. Arquivos do Instituto Biológico, v. 82, n. 0, p. 1–11, 2016. SOUZA, J. et al. Peixe Defumado. Embrapa Informação Tecnológica(Agroindústria Familiar), p. 37, 2007. SPANU, C.; JORDAN, K. Listeria monocytogenes environmental sampling program in ready- to-eat processing facilities: A practical approach. Comprehensive Reviews in Food Science and Food Safety, v. 19, n. 6, p. 2843–2861, 2020. STAMATIS, N.; ARKOUDELOS, J. Quality assessment of Scomber colias japonicus under modified atmosphere and vacuum packaging. Food Control, v. 18, n. 4, p. 292–300, 2007. STESSL, B. et al. Performance testing of six chromogenic ALOA-type media for the detection of Listeria monocytogenes. Journal of Applied Microbiology, v. 106, n. 2, p. 651–659, 2009. STOHR, V. et al. Spoilage potential and sensory profile associated with bacteria isolated from cold-smoked salmon. Food Research International 34, v. 34, p. 797–806, 2001. STUPAR, J. et al. Diversity and antimicrobial activity towards listeria spp. And escherichia coli among lactic acid bacteria isolated from ready-to-eat seafood. Foods, v. 10, n. 2, 2021. SVEINSDOTTIR, K. et al. Application of Quality Index Method (QIM) scheme in shelf-life study of farmed Atlantic salmon (Salmo salar). Journal of Food Science, v. 67, n. 4, p. 1570– 1579, 2002. TABANELLI G. et al. Control of tyramine and histamine accumulation by lactic acid bacteria using bacteriocin forming lactococci. Internacional Journal of Food Microbiology, v.190, 14 23, 2014 TAHIRI, I. T. et al. Comparison of different application strategies of divergicin M35 for inactivation of Listeria monocytogenes in cold-smoked wild salmon. Food Microbiology journal, v. 26, p. 783–793, 2009. TODOROV, S. et al. Caracterização de uma bacteriocina produzida por Lactobacillus sakei R1333 isolada de salmão defumado. Anaeróbio, v. 17, p. 23–31, 2011. VALØ, T.; JAKOBSEN, A. N.; LERFALL, J. The use of atomized purified condensed smoke (PCS) in cold-smoke processing of Atlantic salmon - Effects on quality and microbiological stability of a lightly salted product. Food Control, v. 112, n. December 2019, p. 107155, 2020. VÁZQUEZ, J. A. et al. The Objectives of the Business Intelligence Project | InetSoft Webinar. Clinical Microbiology Reviews, v. 14, n. 3, p. 584–640, 2001. WAN NORHANA, M. N. et al. Prevalence, persistence and control of Salmonella and Listeria 57 in shrimp and shrimp products: A review. Food Control, v. 21, n. 4, p. 343–361, 2010. YOON, K. S. et al. Control of growth and survival of Listeria monocytogenes on smoked salmon by combined potassium lactate and sodium diacetate and freezing stress during refrigeration and frozen storage. Journal of Food Protection, v. 67, n. 11, p. 2465–2471, 2004.pt_BR
dc.subject.cnpqCiência e Tecnologia de Alimentospt_BR
Aparece nas coleções:Mestrado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2022 - Mayara dos Santos Tavares.Pdf2.77 MBAdobe PDFThumbnail
Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.