Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/20179
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChamone, Meiry Ellen Ramos-
dc.date.accessioned2025-02-21T17:54:47Z-
dc.date.available2025-02-21T17:54:47Z-
dc.date.issued2022-11-30-
dc.identifier.citationCHAMONE, Meiry Ellen Ramos. Caracterização físico-química de farinhas de tremoço (Lupinus albus) tratadas por processo aquoso, extrusão e extrusão reativa. 2022. 63 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos). Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/20179-
dc.description.abstractO tremoço branco é uma leguminosa bastante nutritivas com altos teores de proteínas e fibras, sendo a espécie do gênero Lupinus mais aplicada na alimentação humana por possuir menor concentração de fatores antinutricionais. O objetivo deste trabalho foi avaliar o efeito de diversos processos (aquoso, extrusão e extrusão reativa) sob o teor de alcalóides, caracterização físico-química e digestibilidade ín vitro de proteínas de tremoço branco. O processo aquoso reduziu (0,1 g /100 g b.s) significativamente os teores de alcalóides. A composição química variou entre os processos aplicados, com teores entre 34,13–39,29% de proteínas, 9,48–12,77% de extrato etéreo, 9,47–46,91% de fibra alimentar e 1,03–2,62% de cinzas. Os índices de absorção e solubilidade em água apresentaram maior impacto nas amostras desamargadas (processo aquoso), com maior absorção e menor solubilidade entre todas as outras avaliadas. A digestibilidade de proteínas foi melhorada pelo processo aquoso (96,62%) e por extrusão (93,31%), enquanto a extrusão reativa (adicionada de ácido cítrico 2%) reduziu a digestibilidade (79,21%) em relação a amostra in natura (90,53%). A eletroforese confirmou o alto índice de digestibilidade, mantendo apenas a fração da γ-conglutina nas amostras digeridas. Os teores de proteínas solúveis e aminoácidos aromáticos aumentaram durante a digestão, com maior bioacessibilidade de aminoácidos aromáticos nas amostras digeridas. Os processos por extrusão foram ineficientes para redução dos alcalóides, na qual a extrusão reativa apresentou menor valor de digestibilidade in vitro de proteínas, e redução drástica das fibras. O processo aquoso se mostrou como a melhor opção, por reduzir níveis de alcalóides e melhorar a digestão proteica das farinhas.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectProteína vegetalpt_BR
dc.subjectSDS-PAGEpt_BR
dc.subjectFibra alimentarpt_BR
dc.subjectdigestibilidade in vitropt_BR
dc.subjectREXpt_BR
dc.subjectVegetable proteinpt_BR
dc.subjectDietary fiberpt_BR
dc.subjectin vitro digestibilitypt_BR
dc.titleCaracterização físico-química de farinhas de tremoço (Lupinus albus) tratadas por processo aquoso, extrusão e extrusão reativapt_BR
dc.title.alternativePhysicochemical characterization of lupine (Lupinus albus) flours treated by aqueous process, extrusion and reactive extrusionen
dc.typeDissertaçãopt_BR
dc.description.abstractOtherWhite lupine is a very nutritious legume with high levels of protein and fiber, being the species of the genus Lupinus most used in human food because it has a lower concentration of anti- nutritional factors. The objective of this work was to evaluate the effect of different processes (aqueous, extrusion and reactive extrusion) on the alkaloid content, physicochemical characterization and in vitro digestibility of white lupine proteins. The aqueous process (0.1 g /100 g b.s) significantly reduced the alkaloid contents. The chemical composition varied among the applied processes, with contents between 34.13–39.29% of proteins, 9.48–12.77% of ether extract, 9.47–46.91% of dietary fiber and 1.03 –2.62% ash. The indices of absorption and solubility in water had a greater impact on the debittered samples (aqueous process), with greater absorption and lower solubility among all the others evaluated. Protein digestibility was improved by the aqueous process (96.62%) and by extrusion (93.31%), while the reactive extrusion (added of 2% citric acid) reduced digestibility (79.21%) in relation to the sample. in natura (90.53%). Electrophoresis confirmed the high digestibility index, keeping only the γ- conglutin fraction in the digested samples. The contents of soluble proteins and aromatic amino acids increased during digestion, with greater bioaccessibility of aromatic amino acids in the digested samples. The extrusion processes were inefficient to reduce alkaloids, being the reactive extrusion negative for protein digestibility, as well as for fiber reduction. The aqueous process proved to be the best option, as it reduces levels of alkaloids and improves the protein digestion of the flours.en
dc.contributor.advisor1Ascheri, Jose-
dc.contributor.advisor1IDhttps://orcid.org/0000-0001-7449-8815pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1891994321882753pt_BR
dc.contributor.referee1Ascheri, Jose-
dc.contributor.referee1IDhttps://orcid.org/0000-0001-7449-8815pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1891994321882753pt_BR
dc.contributor.referee2Machado, Mariana Teixeira da Costa-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0032469366203941pt_BR
dc.contributor.referee3Silva, Douglas Roberto Guimarães-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/2381932149842462pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/7145886547060322pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Tecnologiapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospt_BR
dc.relation.referencesABD EL-HADY, E. .; HABIBA, R. . Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT - Food Science and Technology, v. 36, n. 3, p. 285–293, 1 maio 2003. ABURTO, J. et al. Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. Journal of Applied Polymer Science, v. 74, n. 6, p. 1440–1451, 7 nov. 1999. AFONSO, J. P. M. Recuperação de proteínas e alcaloides dos meios de adoçamento de Lupinus albus. [s.l.] Universidade Nova de Lisboa, 2020. AGUILAR-ACOSTA, L. et al. Effect of Ultrasound Application on Protein Yield and Fate of Alkaloids during Lupin Alkaline Extraction Process. Biomolecules, v. 10, n. 2, p. 292, 13 fev. 2020. ALAM, M. R. et al. Effect of hot melt extrusion on physical and functional properties of insect based extruded products. Journal of Food Engineering, v. 259, p. 44–51, 1 out. 2019. ALAM, M. S. et al. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. Critical Reviews in Food Science and Nutrition, v. 56, n. 3, p. 445–473, 17 fev. 2016. AOAC. Official Methods of Analysis(18th ed.). Gaithersburg: AOAC International., 2010. ARNOLDI, A. et al. The health benefits of sweet lupin seed flours and isolated proteins. Journal of Functional Foods, v. 18, p. 550–563, out. 2015. ARORA, B. et al. Reactive extrusion: A review of the physicochemical changes in food systems. Innovative Food Science & Emerging Technologies, v. 64, n. June, p. 102429, ago. 2020. ASCHERI, J. L. R.; CARVALHO, C. W. P. Apostila do curso anual em processo de extrusão de alimentos: aspectos tecnológicos para o desenvolvimento e produção de alimentos para consumo humano e animal. Ed., Embrapa Agroindústria de Alimentos, Rio de Janeiro, out, 2022. ASCHERI, J. LUIS R. Perguntas e respostas sobre Extrusão Termoplástica de alimentos. Uma abordagem simplificada. Ed. Atena, Ponta Grossa–PR, (e-book), 2022. https://doi.org/10.22533/at.ed.240221301. AUSTRALIAN GOVERNMENT. The biology of Lupinus L. (lupin or lupine). Abril, p. 66, 2013. BARTKIENE, E. et al. Influence of the addition of lupin sourdough with different lactobacilli on dough properties and bread quality. International Journal of Food Science and Technology, v. 48, n. 12, p. 2613–2620, 2013. BERRIOS, J. D. J.; ASCHERI, J. L. R.; LOSSO, J. N. Extrusion Processing of Dry Beans and Pulses. In: Dry Beans and Pulses Production, Processing and Nutrition.Wiley, 2012. p. 185– 203. BOHN, T. et al. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Critical Reviews in Food Science and Nutrition, v. 58, n. 13, p. 2239–2261, 2 set. 2018. 46 BOSCHIN, G. et al. The fatty acid composition of the oil from Lupinus albus cv. Luxe as affected by environmental and agricultural factors. European Food Research and Technology, v. 225, n. 5–6, p. 769–776, 31 jul. 2007. BOSCHIN, G.; RESTA, D. Natural Products. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. BOUKID, F.; PASQUALONE, A. Lupine (Lupinus spp.) proteins: characteristics, safety and food applications. European Food Research and Technology, v. 248, n. 2, p. 345–356, 13 fev. 2022. BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v. 72, n. 1–2, p. 248–254, 7 maio 1976. BRODKORB, A. et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, v. 14, n. 4, p. 991–1014, 18 abr. 2019. BURGOS-DÍAZ, C. et al. Emulsifying and Foaming Properties of Different Protein Fractions Obtained from a Novel Lupin Variety Alu Prot -CGNA ® ( Lupinus luteus ). Journal of Food Science, v. 81, n. 7, p. C1699–C1706, jul. 2016. CAETANO, G. P. Convivência de tremoço com corda-de-viola e mucuna- preta. UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO”, 2021. CARVAJAL-LARENAS, F. E. et al. Lupinus mutabilis : Composition, Uses, Toxicology, and Debittering. Critical Reviews in Food Science and Nutrition, v. 56, n. 9, p. 1454–1487, 3 jul. 2016. CASTILHO, F.; FONTANARI, G. G.; BATISTUTI, J. P. Avaliação de algumas propriedades funcionais das farinhas de tremoço doce (Lupinus albus) e feijão guandu (Cajanus cajan (L) Millsp) e sua utilização na produção de fiambre. Food Science and Technology, v. 30, n. 1, p. 68–75, 26 fev. 2010. CHEN, Y. et al. Novel blasting extrusion processing improved the physicochemical properties of soluble dietary fiber from soybean residue and in vivo evaluation. Journal of Food Engineering, v. 120, n. 1, p. 1–8, 1 jan. 2014. CHI, H. et al. Effect of acetylation on the properties of corn starch. Food Chemistry, v. 106, n. 3, p. 923–928, fev. 2008. CÓRDOVA‐RAMOS, J. S. et al. Andean lupin ( Lupinus mutabilis Sweet): Processing effects on chemical composition, heat damage, and in vitro protein digestibility. Cereal Chemistry, v. 97, n. 4, p. 827–835, 17 jul. 2020. CORTÉS-AVENDAÑO, P. et al. Profile and Content of Residual Alkaloids in Ten Ecotypes of Lupinus mutabilis Sweet after Aqueous Debittering Process. Plant Foods for Human Nutrition, v. 75, n. 2, p. 184–191, 3 jun. 2020. CREMONEZ, P. A. et al. Tremoço : Manejo e Aplicações. Acta Iguazu, n. January, p. 98–108, 2013. CRISTIAN, J.-M. et al. Effect of Aqueous, Acid, and Alkaline Thermal Treatments on Antinutritional Factors Content and Protein Quality in Lupinus campestris Seed Flour. Journal of Agricultural and Food Chemistry, v. 58, n. 3, p. 1741–1745, 10 fev. 2010. 47 CURIEL, J. A. et al. Exploitation of the nutritional and functional characteristics of traditional Italian legumes: The potential of sourdough fermentation. International Journal of Food Microbiology, v. 196, p. 51–61, 2015. DALBHAGAT, C. G.; MISHRA, H. N. Effects of extrusion process conditions on system parameters; physicochemical properties and cooking characteristics of extruded fortified rice kernels. Journal of Cereal Science, v. 89, p. 102782, 1 set. 2019. DAY, L.; CAKEBREAD, J. A.; LOVEDAY, S. M. Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends in Food Science & Technology, v. 119, p. 428–442, 1 jan. 2022. DU, S. et al. Physicochemical and functional properties of whole legume flour. LWT - Food Science and Technology, v. 55, n. 1, p. 308–313, 1 jan. 2014. DURANTI, M. et al. The major proteins of lupin seed: Characterisation and molecular properties for use as functional and nutraceutical ingredients. Trends in Food Science & Technology, v. 19, n. 12, p. 624–633, dez. 2008. DUST, J. M. et al. Extrusion Conditions Affect Chemical Composition and in Vitro Digestion of Select Food Ingredients. Journal of Agricultural and Food Chemistry, v. 52, n. 10, p. 2989– 2996, 1 maio 2004. E. VILLACRÉS , V. ALLAUCA , E. PERALTA , G. INSUASTI , J. ÁLVAREZ, M. Q. Germination, an Effective Process to Increase the Nutritional Value and Reduce Non-Nutritive Factors of Lupine Grain (Lupinus mutabilis Sweet). International Journal of Food Science and Nutrition Engineering, v. 5, n. 4, p. 163–168, 2015. ERBAS, M. The Effects Of Different Debittering Methods On The Production Of Lupin Bean Snack From Bitter Lupinus Albus L. Seeds. Journal of Food Quality, v. 33, n. 6, p. 742–757, dez. 2010. ERBAŞ, M.; CERTEL, M.; USLU, M. K. Some chemical properties of white lupin seeds (Lupinus albus L.). Food Chemistry, v. 89, n. 3, p. 341–345, 1 fev. 2005. ESTIVI, L. et al. Alkaloid content and taste profile assessed by electronic tongue of Lupinus albus seeds debittered by different methods. Journal of Food Composition and Analysis, v. 114, n. July, p. 104810, dez. 2022a. ESTIVI, L. et al. Alkaloid content and taste profile assessed by electronic tongue of Lupinus albus seeds debittered by different methods. Journal of Food Composition and Analysis, v. 114, p. 104810, 1 dez. 2022b. FAN, J.; MITCHELL, J. R.; BLANSHARD, J. M. V. The effect of sugars on the extrusion of maize grits: I. The role of the glass transition in determining product density and shape. International Journal of Food Science and Technology, v. 31, n. 1, p. 55–65, fev. 1996. FAO. Food and Agriculture Organization US Food and Drug Administration. 2020. FARIDY, J.-C. M. et al. Biological Activities of Chickpea in Human Health (Cicer arietinum L.). A Review. Plant Foods for Human Nutrition, v. 75, n. 2, p. 142–153, 1 jun. 2020. FOLEY, R. C. et al. Analysis of conglutin seed storage proteins across lupin species using transcriptomic, protein and comparative genomic approaches. BMC Plant Biology, v. 15, n. 1, p. 106, 19 dez. 2015. 48 FRICK, K. M. et al. Quinolizidine Alkaloid Biosynthesis in Lupins and Prospects for Grain Quality Improvement. Frontiers in Plant Science, v. 8, n. JANUARY, p. 1–12, 31 jan. 2017. FRITSCH, C.; VOGEL, R. F.; TOELSTEDE, S. Fermentation performance of lactic acid bacteria in different lupin substrates-influence and degradation ability of antinutritives and secondary plant metabolites. Journal of Applied Microbiology, v. 119, n. 4, p. 1075–1088, out. 2015. GALDEANO, M. C. Tecnologias de Texturização de Tecnologias de Texturização de Proteínas Vegetais. Disponível em: <https://www.embrapa.br/en/busca-de-publicacoes/- /publicacao/1141928/tecnologias-de-texturizacao-de-proteinas-vegetais#:~:text=Autoria%3A GALDEANO%2C M. C.,produtos convencionais de origem animal.>. GARCIA, P. S. et al. Improving action of citric acid as compatibiliser in starch/polyester blown films. Industrial Crops and Products, v. 52, p. 305–312, jan. 2014. GHOSHAL, G.; BASU, S.; SHIVHARE, U. S. Solid state fermentation in food processing. International Journal of Food Engineering, v. 8, n. 3, 2012. GLADSTONES, J. S. Lupin as a crop plants. Field Crop, v.23, p. 123-148, 1970. GOODWIN, T. W.; MORTON, R. A. The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochemical Journal, v. 40, n. 5–6, p. 628–632, 1 jan. 1946. GULISANO, A. et al. Genetics and Breeding of Lupinus mutabilis: An Emerging Protein Crop. Frontiers in Plant Science, v. 10, n. October, p. 1–13, 2019. GUTIÉRREZ, T. J.; PAULA GUARÁS, M.; ALVAREZ, V. A. Biopackaging. CRC Press, 2017. GUY, R. Extrusion cooking: Technologies and application. Cambridge: Woodhead Publishing Ltd., 2002. GUZMÁN, T. J. et al. Effect of the acute and chronic administration of Lupinus albus β-conglutin on glycaemia, circulating cholesterol, and genes potentially involved. Biomedicine & Pharmacotherapy, v. 133, n. November 2020, p. 110969, jan. 2021. HAMA, J. R. et al. Indole and quinolizidine alkaloids from blue lupin leach to agricultural drainage water. Science of The Total Environment, v. 834, n. April, p. 155283, ago. 2022. HUR, S. J. et al. In vitro human digestion models for food applications. Food Chemistry, v. 125, n. 1, p. 1–12, 1 mar. 2011. HUYGHE, C. Field Crops Research White lupin ( Lupinus albus L.). Field Crops Research, v. 53, p. 147–160, 1997. INEN. Norma Tecnica Ecuatoriana NTE INEN 2 390: 2004. Leguminosas. Grano desamargado de chocho. Requisitos. Leguminosas. Grano desamargado de chocho. Requisitos. Quinto, Equador, p. 1–12, 2005. JIMÉNEZ-MARTÍNEZ, C. et al. Microstructural changes in Lupinus campestris seed in response to three thermal debittering treatments. Journal of the Science of Food and Agriculture, v. 89, n. 14, p. 2399–2404, 2009. JING, Y.; CHI, Y.-J. Effects of twin-screw extrusion on soluble dietary fibre and physicochemical properties of soybean residue. Food Chemistry, v. 138, n. 2–3, p. 884–889, 1 jun. 2013. 49 KARAMAĆ, M. et al. Phenolic contents and antioxidant capacities of wild and cultivated white lupin (Lupinus albus L.) seeds. Food Chemistry, v. 258, n. October 2017, p. 1–7, 2018. KOHAJDOVÁ, Z.; KAROVIČOVÁ, J.; MAGALA, M. Effect of lentil and bean flours on rheological and baking properties of wheat dough. Chemical Papers, v. 67, n. 4, p. 398–407, 2013. KROC, M. et al. Quantitative and qualitative analysis of alkaloids composition in the seeds of a white lupin (Lupinus albus L.) collection. Genetic Resources and Crop Evolution, v. 64, n. 8, p. 1853–1860, 2017. KURLOVICH, B. . Lupins (Geography, classification, genetic resources and breeding). OY Interna ed. St. Petersburg. St. Petersburg, 2002. LAEMMLI, U. K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970 227:5259, v. 227, n. 5259, p. 680–685, 1970. LAMRABET, M. et al. Phylogenetic and symbiotic diversity of Lupinus albus and L. angustifolius microsymbionts in the Maamora forest, Morocco. Systematic and Applied Microbiology, v. 45, n. 4, p. 126338, jul. 2022. MAGALHÃES, S. C. Q. et al. Alkaloids in the valorization of European Lupinus spp. seeds crop. Industrial Crops and Products, v. 95, p. 286–295, 1 jan. 2017. MANE, S. P. et al. Lupin seed γ-conglutin: Extraction and purification methods - A review. Trends in Food Science & Technology, v. 73, p. 1–11, mar. 2018. MARTINS, A. B.; SANTANA, R. M. C. Effect of carboxylic acids as compatibilizer agent on mechanical properties of thermoplastic starch and polypropylene blends. Carbohydrate Polymers, v. 135, p. 79–85, 2016. MATTILA, P. et al. Nutritional Value of Commercial Protein-Rich Plant Products. Plant Foods for Human Nutrition, v. 73, n. 2, p. 108–115, 1 jun. 2018. MENIS-HENRIQUE, M. E. C. et al. Cereal fiber: extrusion modifications for food industry. Current Opinion in Food Science, v. 33, p. 141–148, 1 jun. 2020. MIANO, A. C.; GARCÍA, J. A.; AUGUSTO, P. E. D. Correlation between morphology, hydration kinetics and mathematical models on Andean lupin (Lupinus mutabilis Sweet) grains. LWT - Food Science and Technology, v. 61, n. 2, p. 290–298, 1 maio 2015. MILOTSKYI, R. et al. Chemical Modification of Plasticized Lignins Using Reactive Extrusion. Frontiers in Chemistry, v. 7, p. 633, 18 set. 2019. MOHAMMED, M. A. et al. Effect of Processing Methods on Alkaloids, Phytate, Phenolics, Antioxidants Activity and Minerals of Newly Developed Lupin ( Lupinus albus L.) Cultivar. Journal of Food Processing and Preservation, v. 41, n. 1, p. e12960, fev. 2017. MOLINA, J. P. [UNESP]. Fracionamento da proteína e estudo termoanalítico das leguminosas: grão de bico (Cicer arietinum), variedade Cíciero e tremoço branco (Lupinus albus L.). Aleph, p. 62 f., 2010. MONTEIRO, M. R. P. et al. Evaluation of the chemical composition, protein quality and digestibility of lupin (Lupinus albus and Lupinus angustifolius). O Mundo da Saúde, v. 38, n. 3, p. 251–259, 30 set. 2014. MONTEIRO, M. R. P.; ALVES, F. D.; SILVA, M. R. Evaluation of technological properties of 50 lupine flour (Lupinus albus and Lupinus angustifolius). Scientific Electronic Archives, v. 13, n. 5, p. 46, 2020. NIKMARAM, N. et al. Production of high quality expanded corn extrudates containing sesame seed using response surface methodology. Quality Assurance and Safety of Crops and Foods, v. 7, n. 5, p. 713–720, 2015. NIKMARAM, N. et al. Effect of extrusion on the anti-nutritional factors of food products: An overview. Food Control, v. 79, p. 62–73, 2017. NOUREDDINI, H.; BYUN, J. Dilute-acid pretreatment of distillers’ grains and corn fiber. Bioresource Technology, v. 101, n. 3, p. 1060–1067, fev. 2010. OLIVATO, J. B. et al. Compatibilisation of starch/poly(butylene adipate co-terephthalate) blends in blown films. International Journal of Food Science and Technology, v. 46, n. 9, p. 1934– 1939, 2011. OLIVEIRA, C. T. Determinação do perfil lipídico e obtenção de extrusados de grãos e farinhas de tremoço branco ( lupinus albus ) obtenção de extrusados de grãos e farinhas de tremoço branco ( lupinus albus ). Universidade Federal de Minas Gerais, 2013. OLIVEIRA, C. T. et al. Scientific Electronic Archives Characterization of the biochemical and lipid profiles of white lupine ( Lupinus albus ) grain and its derivatives. v. 11, n. Id, p. 67–74, 2018. ORTIZ-CRUZ, R. A. et al. Effect of Extrusion Processing Conditions on the Phenolic Compound Content and Antioxidant Capacity of Sorghum (Sorghum bicolor (L.) Moench) Bran. Plant Foods for Human Nutrition, v. 75, n. 2, p. 252–257, 2020. PALANISAMY, M. et al. High moisture extrusion of lupin protein: influence of extrusion parameters on extruder responses and product properties. Journal of the Science of Food and Agriculture, v. 99, n. 5, p. 2175–2185, 30 mar. 2019. PANDIYAN, K. et al. Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production. Renewable Energy, v. 132, p. 723–741, 1 mar. 2019. PICHMONY, E. K. et al. Exploration of physicochemical properties and molecular interactions between cellulose and high-amylose cornstarch during extrusion processing. Current Research in Food Science, v. 4, n. February, p. 588–597, 2021. PIRES, C. V. et al. QUALIDADE NUTRICIONAL E ESCORE QUÍMICO DE AMINOÁCIDOS Pires. Ciênc. Tecnol. Aliment., v. 26, n. 1, p. 179–187, 2006. PLUSTEA, L. et al. Lupin (Lupinus spp.)-Fortified Bread: A Sustainable, Nutritionally, Functionally, and Technologically Valuable Solution for Bakery. Foods, v. 11, n. 14, p. 2067, 12 jul. 2022. PRUSINSKI, J. White lupin (Lupinus albus L.) - Nutritional and health values in human nutrition - A review. Czech Journal of Food Sciences, v. 35, n. 2, p. 95–105, 2017. PRUSIŃSKI, J. Łubin Biały (Lupinus Albus L.) – Historia Udomowienia I Postępu Biologicznego. Zeszyty Problemowe Postępów Nauk Rolniczych, v. 580, n. 580, p. 105–119, 2015. QI, M. et al. Impact of Extrusion Temperature on In Vitro Digestibility and Pasting Properties of 51 Pea Flour. Plant Foods for Human Nutrition, v. 76, n. 1, p. 26–30, 28 mar. 2021. QUIROGA, A. L. B. Dossiê Proteínas FOOD INGREDIENTS BRASIL. Disponível em: <https://revista-fi.com/upload_arquivos/201606/2016060036244001467048775.pdf>. REDIN, M. et al. Plantas de cobertura de solo e agricultura sustentável: espécies, matéria seca e ciclagem de carbono e nitrogênio. In: TIECHER, T. (Ed.). . Manejo e Conservação do solo e da água em pequenas propriedades rurais no sul do Brasil: práticas alternativas de manejo visando a conservação do solo e da água. UFRS ed. Porto Alegre, p. 186, 2016. REDONDO-CUENCA, A. et al. Chemical composition and dietary fibre of yellow and green commercial soybeans (Glycine max). Food Chemistry, v. 101, n. 3, p. 1216–1222, 1 jan. 2007. RIGOLIN, T. R. Modificação Química De Poli(Ácido Láctico) Com Anidrido Maleico Por Processamento Reativo. UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO, 2014. ROBIN, F.; SCHUCHMANN, H. P.; PALZER, S. Dietary fiber in extruded cereals: Limitations and opportunities. Trends in Food Science & Technology, v. 28, n. 1, p. 23–32, 1 nov. 2012. ROMERO RODRÍGUEZ, J. A. et al. Physical Characterization of Maize Grits Expanded Snacks and Changes in the Carotenoid Profile. Plant Foods for Human Nutrition, v. 76, n. 1, p. 68– 75, 2021. RUIZ-LÓPEZ, M. A. et al. Nutritional and bioactive compounds in mexican lupin beans species: A mini-review. Nutrients, v. 11, n. 8, 2019. RYBIN, W. et al. Variability of fat content and fatty acids profiles in seeds of a Polish white lupin (Lupinus albus L.) collection. Genet Resour Crop Evol, v. 65, p. 417–431, 2018. SAHARAN, P. et al. Bio-enrichment of phenolic, flavonoids content and antioxidant activity of commonly used pulses by solid-state fermentation. Journal of Food Measurement and Characterization, v. 14, n. 3, p. 1497–1510, 2020. SANDOVAL-MUÑÍZ, R. DE J. et al. Lupin gamma conglutin protein: effect on Slc2a2, Gck and Pdx-1 gene expression and GLUT2 levels in diabetic rats. Revista Brasileira de Farmacognosia, v. 28, n. 6, p. 716–723, 1 nov. 2018. SANTOS-HERNÁNDEZ, M. et al. Compared digestibility of plant protein isolates by using the INFOGEST digestion protocol. Food research international (Ottawa, Ont.), v. 137, n. August, p. 109708, nov. 2020. SCHINDLER, S. et al. Lactic fermentation to improve the aroma of protein extracts of sweet lupin (Lupinus angustifolius). Food Chemistry, v. 128, n. 2, p. 330–337, 2011. SCHRENK, D. et al. Scientific opinion on the risks for animal and human health related to the presence of quinolizidine alkaloids in feed and food, in particular in lupins and lupin‐derived products. EFSA Journal, v. 17, n. 11, nov. 2019. SHOGREN, R. L. Rapid preparation of starch esters by high temperature/pressure reaction. Carbohydrate Polymers, v. 52, n. 3, p. 319–326, 2003. SMITH, O. B. Extrusion cooking. In New Pro ed. Academic Press. New York.: Technology, Part B, v. 2, 1976. SOARES JÚNIOR, M. S. et al. Desenvolvimento de salgadinhos extrusados a partir de fragmentos de arroz e de feijão. Semina: Ciências Agrárias, v. 32, n. 1, p. 191, 31 mar. 2011. 52 SOLÓRZANO, J. W. V. Obtenção e caracterização de farinha extrudada de diferentes genótipos de sorgo para o desenvolvimento de biscoitos doces. UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO, 2013. ŚWIĘCICKI, W.; KROC, M.; KAMEL, K. Lupins. In: De Ron AM. In: LEGUMES., G. (Ed.). . Handbook of plant breeding. New York: Springer, v. 10, p. 179–218, 2015. TOLEDO, V. C. S. et al. Extrusion cooking of gluten-free whole grain flour blends. Journal of Food Process Engineering, v. 43, n. 2, p. 1–9, 2020. TOMÉ, D. Digestibility issues of vegetable versus animal proteins: Protein and amino acid requirements-functional aspects. Food and Nutrition Bulletin, v. 34, n. 2, p. 272–274, 2013. TOUNSI-HAMMAMI, S. et al. Genetic diversity of rhizobia associated with root nodules of white lupin (Lupinus albus L.) in Tunisian calcareous soils. Systematic and Applied Microbiology, v. 42, n. 4, p. 448–456, jul. 2019. VAN DE NOORT, M. Lupin: An Important Protein and Nutrient Source. In: Sustainable Protein Sources. [s.l.] Elsevier Inc., 2016. p. 165–183. VARGAS-SOLÓRZANO, J. W. et al. Physicochemical properties of expanded extrudates from colored sorghum genotypes. Food Research International, v. 55, p. 37–44, 2014. VILLACRÉS, E. et al. Effect of debittering and solid-state fermentation processes on the nutritional content of lupine (Lupinus mutabilis Sweet). International Journal of Food Science and Technology, v. 55, n. 6, p. 2589–2598, 2020. VILLACRÉS, E.; ÁLVAREZ, J.; ROSELL, C. Effects of two debittering processes on the alkaloid content and quality characteristics of lupin ( <scp> Lupinus mutabilis </scp> Sweet). Journal of the Science of Food and Agriculture, v. 100, n. 5, p. 2166–2175, 30 mar. 2020. VILLARINO, C. B. J. et al. Nutritional, Health, and Technological Functionality of Lupin Flour Addition to Bread and Other Baked Products: Benefits and Challenges. Critical Reviews in Food Science and Nutrition, v. 56, n. 5, p. 835–857, 3 abr. 2016. VON BAER, D.; REIMERDES, E. H.; FELDHEIM, W. Methoden zur Bestimmung der Chinolizidinalkaloide in Lupinus mutabilis - I. Schnellmethoden. Zeitschrift für Lebensmittel- Untersuchung und -Forschung, v. 169, n. 1, p. 27–31, 1979. WANG, S. H. et al. EFEITOS DOS PARÂMETROS DE EXTRUSÃO NA ABSORÇÃO DE ÁGUA E ABSORÇÃO DE GORDURA DE FARINHAS EXTRUSADAS DE TRIGO E SOJA. Alim. Nutr, v. 20, n. July 2015, p. 641–647, 2009. WILCZURA, P. et al. COLORIMETRIC VS. CHROMATOGRAPHIC ANALYSES OF ALKALOIDS IN LUPIN SEEDS. Plant Breeding and Seed Science, v. 78, p. 63–67, 2018. XIA, H.; LI, Y.; GAO, Q. Preparation and properties of RS4 citrate sweet potato starch by heat- moisture treatment. Food Hydrocolloids, v. 55, p. 172–178, 1 abr. 2016. YAN, X.; YE, R.; CHEN, Y. Blasting extrusion processing: The increase of soluble dietary fiber content and extraction of soluble-fiber polysaccharides from wheat bran. Food Chemistry, v. 180, p. 106–115, 1 ago. 2015. YAVER, E.; BILGIÇLI, N. Ultrasound-treated lupin (Lupinus albus L.) flour: Protein- and fiber- rich ingredient to improve physical and textural quality of bread with a reduced glycemic index. LWT, v. 148, p. 111767, 1 ago. 2021. 53 YE, J. et al. Synthesis and characterization of citric acid esterified rice starch by reactive extrusion: A new method of producing resistant starch. Food Hydrocolloids, v. 92, n. February, p. 135–142, 2019. ZHENG, Y.; LI, Y. Physicochemical and functional properties of coconut ( Cocos nucifera L) cake dietary fibres: Effects of cellulase hydrolysis, acid treatment and particle size distribution. Food Chemistry, v. 257, p. 135–142, 15 ago. 2018. ZHONG, L. et al. Extrusion cooking increases soluble dietary fibre of lupin seed coat. LWT, v. 99, p. 547–554, 1 jan. 2019.pt_BR
dc.subject.cnpqCiência e Tecnologia de Alimentospt_BR
Appears in Collections:Mestrado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2023 - Meiry Ellen Ramos Chamone.Pdf1.3 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.