Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/20205
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva, Nelson Meireles da-
dc.date.accessioned2025-02-26T15:07:38Z-
dc.date.available2025-02-26T15:07:38Z-
dc.date.issued2023-11-07-
dc.identifier.citationSILVA, Nelson Meireles. Diversidade genética de parasitos do gênero haemoproteus em aves selvagens da Mata Atlântica altimontana e padronização de um protocolo de extração de DNA genômico a partir de sangue armazenado em cartões FTA®. 2023. 122 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2023.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/20205-
dc.description.abstractA Mata Atlântica é um dos biomas mais ricos em biodiversidade do mundo e abriga uma variedade impressionante de aves silvestres. Os parasitos pertencentes ao gênero Haemoproteus são classificados na família Haemoproteidae e têm como vetores insetos hematófagos das famílias Ceratopogonidae e Hippoboscidae. O objetivo deste estudo foi avaliar a diversidade genética de parasitos do gênero Haemoproteus no bioma Mata Atlântica, nos Parques Nacionais do Caparaó (MG), de Itatiaia e da Serra dos Órgãos (RJ), entre 700 e 2500 metros de altitude. Dentre as 586 aves amostradas, 94 foram positivas para Plasmodium/Haemoproteus, sendo obtida uma prevalência geral de 16,04% (n=94/586). Na análise filogenética as sequências obtidas (38) neste estudo agruparam-se em 6 clados bem suportados. O clado A foi composto por 10 amostras que se agruparam em clado exclusivo, tendo como grupo irmão Haemoproteus erythrogravidus. No clado B, quatro amostras se agruparam no grupo de Haemoproteus erythrogravidus. No clado C, quatro amostras formaram um grupo exclusivo, tendo como grupo irmão Haemoproteus zosteropis. Um total de 13 amostras se agruparam no clado de Haemoproteus nucleocentralis (clado D), 5 amostras no clado de Haemoproteus paraortalidum (clado E). As linhagens agrupadas no clado B só foram encontradas em Zonotrichia capensis. O clado C foi encontrado somente a 1500 metros de altitude. Com relação aos locais amostrados, H. erythrogravidus só foi encontrado no PN do Caparaó. E não houve ocorrência de Haemoproteus paraortalidum no PN da Serra dos Órgãos. Uma prevalência e diversidade genética relativamente alta em aves silvestres foi observada na região estudada. Através dos resultados obtidos neste estudo, enriquecemos o conhecimento sobre a diversidade global de parasitos do gênero Haemoproteus em aves endêmicas de diferentes espécies que ocorrem em áreas altimontanas da Mata Atlântica do Brasil. A seleção de um método de extração de DNA ideal deve levar em conta fatores como sensibilidade, consistência, rapidez e facilidade de execução. A literatura carece de evidências suficientes para apoiar a escolha de um método específico para extrair DNA de amostras de sangue total de aves. O objetivo deste trabalho foi padronizar um método de extração de DNA genômico a partir de sangue de ave selvagem coletado em FTA® Card. Foram testados 5 protocolos, entre eles: o Kit DNeasy Blood & Tissue (Qiagen), PureLink® Genomic DNA Mini Kit (Invitrogen), Salting Out, Hotshot e Fenol-Clorofórmio. Foi realizada a quantificação por espectrofotometria e fluorimetria, análise da pureza por espectrofotometria, teste de inibição por qPCR e integridade pela eletroforese em gel de agarose. As amostras extraídas através do protocolo do Kit Comercial “PureLink Genomic DNA Mini” apresentaram características visivelmente melhores quanto aos parâmetros avaliados comparada com as demais, obtendo então melhor resultado e maior eficiência. No teste de inibição houve um destaque para o kit da Invitrogen e para o método de Salting out que apresentam média de Cq mais baixas (p-valor 0,0568), contudo o kit apresentou valor mais baixo de desvio padrão. Este estudo fornece base científica para a extração de DNA genômico de alta qualidade a partir de quantidades pequenas de sangue, quando as amostras são armazenadas em cartões FTA®. Isso é particularmente benéfico para a pesquisa com aves, dada a grande variação de tamanhos e pesos entre as espécies. Conclui-se que a padronização de protocolos desempenha um papel fundamental na biologia molecular, uma vez que a extração eficiente de material genético é essencial para o sucesso das análises subsequentes.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectHemosporídeospt_BR
dc.subjectcyt-bpt_BR
dc.subjectavifaunapt_BR
dc.subjectanálise filogenéticapt_BR
dc.subjectHaemosporidianpt_BR
dc.subjectcytBpt_BR
dc.subjectbirdlifept_BR
dc.subjectphylogenetic analysispt_BR
dc.titlePadronização de um protocolo de extração de DNA genômico armazenado em cartões FTA® e diversidade genética de parasitos do gênero haemoproteus em aves selvagens da mata atlântica altimontanapt_BR
dc.title.alternativeGenetic diversity of parasites of the genus haemoproteus in wild birds from the high-altitude Atlantic Forest and standardization of a protocol for genomic DNA extraction from blood stored on FTA® cards.122pen
dc.typeDissertaçãopt_BR
dc.description.abstractOtherThe Atlantic Forest is one of the richest biomes in biodiversity in the world and is home to an impressive variety of wild birds. parasites belonging to the genus Haemoproteus are classified in the family Haemoproteidae and have as vectors hematophagous insects from the families Ceratopogonidae and Hippoboscidae. the objective of this study was to evaluate the genetic diversity of parasites of the genus Haemoproteus in the Atlantic Forest biome, in the Caparaó (MG), Itatiaia and Serra dos Órgãos (RJ) national parks, between 700 and 2500 meters of altitude. among the 586 birds sampled, 94 were positive for plasmodium/Haemoproteus, obtaining an overall prevalence of 16.04% (n=94/586). in the phylogenetic analysis, the sequences obtained in this study were grouped into 6 well-supported clades. clade a was composed of 10 samples that were grouped into an exclusive clade, with Haemoproteus erythrogravidus as its sister group. in clade b, four samples grouped into the Haemoproteus erythrogravidus group. in clade c, four samples formed an exclusive group, with Haemoproteus zosteropis as the sister group. a total of 13 samples grouped into the Haemoproteus nucleocentralis clade (clade d), 5 samples into the Haemoproteus paraortalidum clade (clade e). the lineages grouped in clade b were only found in Zonotrichia capensis. clade c was only found at 1500 meters altitude. regarding the locations sampled, h. erythrogravidus was only found in the Caparaó NP. and there was no occurrence of Haemoproteus paraortalidum in the serra dos Órgãos NP. a relatively high prevalence and genetic diversity in wild birds was observed in the studied region. through the results obtained in this study, we enriched knowledge about the global diversity of parasites of the genus Haemoproteus in endemic birds of different species that occur in highland areas of the Atlantic Forest of Brazil. The selection of an ideal DNA extraction method must take into account factors such as sensitivity, consistency, speed and ease of execution. the literature lacks sufficient evidence to support the choice of a specific method to extract DNA from avian whole blood samples. the objective of this work was to standardize a genomic DNA extraction method. five protocols were tested, including the Dneasy Blood & Tissue Kit (Qiagen), Purelink® Genomic DNA Mini Kit (Invitrogen), Salting Out, Hotshot and Phenolchloroform. and the quantification and verification of the quality of the extracted genetic material was carried out. the samples extracted from the “Purelink Genomic DNA Mini” commercial kit showed visibly better characteristics in terms of the evaluated parameters compared to the others, obtaining better results and greater efficiency. in the inhibition test, the Invitrogen kit and the salting out method stood out, which presented lower mean cq (p-value 0.0568), however the kit presented a lower standard deviation value. this study provides a scientific basis for extracting high-quality genomic DNA from quantities as small as blood when samples are stored on FTA® cards. this is particularly beneficial for bird research, given the wide variation in sizes and weights between species. it is concluded that the standardization of protocols plays a fundamental role in molecular biology, since the efficient extraction of genetic material is essential for the success of subsequent analyses.en
dc.contributor.advisor1Santos, Huarrisson Azevedo-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-8218-3626pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3751609492049306pt_BR
dc.contributor.advisor-co1Massard, Carlos Luiz-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0002-8465-3038pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/7743112049924654pt_BR
dc.contributor.referee1Santos, Huarrisson Azevedo-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-8218-3626pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3751609492049306pt_BR
dc.contributor.referee2Peixoto, Maristela Peckle-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-4208-1430pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8817867478588076pt_BR
dc.contributor.referee3Guedes Junior, Daniel da Silva-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1514734234282622pt_BR
dc.creator.IDhttps://orcid.org/0000-0002-8762-5083pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9819541806009260pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Veterináriapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciências Veterináriaspt_BR
dc.relation.referencesALTIZER, S.; FOUFOPOULOS, J.; GAGER, A. Diseases and conservation. Encyclopedia of Biodiversity. Academic Press, v. 2, p. 10 –126, 2001. ALVAREZ-LONDOÑO, Johnathan et al. Avian haemosporidian (Haemosporida: Plasmodium and Haemoproteus) in the department of Arauca, Colombian Orinoquia region. Parasitology Research, v. 121, n. 6, p. 1775-1787, 2022. ANJOS, C.; CHAGAS, C.; FECCHIO, A.; SCHUNCK, F.; COSTA-NASCIMENTO, M.; MONTEIRO, E.; MATHIAS, B.; BELL, J.; VALKIUNAS, G.; KIRCHGATTER, K. Avian Malaria and Related Parasites from Resident and Migratory Birds in the Brazilian Atlantic Forest, with Description of a New Haemoproteus Species. Pathogens, v. 10(2), p. 103–110, 2021. ANJOS, Carolina C. et al. Avian malaria and related parasites from resident and migratory birds in the Brazilian Atlantic Forest, with description of a new Haemoproteus species. Pathogens, v. 10, n. 2, p. 103, 2021. ATKINSON, C.T. & VAN RIPER III, C. Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon and Haemoproteus. Birdparasite interactions. Oxford, Oxford University Press, p. 19–48, 1991. ATKINSON, C.T.; THOMAS, N.J.; HUNTER, D.B. Parasitic Diseases of Wild Birds. John Wiley & Sons, 2008. 608p. ATKINSON, C.T.; WOODS, R.J.; DUSEK, L.S. Wildlife disease and conservation in Hawaii: pathogenicity of avian malaria (Plasmodium relictum) in experimentally infected Iiwi (Vestiaria coccinea). Parasitology, v. 11, p. 59–69, 1995. AYE KS, Matsuoka M, Kai M, Kyaw K, Win AA, Shwe MM et al. FTA card utility for PCR detection of Mycobacterium le- prae. Jpn. J Infect. Dis. 2011;64(3):246-248 BAIROLIYA, Sakcham; KOH ZHI XIANG, Jonas; CAO, Bin. Extracellular DNA in environmental samples: Occurrence, extraction, quantification, and impact on microbial biodiversity assessment. Applied and Environmental Microbiology, v. 88, n. 3, p. e01845-21, 2022. 82 BARBARÁ, T.; MARTINELLI, G.; FAY, M.F.; MAYO, S.J.; LEXER, C. Population differentiation and species cohesion in two closely related plants adapted to neotropical high-altitude "inselbergs" Alcantarea imperialis and Alcantarea geniculata (Bromeliaceae). Molecular Ecology, v. 16, p. 1981–1992, 2007. BARINO, G.; ROSSI, M.; OLIVEIRA, L.; REIS, J.; D ́AGOSTO, M.; DIAS, R. Haemoproteus syrnii (Haemosporida: Haemoproteidae) in owls from Brazil: morphological and molecular characterization, potential cryptic species, and exo- erythrocytic stages. Parasitology Research, v. 120(1), p. 243–255, 2021. BEADELL, Jon S.; FLEISCHER, Robert C. A restriction enzyme–based assay to distinguish between avian hemosporidians. Journal of Parasitology, v. 91, n. 3, p. 683- 685, 2005. BEADELL, Jon S.; FLEISCHER, Robert C. A restriction enzyme–based assay to distinguish between avian hemosporidians. Journal of Parasitology, v. 91, n. 3, p. 683- 685, 2005. BECKETT SM, Laughton SJ, Pozza LD, McCowage GB, Marshall G, Cohn RJ et al. Buccal swabs and treated cards: methodological considerations for molecular epidemiologic studies examining paediatric populations. Am. J Epidemiol. 2008;167(10):1260-1267. BEJČEK, Vladimír; ŠTASTNÝ, Karel. Enciclopédia das Aves: as várias espécies e seus habitats. Livros e Livros, 2002. BELL, J.; GONZÁLEZ-ACUÑA, D.; TKACH, V. "Haemosporidian Parasites of Chilean Ducks: the Importance of Biogeography and Nonpasserine Hosts," Journal of Parasitology, v. 106(2), p. 211-220, 2020. BELO, N.O.; PINHEIRO, R.T.; REIS, S.E.; RICKLEFS, R.O.; BRAGA, E.M. Prevalence and lineage diversity of avian haemosporidians from three distinct Cerrado habitats in Brazil. PLoS ONE, v. 6(3), e17654, 2011. BENNET, G. & LOPES, O. S. Blood parasites of some birds from São Paulo state, Brasil. Memórias do Instituto Oswaldo Cruz, v. 75, p. 117–134, 1980. BENNETT, G. F.; GARNHAM, P.C.C.; FALLIS, A.M. On the status of the genera Leucocytozoon Ziemann, 1898 and Haemoproteus Kruse, 1890 (Haemosporidiida: 83 Leucocytozooidae and Haemoproteidae). Canadian Journal of Zoology, v. 43, p. 927– 932, 1965. BENNETT, G.; PIERCE, M. The haemoproteid parasites of the pigeons and doves (family Columbidae). J Nat Hist, v. 24, p. 311-325, 1990. BENSCH S, HELLGREN O. The use of molecular methods in studies of avian haemosporidians. In: Santiago-Alarcon D, Marzal A, editors. Avian malaria and related parasites in the tropics: ecology, evolution and systematics. Berlin: Springer; 2020. p. 113–36. BENSCH, S.; HELLGREN, O.; PÉREZ‐TRIS, J. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Molecular Ecology Resources, v. 9, p. 1353–1358, 2009. BENSCH, S.; PÉREZ-TRIS, J.; WALDENSTRÖM, J.; HELLGREN, O. Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: multiple cases of cryptic speciation? Evolution, v. 58, p. 1617–1621, 2004. BENTZ, S. et al. Sensitive measure of prevalence and parasitaemia of haemosporidia from European blackbird (Turdus merula) populations: value of PCR-RFLP and quantitative PCR. Parasitology, v. 133, n. 6, p. 685-692, 2006. BOOM R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J. Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990;28(3):495–503. BRAGA EM, SILVEIRA P, BELO NO, VALKIŪNAS G. Recent advances in the study of avian malariae: an overview with an emphasis on the distribution of Plasmodium spp. in Brazil. Mem Inst Oswaldo Cruz. 2011;1:3–11. BRAGA, E.M.; BELO, N.O.; PINHEIRO, R.T. Técnicas para estudos de hemoparasitos em aves. Ornitologia e Conservação: Ciência Aplicada, Técnicas de Pesquisa e Levantamento. Rio de Janeiro: Technical Books Editora, p. 395–412, 2010. BUSH, A.; LAFFERTY, K.D.; LOTZ, J.M.; SHOSTAK, A.W. Parasitology meets ecology on its own terms: Margolis et al., revisited. Journal of Parasitology, v. 83(4), p. 575–583, 1997. CAMPBELL, T.W. Avian haematology and cytology. Ames: Iowa State University Press, p. 104, 1995. 84 CAMPBELL, Terry W.; ELLIS, C. K. Hematology of birds. Veterinary hematology and clinical chemistry, p. 225-258, 2007. CANNELL, B. L. et al. The pathology and pathogenicity of a novel Haemoproteus spp. infection in wild Little Penguins (Eudyptula minor). Veterinary parasitology, v. 197, n. 1-2, p. 74-84, 2013. CEDROLA, F.; MARTINELE, I.; SENRA, M.; FURTADO, E.; D ́AGOSTO, M.; DIAS, R. Rediscovery of Plasmodium (Huffia) huffi (Apicomplexa, Haemosporida): a lost lineage from toucans. Parasitology Research, v. 120, p. 3287–3296, 2021. CHACON-CORTES, D., & Griffiths, L. R. (2014). Methods for extracting genomic DNA from whole blood samples: current perspectives. Journal of Biorepository Science for Applied Medicine, 1-9. CHAGAS, C.R.F.; GUIMARÃES, L.O.; MONTEIRO, E.F.; VALKIŪNAS, G.; KATAYAMA, M.V.; SANTOS, S.V.; GUIDA, F.J.V.; SIMÕES, R.F.; KIRCHGATTER, K. Hemosporidian parasites of free-living birds in the São Paulo Zoo, Brazil. Parasitology Research, v. 115(4), p. 1443–1452, 2015. CHAGAS, C.R.F; VALKIŪNAS, G.; GUIMARÃES, L.O.; MONTEIRO, E. F.; GUIDA, F.J.; SIMÕES, R.F; RODRIGUES, P.T.; LUNA, E.J.A.; KIRCHGATTER, K. Diversity and distribution of avian malaria and related haemosporidian parasites in captive birds from a Brazilian megalopolis. Malaria Journal, v. 16(83), p. 1–20, 2017. CHATHURANGA, W.; KARUNARATNE, S.; FERNANDO, B.; DE SILVA, W.P.P. Diversity, distribution, abundance, and feeding pattern of tropical ornithophilic mosquitoes. Journal of Vector Ecology, v. 43, p. 158–167, 2018. CHAVES, A.V.; FREITAS, G.H.S.; VASCONCELOS, M.F.; SANTOS, F.R. Biogeographic patterns, origin and speciation of the endemic birds from eastern Brazilian mountaintops: a review. Systematics and Biodiversity, v. 13, p. 1–16, 2015. CLARK, N.J.; CLEGG, S.M.; LIMA, M.R. A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): new insights from molecular data. International Jounal for Parasitology, v. 44(5), p. 329–338, 2014. CLARK, Nicholas J.; CLEGG, Sonya M.; LIMA, Marcos R. A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): new insights 85 from molecular data. International journal for parasitology, v. 44, n. 5, p. 329-338, 2014. COELHO, E. G. A. et al. Comparação entre métodos de estocagem de DNA extraído de amostras de sangue, sêmen e pêlos e entre técnicas de extração. Arquivos Brasileiros de Medicina Veterinária e Zootecnia, v. 56, p. 111-115, 2004. DE FREITAS, Rafaela Venançoni Matoso et al. Insights on the taxonomy of Haemoproteus parasites infecting cracid birds. Parasitology International, v. 94, p. 102730, 2023. DEL HOYO, J.; ELLIOTT, A.; SARGATAL, J.; CHRISTIE, D.A.; DE JUANA, E. Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona, 2018. DEVELEY PF, DA SILVA JMC. Birds of the Atlantic Forest of Brazil: status and conservation. São Paulo: Editora Horizonte; 2003. DIMITROV, D.; ZEHTINDJIEV, P.; BENSCH, S.; ILIEVA, M.; IEZHOVA, T.; VALKIŪNAS, G. Two new species Haemoproteus Kruse, 1890 (Haemosporida, Haemoproteidae) from European birds, with emphasison DNA barcoding for detection of haemosporidians in wildlife. Systematic Parasitology, v. 87, p. 135–151, 2014. DOUSSANG, Daniela et al. Spatial distribution, prevalence and diversity of haemosporidians in the rufous-collared sparrow, Zonotrichia capensis. Parasites & vectors, v. 12, n. 1, p. 1-12, 2019. EJIRI, H.; SATO, Y.; KIM, K.S.; TSUDA, Y.; MURATA, K.; SAITO, K.; WATANABE, Y.; SHIMURA, Y.; YUKAWA, M. Blood meal identification and prevalence of avian malaria parasite in mosquitoes collected at Kushiro Wetland, a subarctic zone of Japan. Journal of Medical Entomology, v. 48(4), p. 904–908, 2011. FECCHIO, A.; BELL, J.A.; BOSHOLN, M.; VAUGHAN, J.A.; TKACH, V.V. et al. An inverse latitudinal gradient in infection probability and phylogenetic diversity for Leucocytozoon blood parasites in New World birds. Journal of Animal Ecology, v. 89(2), p. 423–435, 2019. FECCHIO, A.; BOSHOLN, M.; TKACH, V.V.; BELL, J.A. First Record of Leucocytozoon (Haemosporida: Leucocytozoidae) in Amazonia: evidence for rarity in neotropical lowlands or lack of sampling for this parasite genus? Journal of Parasitology, v. 104(2) p. 168–172, 2017. 86 FECCHIO, A.; CHAGAS, C.R.F.; BELL, J.A.; KIRCHGATTER, K. Evolutionary ecology, taxonomy, and systematics of avian malaria and related parasites. Acta Tropica, v. 204, e105364, 2020. FECCHIO, A.; LIMA, M.R.; SILVEIRA, P.; BRAGA, E.M.; MARINI, M.A. High prevalence of blood parasites in social birds from a neotropical savanna in Brazil. Emu – Austral Ornithology, v. 111, p. 132–138, 2011. FECCHIO, A.; LIMA, M.R.; SVENSSON-COELHO, M.; MARINI, M.A.; RICKLEFS, R.E. Structure and organization of an avian haemosporidian assemblage in a Neotropical savanna in Brazil. Parasitology, v. 140, p. 181–192, 2013. FECCHIO, A.; MARINI, M.A.; BRAGA, E.M. Baixa prevalência de hemoparasitos em aves silvestres no cerrado brasileiro. Neotropical Biology and Conservation, v. 2, p. 127–135, 2007. FECCHIO, Alan et al. Loss of forest cover and host functional diversity increases prevalence of avian malaria parasites in the Atlantic Forest. International Journal for Parasitology, v. 51, n. 9, p. 719-728, 2021. FERRAGUTI, M.; MARTÍNEZ-DE LA PUENTE, J.; BENSCH, S.; ROIZ, D.; RUIZ, S.; VIANA, D.S.; SORIGUER, R.C.; FIGUEROLA, J.; DUNN, J. Ecological determinants of avian malaria infections: An integrative analysis at landscape, mosquito and vertebrate community levels. Journal of Animal Ecology, v. 87, p. 727–740, 2018. FERREIRA-JUNIOR, Francisco C. et al. Haemoproteus paraortalidum n. sp. in captive Black-fronted Piping-guans Aburria jacutinga (Galliformes, Cracidae): high prevalence in a population reintroduced into the wild. Acta tropica, v. 188, p. 93-100, 2018. FILION, A.; DESCHAMPS, L.; NIEBUHR, C.N.; POULIN, R. Anthropogenic landscape alteration promotes higher disease risk in wild New Zealand avian communities. PLoS ONE, v. 17(3), e0265568, 2022. FRIEDL, Thomas WP; GROSCURTH, Elisabeth. A real-time PCR protocol for simple and fast quantification of blood parasite infections in evolutionary and ecological studies and some data on intensities of blood parasite infections in a subtropical weaverbird. Journal of Ornithology, v. 153, p. 239-247, 2012. GARAMSZEGI, L.Z.; ZAGALSKA-NEUBAUER, M.; CANAL, D.; MARKÓ, G.; SZÁSZ, E.; ZSEBŐK, S.; SZÖLLŐSI, E.; HERCZEG, G.; TÖRÖK, J. Malaria parasites, 87 immune challenge, MHC variability, and predator avoidance in a passerine bird, Behavioral Ecology, v. 26(5), p. 1292–1302, 2015. GARAMSZEGI, László Zsolt. The sensitivity of microscopy and PCR-based detection methods affecting estimates of prevalence of blood parasites in birds. Journal of Parasitology, v. 96, n. 6, p. 1197-1203, 2010. GARCIA-LONGORIA, L.; HELLGREN, O.; BENSCH, S.; DE LOPE, F.; MARZAL, A. Detecting transmission areas of malaria parasites in a migratory bird species. Parasitology, v. 142(9), p. 1215–1220, 2015. GARCIA-LONGORIA, L.; MØLLER, A.P.; BALBONTÍN, J.; DE LOPE, F.; MARZAL, A. Do malaria parasites manipulate the escape behaviour of their avian hosts? An experimental study. Parasitology research, v. 114(2), p. 4493–4501, 2015. GARNHAM, P.C. Malaria parasites and other Haemosporidia. Oxford: Blackwell Scientific Publications, p. 1132, 1966. GIL-VARGAS, D.L. & SEDANO-CRUZ, R.E. Genetic variation of avian malaria in the tropical Andes: a relationship with the spatial distribution of hosts. Malaria Journal, v. 18(129), p. 1–9, 2019. GODFREY, R.D.; FEDYNICH, A.M.; PENCE, D.B. Quantification of Hematozoa in blood smears. Journal of Wildlife Diseases, v. 23, p. 558–565, 1987. GOLDSBOROUGH, Mindy D, Donna K. Fox. "Methods for the storage and synthesis of nucleic acids using a solid support." U.S. Patent 7122304, 2006. GONZÁLEZ QUEVEDO, Catalina; PABÓN VIDAL, Adriana Lucía; RIVERA GUTIÉRREZ, Héctor Fabio. Prevalence of haemosporidians in a Neotropical endemic bird area. 2016. GONZÁLEZ-OLVERA, Merit et al. Haemosporidians from a Neglected Group of Terrestrial Wild Birds in the Peruvian Amazonia. Ecohealth, v. 19, n. 3, p. 402-416, 2022. GONZALEZ-QUEVEDO, C.; DAVIES, R.G.; RICHARDSON, D.S. Predictors of malaria infection in a wild bird population: landscape-level analyses reveal climatic and anthropogenic factors. Journal of Animal Ecology, v. 83, p. 1091–1102, 2014. 88 GRAHAM, C.H.; CARNAVAL, A.C.; CADENA, C.D.; ZAMUDIO, K.R.; ROBERTS, T.E.; PARRA, J.L.; MCCAIN, C.M.; BOWIE, R.C.K.; MORITZ, C.; BAINES, S.B.; SCHNEIDER, C.J.; VANDERWAL, J.; RAHBEK, C.; KOZAK, K.H.; SANDERS, N.J. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography, v. 37, p. 711–719, 2014. HAFFER, J. Avian species richness in tropical South America. Studies on Neotropical Fauna and Environment, v. 25(3), p. 157–183, 1990. HAMILTON, W.D. & ZUK, M. Heritable true fitness and bright birds: a role for parasites? Science, v. 218, p. 384–387,1982. HELLGREN, O.; WALDENSTRÖM, J.; BENSCH, S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. The Journal of Parasitology, v. 90, p. 797–802, 2004. HERDER, Elizabeth A. et al. Body size poorly predicts host-associated microbial diversity in wild birds. Microbiology Spectrum, p. e03749-22, 2023. IBGE, Instituto Brasileiro de Geografia e Estatística. Relevo Região Sudeste do Brasil, 2006. Disponível em: https://www.ibge.gov.br/geociencias/informacoes- ambientais/geomorfologia/15827-unidades-de-relevo.html?=&t=acesso-ao-produto. Acesso em: 29 nov. 2022. INGS, K. & DENK, D. Avian Malaria in Penguins: Diagnostics and Future Direction in the Context of Climate Change. Animals, v. 12(600), p. 1–11, 2022. INPE, INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. Sistema de Informações Espaciais – SIE. Monitoramento das temperaturas do Sudeste Brasileiro: Instituto Nacional de Pesquisas Espaciais, 2021. ISAKSSON, C.; SEPIL, I.; BARAMIDZE, V.; SHELDON, B.C. Explaining variance of avian malaria infection in the wild: the importance of host density, habitat, individual life- history and oxidative stress. BMC Ecology, v. 13(15), p. 1–11, 2013. KATOH, K.; ROZEWICKI, J.; YAMADA, K.D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, v. 20(4), p. 1160–1166, 2019. KEELER, Shamus P. et al. Use of FTA® sampling cards for molecular detection of avian influenza virus in wild birds. Avian diseases, v. 56, n. 1, p. 200-207, 2012. 89 KITAYAMA, K. Patterns of species diversity on an oceanic versus a continental island mountain: a hypothesis on species diversification. Journal of Vegetation Science, v. 7, p. 879–888, 1996. KNOWLES, S.C.L.; WOOD, M.J.; ALVES, R.; SHELDON, B.C. Dispersal in a patchy landscape reveal contrasting determinants of infection in a wild avian malaria system. Journal of Animal Ecology, v. 83, p. 429–439, 2014. KNOWLES, Sarah CL et al. Molecular epidemiology of malaria prevalence and parasitaemia in a wild bird population. Molecular Ecology, v. 20, n. 5, p. 1062-1076, 2011. KNOWLES, Sarah CL et al. Molecular epidemiology of malaria prevalence and parasitaemia in a wild bird population. Molecular Ecology, v. 20, n. 5, p. 1062-1076, 2011. KORNER, C. & SPEHN, E.M. Mountain biodiversity: a global assessment. London: Routledge, 2002. 350 p. KRIZANAUSKIENE, A.; IEZHOVA, T.A.; SEHGAL, R.N.M.; CARLSON, J.S.; PALINAUSKAS, V.; BENSCH, S.; VALKIŪNAS, G. Molecular characterization of Haemoproteus sacharovi (Haemosporida, Haemoproteidae), a common parasite of columbiform birds, with remarks on classification of haemoproteids of doves and pigeons. Zootaxa, v. 3613(1), p. 85–94, 2013. KRIŽANAUSKIENĖ, Asta et al. Variation in host specificity between species of avian hemosporidian parasites: evidence from parasite morphology and cytochrome B gene sequences. Journal of Parasitology, v. 92, n. 6, p. 1319-1324, 2006. KUECKER, Z.; SOBERANES, C.; RODRÍGUEZ-FLORES, C.; ARIZMENDI, M.; JOHNSON, T. Ruddy Quail-Dove (Geotrygon montana). Birds of the World. 10.2173/bow.ruqdov.01. 2020. KUMAR, S.; STECHER, G.; TAMURA, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, v. 33, p. 1870–1874, 2016. L. J. Cseke, P. B. Kaufman, G. K. Podila, and C.-J. Tsai. Handbook of Molecular and Cellular Methods in Biology and Medicine, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2004. 90 LACOMBE, S.; BICHET, C.; CORNET, S.; FAIVRE, B.; SORCI, G. Food availability and competition do not modulate the costs of Plasmodium infection in dominant male canaries. Experimental Parasitology, v. 135, p. 708–714, 2013. LACORTE, G.A.; FÉLIX, G.M.F.; PINHEIRO, R.R.B.; CHAVES, A.V.; ALMEIDA- NETO, G.; NEVES, F.S.; LEITE, L.O.; SANTOS, F.R.; BRAGA, E.M. Exploring the diversity and distribution of neotropical avian malaria parasites– a molecular survey from southeast Brazil. PLoS ONE, v. 8(3), e57770, 2013. LAHIRI DK, Bye S, Nurnberger JI Jr, Hodes ME, Crisp M. A non-organic and non- enzymatic extraction method gives higher yields of genomic DNA from whole-blood samples than do nine other methods tested. J Biochem Biophys Methods. 1992;25(4):193–205. LAINSON, R.; SHAW, J.J.; HUMPHREY, P.S. Preliminary survey of blood-parasites of birds of the Area de Pesquisas Ecológicas do Guamá, Belém, Pará, Brasil. The Journal of Parasitology, v. 56, p. 197–198, 1970. LANGE V, Arndt K, Schwarzelt C, Boehme I, Giani AS, Schmidt AH et al. High-density FTA plates serve as efficient long‐term sample storage for HLA genotyping. Tissue Antigens. 2014;83(2):101-105. LAPOINTE D.A.; ATKINSON, C.T.; SAMUEL, M.D. Ecology and conservation biology of avian malaria. Annals of the new york academy of sciences, v. 1249, p. 211– 226, 2012. LEE, Jong-Han et al. Comparisons of three automated systems for genomic DNA extraction in a clinical diagnostic laboratory. Yonsei medical journal, v. 51, n. 1, p. 104- 110, 2010. LEE, Pei Yun et al. Agarose gel electrophoresis for the separation of DNA fragments. JoVE (Journal of Visualized Experiments), n. 62, p. e3923, 2012. LIANG X, Chigerwe M, Hietala SK, Crossley BM. Evaluation of fast technology analysis (FTA) cards as an improved method for specimen collection and shipment targeting viruses associated with bovine respiratory disease complex. J Virol. Methods. 2014;202:69-72. 91 LIAO, W.; ATKINSON, C.T.; LAPOINTE, D.A.; SAMUEL, M.D. Mitigating Future Avian Malaria Threats to Hawaiian Forest Birds from Climate Change. PLoS ONE, v. 12(1), e0168880, 2017. LIMA, M. L. Aves da Mata Atlântica: riqueza, composição, status, endemismo e conservação. 2013. 256 p. Dissertação (Mestrado em Ciências na área de Zoologia) - Instituto de Biociências da Universidade de São Paulo, São Paulo, 2013. LUCENA, D.T. Lista dos protozoários hemoparasitas de aves da região neotrópica. Revista da Faculdade de Medicina Veterinária de São Paulo, v. 2(1), p. 33–66, 1941. LYNTON‐JENKINS, Joshua G. et al. Parasite detection and quantification in avian blood is dependent on storage medium and duration. Ecology and Evolution, v. 13, n. 2, p. e9819, 2023. MACARTHUR, R.H. & WILSON, E.O. The theory of island biogeography. Princeton: Princeton University Press, 1967. 224 p. MACHADO ABM, Drummond GM, Paglia AP. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. Volume II - Mamíferos. Brasília: Ministério do Meio Ambiente; 2008. MANDAL, F.B. Hurdle in taxonomy: A case of malaria parasites and other Haemosporidia. Open Veterinary Science, v. 2(1), p. 40–54, 2021. MANTILLA, J.S.; GONZÁLEZ, A.D.; VALKIŪNAS, G. et al. Description and molecular characterization of Plasmodium (Novyella) unalis sp. nov. from the Great Thrush (Turdus fuscater) in highland of Colombia. Parasitology Research, v. 112, p. 4193–4204, 2013. MARTINSEN, E.; PAPERNA, I.; SCHALL, J. Morphological versus molecular identification of avian Haemosporidia: An exploration of three species concepts. Parasitology, v. 133(3), p. 279–288, 2006. MARZAL, A.; DE LOPE, F.; NAVARRO, C.; MOLLER, A.P. Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia, v. 142, p. 541–545, 2005. MARZAL, A.; GARCÍA-LONGORIA, L.; CÁRDENAS-CALLIRGOS, J.M. Invasive avian malaria as an emerging parasitic disease in native birds of Peru. Biological Invasions, v. 17, p. 39–45, 2015. 92 MATOSO, R.; CEDROLA, F.; BARINO, G.; DIAS, R.; ROSSI, M.; D'AGOSTO, M.. New morphological and molecular data for Haemoproteus (H.) paramultipigmentatus in the Atlantic Forest of Brazil. Parasitology international, v. 84, p. 102375, 2021. MCNEW, S.; BARROW, L.; WILLIAMSON, J.; GALEN, S.; SKEEN, H.; DUBAY, S.; GAFFNEY, A.; JOHNSON, A.; BAUTISTA, E.; ORDOÑEZ, P.; WITT, C. Contrasting drivers of diversity in hosts and parasites across the tropical Andes. Proc Natl Acad Sci U S A. v. 23, p. 118(12):e2010714118, 2021. MEISTER, Seraina L. et al. Avian haemosporidian parasites in captive and free-ranging, wild birds from zoological institutions in Switzerland: Molecular characterization and clinical importance. International Journal for Parasitology: Parasites and Wildlife, v. 20, p. 46-55, 2023. MERINO, S.; MORENO, J.; VÁSQUEZ, R.A.; MARTÍNEZ, J.; SÁNCHEZ‐ MONSÁLVEZ, I.; ESTADES, C.F. Haematozoa in forest birds from southern Chile: latitudinal gradients in prevalence and parasite lineage richness. Austral Ecology, v. 33, p. 329–340, 2008. MERCK. Reliable DNA extraction from Whatman® FTA® cards. Acessado em setembro de 2022. Disponível em <https://www.sigmaaldrich.com/BR/pt/technical- documents/protocol/genomics/dna-and-rna-purification/whatman-reliable-extraction-of- dna> MIRANDA PAEZ, A.; CHALKOWSKI, K.; ZOHDY, S. et al. Management of avian malaria in populations of high conservation concern. Parasites Vectors, v. 15(208), p. 1–6, 2022. MMA, Ministério do Meio Ambiente. Biodiversidade Brasileira. 2022. Disponível em https://www.gov.br/mma/pt-br/assuntos/biodiversidade. Acesso em: 29 nov. 2022. MOENS, M.A.J.; PÉREZ-TRIS, J. Discovering potential sources of emerging pathogens: South America is a reservoir of generalist avian blood parasites. International Journal for Parasitology, v. 46, p. 41–49, 2015. MOENS, Michael AJ et al. Parasite specialization in a unique habitat: hummingbirds as reservoirs of generalist blood parasites of Andean birds. Journal of Animal Ecology, v. 85, n. 5, p. 1234-1245, 2016. 93 MUKHIN, A.; PALINAUSKAS, V.; PLATONOVA, E.; KOBYLKOV, D.; VAKOLIUK, I; VALKIŪNAS, G. The Strategy to Survive Primary Malaria Infection: An Experimental Study on Behavioural Changes in Parasitized Birds. PLoS ONE, v. 11(7), e0159216, 2016 MYERS, N.; MITTERMEIER, R.A.; MITTERMEIER, C.G.; FONSECA G.A.B.; KENT J. Biodiversity hotspots for conservation priorities. Nature, v. 403, p. 853–858, 2000. NIEBUHR, C.N., Blasco-Costa, I. Improving detection of avian malaria from host blood: a step towards a standardised protocol for diagnostics. Parasitol Res 115, 3905–3911 (2016). NJABO, K.Y.; CORNEL, A.J.; SEHGAL, R. N. M.; LOISEAU, C.; BUERMANN, W.; HARRIGAN, R.J.; POLLINGER, J.; VALKIŪNAS, G.; SMITH, T.B. Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa. Malaria Journal, v. 8(193), p. 1–12, 2009. OLIVEIRA, Katrine. Hábito alimentar e história evolutiva moldam a forma do bico dos passeriformes da Mata Atlântica. Orientador: Dr. Nilton Carlos Cáceres53p. 2018. (Dissertação) - Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, 2018. OLIVEIRA, L.; BARINO, G.T.M.; ROSSI, M.F.; D'AGOSTO, M.; DIAS, R.J.P.; SANTOS, H.A. Morphological and molecular characterization of Haemoproteus coatneyi and Haemoproteus erythrogravidus (Haemosporida: Haemoproteidae) in Passeriformes in Brazil's Atlantic Forest. Brazilian Journal of Veterinary Parasitology, v. 29(4), e011520, 2020. OLIVEIRA, L.; CEDROLA. F.; SENRA, M.V.X.; SCOPEL, K.K.G.; MARTINELE, I.; TOSTES, R.; DIAS, R.J.P.; D'AGOSTO, M. Polymorphism evidence in Plasmodium (Haemamoeba) lutzi Lucena, 1939 (Apicomplexa, Haemosporida) isolated from Brazilian wild birds. Parasitology International, v. 70, p. 70-76, 2019. OLIVEIRA, MC de S. et al. Fundamentos teóricos-práticos e protocolos de extração e de amplificação de DNA por meio da técnica de reação em cadeia de polimerase. 2007. OMS, Organização Mundial da Saúde. ONU - Organização das Nações Unidas. Relatório Mundial da Malária, 2022. 94 OUTLAW, D. & RICKLEFS, R. Species limits in avian malaria parasites (Haemosporida): How to move forward in the molecular era. Parasitology, v. 141(10), p. 1223–1232, 2014. PACHECO JF, Fonseca PS, Laps RR, et al. A avifauna da Mata Atlântica do sudeste do Brasil. Rev Bras Ornitol. 2010;18(2):142-183. PACHECO, J.F., SILVEIRA, L.F., ALEIXO, A. et al. Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee—second Edition. Ornithology Research, v. 29, p. 94–105, 2021. PERKINS, S.L. Malaria‘s many mates: past, present, and future of the systematics of the order Haemosporida. The Journal of Parasitology, v. 100(1), p. 11–25, 2014. PEZZOLI N, Silvy M, Woronko A, Le Treut T, LevyMozziconacci A, Reviron D et al. Quantification of mixed chimerism by real time PCR on whole bloodimpregnated FTA cards. Leuk. Res. 2007;31(9):1175- 1183. POREMBSKI, Stefan et al. Diversity and ecology of saxicolous vegetation mats on inselbergs in the Brazilian Atlantic rainforest. Diversity and distributions, v. 4, n. 3, p. 107-119, 1998. PRATES, Ivan et al. Biogeographic links between southern Atlantic Forest and western South America: Rediscovery, re-description, and phylogenetic relationships of two rare montane anole lizards from Brazil. Molecular Phylogenetics and Evolution, v. 113, p. 49-58, 2017. PRICE, Carol W.; LESLIE, Daniel C.; LANDERS, James P. Nucleic acid extraction techniques and application to the microchip. Lab on a Chip, v. 9, n. 17, p. 2484-2494, 2009. REEVES, Lawrence E. et al. Maintenance of host DNA integrity in field-preserved mosquito (Diptera: Culicidae) blood meals for identification by DNA barcoding. Parasites & vectors, v. 9, n. 1, p. 1-11, 2016. REMPLE, J.D. Intracellular Hematozoa of Raptors: A Review and Update. Journal of Avian Medicine and Surgery, v. 18(2), p. 75–88, 2004. RIBEIRO, S.F.; SEBAIO, F.; BRANQUINHO, F.C.; MARINI, M.A.; VAGO, A.R.; BRAGA, E.M.; Avian malaria in Brazilian passerine birds: parasitism detected by nested PCR using DNA from stained blood smears. Parasitology, v. 130, p. 261–267, 2005. 95 RICHARD, F. Alexander et al. A comparative analysis of PCR-based detection methods for avian malaria. Journal of Parasitology, v. 88, n. 4, p. 819-822, 2002. RICKLEFS, R.E. & SHELDON, K.S. Malaria prevalence and white blood cell response to infection in a tropical and in a temperate thrush. The Auk, v. 124(4), p. 1254–1266, 2007. RODRÍGUEZ-HERNÁNDEZ, Karla et al. Haemosporidian prevalence, parasitaemia and aggregation in relation to avian assemblage life history traits at different elevations. International Journal for Parasitology, v. 51, n. 5, p. 365-378, 2021. ROLDÁN-ZURABIÁN, F.; JOSÉ RUIZ-LÓPEZ, M.; DE LA PUENTE, J.M. et al. Apparent absence of avian malaria and malaria-like parasites in northern blue-footed boobies breeding on Isla Isabel. Scientific Reports, v. 12(6892), p. 1–6, 2022. ROOYEN, Juan van et al. Altitudinal variation in haemosporidian parasite distribution in great tit populations. Parasites & Vectors, v. 6, n. 1, p. 1-10, 2013. RUDBECK, Lars; DISSING, Jørgen. Rapid, simple alkaline extraction of human genomic DNA from whole blood, buccal epithelial cells, semen and forensic stains for PCR. Biotechniques, v. 25, n. 4, p. 588-592, 1998. SÁ, M.R. Studies of avian malaria and Brazil in the international scientific contexto (1907-1945). História, Ciências, Saúde-Manguinhos. v. 18, p. 499–518, 2011. SANGER, Fred; COULSON, Alan R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of molecular biology, v. 94, n. 3, p. 441-448, 1975. SANTIAGO Merino; Janos Hennicke; Javier Martínez; Katrin Ludynia; Roxana Torres; Thierry M. Work; Stedson Stroud; Juan F. Masello; Petra Quillfeldt. Infection by Haemoproteus Parasites in Four Species of Frigatebirds and the Description of a New Species of Haemoproteus (Haemosporida: Haemoproteidae). J Parasitol (2012) 98 (2): 388–397. SANTIAGO-ALARCON, D.; OUTLAW, D.C.; RICKLEFS, R.E.; PARKER, P.G. Phylogenetic relationships of haemosporidian parasites in New World Columbiformes, with emphasis on the endemic Galapagos dove. International Journal for Parasitology, v. 40(4), p. 463–470, 2010. 96 SANTIAGO-ALARCON, D.; PALINAUSKAS, V.; SCHAEFER, H.M. Diptera vectors of avian Haemosporidian parasites: untangling parasite life cycles and their taxonomy. Biological Reviwes. v. 87(4), p. 928–64, 2012. SANTIAGO-ALARCON, Diego; MARZAL, Alfonso. Research on avian haemosporidian parasites in the tropics before the year 2000. Avian malaria and related parasites in the tropics: ecology, evolution and systematics, p. 1-44, 2020. SCHOENLE, L. A.; KERNBACH, M.; HAUSSMANN, M. F.; BONIER, F.; MOORE I. T. An experimental test of the physiological consequences of avian malaria infection. Jounal Animal Ecology. v.86(6), p.1483-1496, 2017. SEBAIO, F.; BRAGA, E.M.; BRANQUINHO, F.; FECCHIO, A.; MARINI, M.A. Blood parasites in passerine birds from the Brazilian Atlantic Forest. Revista Brasileira de Parasitologia Veterinária, v. 21(1), p. 7–15, 2012. SEBAIO, F.; BRAGA, E.M.; BRANQUINHO, F.; MANICA, L.T.; MARINI, M.A. Blood parasites in Brazilian Atlantic Forest birds, effects of fragment size and habitat dependency. Bird Conservation International. v. 20(4), p. 432–439, 2010. SEDANO-CRUZ, Raul; CASTILLO, Andres; GIL-VARGAS, Diana Lorena. Molecular identification of Haemosporidia in avian endemics of Gorgona Island within a context for the eastern tropical Pacific region. Infection, Genetics and Evolution, v. 78, p. 104123, 2020. SEHGAL, R. N. Manifold habitat effects on the prevalence and diversity of avian blood parasites. International Journal for Parasitology: Parasites and Wildlife. v. 4(3), p. 421–430, 2015. SICK, H. Ornitologia Brasileira, edição revista e ampliada por José Fernando Pacheco. Rio de Janeiro: Editora Nova Fronteira. 1997. 912p. SIGRIST, T. Avifauna Brasileira. São Paulo: Avis Brasilis, 2014. 607p. SMITH, L. M.; BURGOYNE, Leigh Alexander. Collecting, archiving and processing DNA from wildlife samples using FTA® databasing paper. BMC ecology, v. 4, n. 1, p. 1-11, 2004. SMITH, William J. et al. Parasite exchange and hybridisation at a wild-feral-domestic interface. International Journal for Parasitology, 2023. 97 STAMATAKIS, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. v. 30(9), p. 1312–1313, 2014. STARKLOFF, N. C.; KIRCHMAN, J. J.; JONES, A. W.; et al. Drivers of community turnover differ between avian hemoparasite genera along a North American latitudinal gradient. Ecology Evolution. v.10, p. 5402– 5415, 2020. SVENSSON-COELHO, M.; BLAKE, J. G.; LOISELLE, B. A.; PENROSE, A. S.; PARKER, P. G.; & RICKLEFS, R. E. Diversity, prevalence, and host specificity of avian Plasmodium and Haemoproteus in a western Amazon assemblage. Ornithological Monographs, 76(1), 1-47, 2013. TALAVERA, G.; CASTRESANA, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology. v. 56, p. 564-577, 2007. TAN, Siun Chee et al. DNA, RNA, and protein extraction: the past and the present. BioMed Research International, v. 2009, 2009. TAVARÉ, S. "Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences". Lectures on Mathematics in the Life Sciences. American Mathematical Society. v. 17, p. 57–86. 1986. THOMAS, Rebecca C. et al. Successful storage of Trichomonas gallinae on Whatman FTA cards following culture. Conservation Genetics Resources, v. 14, n. 2, p. 225-229, 2022. TOSTES, R.; DIAS, R. J.; DAEMON, E. P.; D’AGOSTO, M. Malária em aves silvestres da Mata Atlântica de Minas Gerais mantidas em cativeiro: diagnóstico parasitológico e molecular, e caracterização bioquímica e histopatológica. Revista Brasileira Parasitologia Veterinária, Seropédica. v. 25: p. 7-15. 2015. TRUETT, Gary E. et al. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques, v. 29, n. 1, p. 52-54, 2000. VALKIŪNAS G, ATKINSON CT. Introduction to life cycles, taxonomy, distribution and basic research techniques. In: Santiago-Alarcon D, Marzal A, editors. Avian malaria and related parasites in the tropics: ecology, evolution and systematics. Springer; 2020. p. 45–80. 98 VALKIUNAS G, DUC M, IEZHOVA TA. Increase of avian Plasmodium circumflexum prevalence, but not of other malaria parasites and related haemosporidians in northern Europe during the past 40 years. Malar J. 2022;21:105. VALKIŪNAS, G. & IEZHOVA, T. A. Keys to the avian malaria parasites. Malaria Journal. v.17, p. 212, 2018. VALKIŪNAS, G. Avian malaria parasites and other Haemosporidia. CRC Press Boca Raton, Florida, 2005. 947p. VALKIŪNAS, G.; IEZHOVA, T. A. Keys to the avian Haemoproteus parasites (Haemosporida, Haemoproteidae). Malarian Journal, v. 21, p. 269, 2022. VALKIŪNAS, G.; PALINAUSKAS, V.; KRIŽANAUSKIENĖ, A.; BERNOTIENĖ, R.; KAZLAUSKIENĖ, R.; IEZHOVA, T.A. Further observations on in vitro hybridization of hemosporidian parasites: patterns of ookinete development in Haemoproteus spp. The Journal of Parasitology, v. 99(1), p. 124–136, 2013. VALKIŪNAS, Gediminas et al. Nested cytochrome b polymerase chain reaction diagnostics underestimate mixed infections of avian blood haemosporidian parasites: microscopy is still essential. Journal of Parasitology, v. 92, n. 2, p. 418-422, 2006. VALKIŪNAS, Gediminas; ATKINSON, Carter T. Introduction to life cycles, taxonomy, distribution, and basic research techniques. Avian malaria and related parasites in the tropics: ecology, evolution and systematics, p. 45-80, 2020. VALKIŪNAS, Gediminas; IEZHOVA, Tatjana A. Keys to the avian Haemoproteus parasites (Haemosporida, Haemoproteidae). Malaria journal, v. 21, n. 1, p. 269, 2022. VAN RIPER III, C.; ATKINSON, C.T.; SEED, T.M. Plasmodia of birds. In: Kreier, J.P. & San Diego, C.A. (eds.), Parasitic protozoa. Academic Press, p. 73-140, 1994, VAN RIPER III, C.; VAN RIPER, S.G.; GAFF, M.L.; LAIRD, M. The epizootiology and ecological significance of malaria in Hawaii land birds. Ecology Monographs, v. 56, p. 327-344, 1986. VANSTREELS, R. E. T.; SILVA-FILHO, R. P.; KOLESNIKOVAS, C. K. M.; BHERING, R. C. C.; RUOPPOLO, V.; EPIPHANIO, S.; AMAKU, M.; JUNIOR, F. C. F.; BRAGA, E. M.; & CATÃO-DIAS, J. L. Epidemiology and pathology of avian malaria in penguins undergoing rehabilitation in Brazil. Veterinary Research. v.46, p. 30, 2015. 99 VASCONCELOS, M. e RODRIGUES, M. “Patterns of geographic distribution and conservation of the open-habitat avifauna of southeastern Brazilian mountaintops (campos rupestres and campos de altitude)”. Papéis Avulsos de Zoologia. v.50, p. 1-29, 2010. WALDENSTRÖM, Jonas et al. A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. Journal of Parasitology, v. 90, n. 1, p. 191-194, 2004. WALSTROM, V. Woody; OUTLAW, Diana C. Distribution and prevalence of haemosporidian parasites in the Northern Cardinal (Cardinalis cardinalis). Journal of Parasitology, v. 103, n. 1, p. 63-68, 2017. WALTHER, E. L.; VALKIUNAS, G.; GONZÁLEZ, A. D.; MATTA, N. E.; RICKLEFS R. E.; CORNEL, A.; SEHGAL, R. N. Description, molecular characterization, and patterns of distribution of a widespread New World avian malaria parasite (Haemosporida: Plasmodiidae), Plasmodium (Novyella) homopolare sp. nov. Parasitology Research, v.67, p 37-75, 2014. WOODWORTH-LYNAS, C. B.; CAINES, J. R.; BENNETT, G.; F. Prevalence of avian Haematozoa in São Paulo state, Brazil. Memórias do Instituto Oswaldo Cruz. v. 84(4), p. 515-526, 1989. YABSLEY, Michael J. et al. A single Haemoproteus plataleae haplotype is widespread in white ibis (Eudocimus albus) from urban and rural sites in southern Florida. International Journal for Parasitology: Parasites and Wildlife, v. 21, p. 269- 276, 2023. YANG Z.Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Molecular Biology and Evololution, v.15, p. 568-573, 1998. ZEHTINDJIEV, Pavel et al. Dynamics of parasitemia of malaria parasites in a naturally and experimentally infected migratory songbird, the great reed warbler Acrocephalus arundinaceus. Experimental parasitology, v. 119, n. 1, p. 99-110, 2008.pt_BR
dc.subject.cnpqParasitologiapt_BR
Appears in Collections:Mestrado em Ciências Veterinárias

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2023 - Nelson Meireles da Silva.pdf4.83 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.