Por favor, use este identificador para citar o enlazar este ítem:
https://rima.ufrrj.br/jspui/handle/20.500.14407/21229Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Alves, Dálete Cássia Vieira | - |
| dc.date.accessioned | 2025-04-25T14:55:18Z | - |
| dc.date.available | 2025-04-25T14:55:18Z | - |
| dc.date.issued | 2025-02-03 | - |
| dc.identifier.citation | ALVES, Dálete Cássia Vieira. Aspectos da ecologia trófica e detecção de Flavivirus em mosquitos Diptera: Culicidae) em remanescentes de Mata Atlântica do estado do Rio de Janeiro. 2025. 95 f. Dissertação (Mestrado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/21229 | - |
| dc.description.abstract | O estudo sobre os padrões alimentares dos mosquitos é fundamental para entender seu papel como vetores de patógenos. A identificação das fontes alimentares não apenas fornece informações sobre os comportamentos de busca dos mosquitos, mas também tem implicações diretas na epidemiologia de patógenos transmitidos por esses insetos, como os vírus da dengue, Zika e febre amarela. Em ecossistemas como a Mata Atlântica, onde a biodiversidade é rica e complexa, compreender esses padrões alimentares se torna ainda mais relevante. Neste contexto, o presente estudo foi realizado em remanescentes de Mata Atlântica da Reserva Ecológica de Guapiaçu (REGUA) e no Sítio Recanto Preservar, ambos localizados no estado do Rio de Janeiro, Brasil. O objetivo foi identificar as fontes alimentares e detectar a circulação de Flavivirus nos mosquitos presentes nessas áreas, contribuindo para um melhor entendimento das dinâmicas ecológicas e epidemiológicas. A utilização de técnicas moleculares, como o sequenciamento de DNA do citocromo b (Cytb) baseado em Sanger, permite uma identificação precisa das fontes alimentares, fundamental para delinear estratégias de controle e monitoramento das populações de mosquitos. A detecção da circulação de Flavivirus transmitidos por culicídeos foi realizada através da amplificação de fragmentos específicos do genoma viral. Foi realizado a extração do RNA viral, seguida da pesquisa de Flavivirus utilizando a reação de amplificação da região NS5 por transcriptase reversa (RT-PCR). Um total de 2077 mosquitos foram capturados, dos quais apenas 145 fêmeas (6,98%) estavam ingurgitadas. Com a análise molecular para pesquisa da fonte alimentar, apenas 55 amostras (37,93%) apresentaram o seu DNA amplificado. Os resultados obtidos revelaram uma clara tendência das espécies de mosquitos capturadas em se alimentarem predominantemente de humanos. Essa observação não apenas sublinha a importância de compreender as interações entre mosquitos e suas fontes de alimentares, mas também levanta questões sobre os riscos associados à transmissão de patógenos para a saúde pública. Outro resultado relevante foi a identificação do vírus Tembusu, um Flavivirus encontrado apenas no Sudeste Asiático, levantando questões sobre a sua introdução no Brasil. Em síntese, o estudo evidencia a relevância de investigar as preferências alimentares dos mosquitos, contribuindo para um conhecimento mais aprofundado sobre sua ecologia e epidemiologia, e a importância de implementar estratégias de monitoramento de arboviroses, antecipando possíveis surtos. Além disso, os achados ressaltam a necessidade de aprimoramento contínuo das técnicas utilizadas na identificação das fontes alimentares, visando uma melhor compreensão das interações entre os mosquitos e o meio ambiente. Essa informação é essencial para o desenvolvimento de políticas e estratégias eficazes de controle de patógenos transmitidos por vetores. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | Mosquitos | pt_BR |
| dc.subject | Hábito alimentar | pt_BR |
| dc.subject | Arbovírus | pt_BR |
| dc.subject | Flavivírus | pt_BR |
| dc.subject | Mata Atlântica | pt_BR |
| dc.subject | Mosquitoes | pt_BR |
| dc.subject | Feeding habits | pt_BR |
| dc.subject | Arbovirus | pt_BR |
| dc.subject | Flavivirus | pt_BR |
| dc.subject | Atlantic Forest | pt_BR |
| dc.title | Aspectos da ecologia trófica e detecção de Flavivirus em mosquitos (Diptera:Culicidae) em remanescentes de Mata Atlântica do estado do Rio de Janeiro | pt_BR |
| dc.type | Dissertação | pt_BR |
| dc.description.abstractOther | The study of mosquito feeding patterns is essential for understanding their role as vectors of pathogens. Identifying their food sources provides insights into mosquito foraging behaviors and directly impacts the epidemiology of mosquito-borne pathogens such as dengue, Zika, and yellow fever. Understanding these feeding patterns is particularly relevant in ecosystems like the Atlantic Forest, which is rich in biodiversity and complexity. This study was conducted in remnants of the Atlantic Forest at the Guapiaçu Ecological Reserve (REGUA) and Sítio Recanto Preservar, both located in the state of Rio de Janeiro, Brazil. The objective was to identify the food sources of mosquitoes and detect the circulation of Flavivirus in these areas, contributing to a better understanding of ecological and epidemiological dynamics. Molecular techniques, such as Sanger-based DNA sequencing of cytochrome b (Cytb), allow for precise identification of food sources, which is fundamental for designing control and monitoring strategies for mosquito populations. The detection of Flavivirus circulation transmitted by culicids was performed through the amplification of specific fragments of the viral genome. The genetic material was obtained by extracting viral RNA, followed by the detection of Flavivirus using the NS5 region amplification reaction by reverse transcription polymerase chain reaction (RT-PCR). A total of 2,077 mosquitoes were captured, of which only 145 females (6.98%) were engorged. Of these, only 55 samples (37.93%) had their DNA successfully amplified. The results revealed a clear tendency for the captured mosquito species to feed predominantly on humans. This finding underscores the importance of understanding the interactions between mosquitoes and their food sources and raises concerns about the associated risks of pathogen transmission to public health. Another significant result was the identification of the Tembusu virus, a Flavivirus typically found only in Southeast Asia, raising questions about its introduction to Brazil. Our study highlights the importance of investigating mosquito feeding preferences, contributing to a deeper understanding of their ecology and epidemiology, and emphasizes the need for implementing monitoring strategies for arboviruses to anticipate potential outbreaks. Additionally, we stress the necessity of continuously improving techniques to identify food sources to better understand the interactions between mosquitoes and their environment. This information is crucial for developing effective policies and strategies to control vector-borne pathogens. | en |
| dc.contributor.advisor1 | Alencar, Jeronimo Augusto Fonseca | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0001-7863-2698 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/6783152813274111 | pt_BR |
| dc.contributor.referee1 | Ferreira, Ildemar | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0002-6128-5789 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/9716949971860244 | pt_BR |
| dc.contributor.referee2 | Alencar, Jeronimo Augusto Fonseca | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0001-7863-2698 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/6783152813274111 | pt_BR |
| dc.contributor.referee3 | Toma, Helena Keiko | - |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/8121311753666435 | pt_BR |
| dc.contributor.referee4 | Mello, Cecília Ferreira de | - |
| dc.contributor.referee4ID | https://orcid.org/0000-0002-9916-515X | pt_BR |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/8749101360026636 | pt_BR |
| dc.contributor.referee5 | Souza, Nataly Araujo de | - |
| dc.contributor.referee5Lattes | http://lattes.cnpq.br/9409856397646778 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/8028881779532181 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Ciências Biológicas e Da Saúde | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Biologia Animal | pt_BR |
| dc.relation.references | ABDULLAH, A. et al. Parrot Trade and the Potential Risk of Psittacosis as a Zoonotic Disease in Indonesian Bird Markets. Birds, v. 5, n. 1, p. 137–154, 7 mar. 2024. ADUGNA, T.; YEWHELEW, D.; GETU, E. Bloodmeal Sources and Feeding Behavior of Anopheline Mosquitoes in Bure District, Northwestern Ethiopia. Parasites & Vectors, v. 14, n. 1, p. 166, 19 mar. 2021. ALENCAR, J. et al. Culicidae Community Composition and Temporal Dynamics in Guapiaçu Ecological Reserve, Cachoeiras de Macacu, Rio de Janeiro, Brazil. PLOS ONE, v. 10, n. 3, p. e0122268, 27 mar. 2015a. ALENCAR, J. et al. Feeding Patterns of Mosquitoes (Diptera: Culicidae) in the Atlantic Forest, Rio de Janeiro, Brazil. Journal of Medical Entomology, v. 52, n. 5, p. 783–788, set. 2015b. ALMEIDA-GOMES, M. et al. Herpetofauna of the Reserva Ecológica de Guapiaçu (REGUA) and Its Surrounding Areas, in the State of Rio de Janeiro, Brazil. Biota Neotropica, v. 14, n. 3, set. 2014. ALONSO, D. P. et al. Host Feeding Patterns of Mansonia (Diptera, Culicidae) in Rural Settlements near Porto Velho, State of Rondonia, Brazil. Biomolecules, v. 13, n. 3, p. 553, 17 mar. 2023. ALVARES, C. A. et al. Köppen’s Climate Classification Map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711–728, 1 dez. 2013. AVANESYAN, A.; SUTTON, H.; LAMP, W. O. Choosing an Effective PCR-Based Approach for Diet Analysis of Insect Herbivores: A Systematic Review. Journal of Economic Entomology, v. 114, n. 3, p. 1035–1046, 11 jun. 2021. BALASHOV, Y. S. Interaction Between Blood-Sucking Arthropods and Their Hosts, and Its Influence on Vector Potential. Annual Review of Entomology, v. 29, n. 1, p. 137–156, 1984. BALASUBRAMANIAN, S. et al. Characterization of Triatomine Bloodmeal Sources Using Direct Sanger Sequencing and Amplicon Deep Sequencing Methods. Scientific Reports, v. 12, n. 1, p. 10234, 17 jun. 2022. BARBAZAN, P. et al. Detection of Host Virus-Reactive Antibodies in Blood Meals of Naturally Engorged Mosquitoes. Vector-Borne and Zoonotic Diseases, v. 9, n. 1, p. 103–108, fev. 2009. BARBIERI, E. Variação sazonal do gaivotão (Larus dominicanus) durante o ano de 2005 no estuário de Cananéia-Iguape-Ilha Comprida, São Paulo, Brasil. Biota Neotropica, v. 8, n. 2, p. 97–102, jun. 2008. BATZER, M. A.; DEININGER, P. L. Alu Repeats and Human Genomic Diversity. Nature Reviews Genetics, v. 3, n. 5, p. 370–379, maio 2002. 61 BECKHAM, J. D.; TYLER, K. L. Arbovirus Infections: CONTINUUM: Lifelong Learning in Neurology, v. 21, p. 1599–1611, dez. 2015. BEIER, J. C. et al. Bloodmeal Identification by Direct Enzyme-Linked Immunosorbent Assay (Elisa), Tested on Anopheles (Diptera: Culicidae) in Kenya12. Journal of Medical Entomology, v. 25, n. 1, p. 9–16, 1 jan. 1988. BELLEKOM, B. et al. Effects of Storage Conditions and Digestion Time on DNA Amplification of Biting Midge (Culicoides) Blood Meals. Parasites & Vectors, v. 16, n. 1, p. 13, 13 jan. 2023. BENSON, D. A. GenBank. Nucleic Acids Research, v. 34, n. 90001, p. D16–D20, 1 jan. 2006. BIDLINGMAYER, W. L. The Measurement of Adult Mosquito Population Changes Some Considerations. Journal of the American Mosquito Control Association, v. 1, n. 3, p. 328– 348, 1985. BIDLINGMAYER, W. L.; HEM, D. G. The Range of Visual Attraction and the Effect of Competitive Visual Attractants upon Mosquito (Diptera: Culicidae) Flight. Bulletin of Entomological Research, v. 70, n. 2, p. 321–342, jun. 1980. BILLINGSLEY, P. F.; HECKER, H. Blood Digestion in the Mosquito, Anopheles stephensi Liston (Diptera: Culicidae): Activity and Distribution of Trypsin, Aminopeptidase, and a- Glucosidase in the Midgut. Journal of Medical Entomology, v. 28, n. 6, 1991. BLAIR, C. D.; ADELMAN, Z. N.; OLSON, K. E. Molecular Strategies for Interrupting Arthropod-Borne Virus Transmission by Mosquitoes. Clinical Microbiology Reviews, v. 13, n. 4, p. 651–661, out. 2000. BORKENT, A.; GRIMALDI, D. A. The Earliest Fossil Mosquito (Diptera: Culicidae), in Mid- Cretaceous Burmese Amber. Annals of the Entomological Society of America, v. 97, n. 5, p. 882–888, 2004. BORLAND, E. M.; KADING, R. C. Modernizing the Toolkit for Arthropod Bloodmeal Identification. Insects, v. 12, n. 1, p. 37, 6 jan. 2021. BOSCH, O. J.; GEIER, M.; BOECKH, J. Contribution of Fatty Acids to Olfactory Host Finding of Female Aedes aegypti. Chemical Senses, v. 25, n. 3, p. 323–330, 1 jun. 2000. BRAACK, L. et al. Mosquito-Borne Arboviruses of African Origin: Review of Key Viruses and Vectors. Parasites & Vectors, v. 11, n. 1, p. 29, dez. 2018. BRAKS, M. A. H.; TAKKEN, W. Incubated Human Sweat but Not Fresh Sweat Attracts the Malaria Mosquito Anopheles gambiae Sensu Stricto. Journal of Chemical Ecology, v. 25, n. 3, p. 663–672, 1999. BRANCO, A. F. V. C. et al. Avaliação da perda da biodiversidade na Mata Atlântica. Ciência Florestal, v. 31, n. 4, p. 1885–1909, 2021. 62 BRIEGEL, H.; REZZONICO, L. Concentration of Host Blood Protein During Feeding by Anopheline Mosquitoes (Diptera: Culicidae)1. Journal of Medical Entomology, v. 22, n. 6, p. 612–618, 27 nov. 1985. BRINKMANN, A.; NITSCHE, A.; KOHL, C. Viral Metagenomics on Blood-Feeding Arthropods as a Tool for Human Disease Surveillance. International Journal of Molecular Sciences, v. 17, n. 10, p. 1743, 19 out. 2016. BRUGMAN, V. A. et al. Blood-Feeding Patterns of Native Mosquitoes and Insights into Their Potential Role as Pathogen Vectors in the Thames Estuary Region of the United Kingdom. Parasites & Vectors, v. 10, n. 1, p. 163, dez. 2017. CALIENDO, V. et al. Transatlantic Spread of Highly Pathogenic Avian Influenza H5N1 by Wild Birds from Europe to North America in 2021. Scientific Reports, v. 12, n. 1, p. 11729, 11 jul. 2022. CAO, Z. et al. Tembusu Virus in Ducks, China. Emerging Infectious Diseases, v. 17, n. 10, p. 1873–1875, out. 2011. CARDÉ, R. T. Multi-Cue Integration: How Female Mosquitoes Locate a Human Host. Current Biology, v. 25, n. 18, p. R793–R795, set. 2015. CARDÉ, R. T.; GIBSON, G. Host finding by female mosquitoes: mechanisms of orientation to host odours and other cues. Olfaction in vector-host interactions. p. 115–141. 2010 CARDOSO, J. D. C. et al. Yellow Fever Virus in Haemagogus leucocelaenus and Aedes serratus Mosquitoes, Southern Brazil, 2008. Emerging Infectious Diseases, v. 16, n. 12, p. 1918–1924, dez. 2010. CARRINGTON, L. B.; SIMMONS, C. P. Human to Mosquito Transmission of Dengue Viruses. Frontiers in Immunology, v. 5, 17 jun. 2014. CARROLL, M. W. et al. Temporal and Spatial Analysis of the 2014–2015 Ebola Virus Outbreak in West Africa. Nature, v. 524, n. 7563, p. 97–101, 6 ago. 2015. CASTRO, E. B. V. Fatores Determinantes da Vulnerabilidade à Extinção e Ordem de Perda de Espécies de Pequenos Mamíferos em uma Paisagem Fragmentada da Mata Atlântica. Dissertação de Mestrado, 2002. CENTROS DE CONTROLE E PREVENÇÃO DE DOENÇAS (CDC). Surto de varíola dos macacos em vários estados - Illinois, Indiana e Wisconsin, 2003. Morbidity and Mortality Weekly Report, v. 52, n. 23, p. 537–540, 2003. CHAMBERLAIN, R. W.; SUDIA, W. D. Mechanism of Transmission of Viruses by Mosquitoes. Annual Review of Entomology, v. 6, n. 1, p. 371–390, jan. 1961. CHASE, J. M.; KNIGHT, T. M. Drought‐induced Mosquito Outbreaks in Wetlands. Ecology Letters, v. 6, n. 11, p. 1017–1024, nov. 2003. 63 CHEN, R. et al. Comprehensive Genome Scale Phylogenetic Study Provides New Insights on the Global Expansion of Chikungunya Virus. Journal of Virology, v. 90, n. 23, p. 10600– 10611, dez. 2016. CHOUMET, V. et al. Visualizing non Infectious and Infectious Anopheles gambiae Blood Feedings in Naive and Saliva-Immunized Mice. PLoS ONE, v. 7, n. 12, p. e50464, 13 dez. 2012. CHUPIL, H. et al. Insights Into the Ecology and Conservation of Coastal Brazil Seabirds Based On Band Returns. Marine Ornithology, n. 52, p. 37–44, 2024. CLETON, N. et al. Come Fly with Me: Review of Clinically Important Arboviruses for Global Travelers. Journal of Clinical Virology, v. 55, n. 3, p. 191–203, nov. 2012. CONSOLI, R. A. G. B.; OLIVEIRA, R. L. de. Principais mosquitos de importância sanitária no Brasil. Rio de Janeiro, RJ: Editora FIOCRUZ, 1994. COULSON, R. M. R. et al. Amplification and Analysis of Human DNA Present in Mosquito Bloodmeals. Medical and Veterinary Entomology, v. 4, n. 4, p. 357–366, out. 1990. COUTINHO-ABREU, I. V.; RIFFELL, J. A.; AKBARI, O. S. Human Attractive Cues and Mosquito Host-Seeking Behavior. Trends in Parasitology, v. 38, n. 3, p. 246–264, mar. 2022. DAEP, C. A.; MUÑOZ-JORDÁN, J. L.; EUGENIN, E. A. Flaviviruses, an Expanding Threat in Public Health: Focus on Dengue, West Nile, and Japanese Encephalitis Virus. Journal of NeuroVirology, v. 20, n. 6, p. 539–560, dez. 2014. DAVIS, G. E.; PHILIP, C. B. The Identification of The Blood-Meal in West African Mosquitoes by Means of The Precipitin Test. A Preliminary Report. American Journal of Epidemiology, v. 14, n. 1, p. 130–141, 1 jul. 1931. DAVIS, L. E.; BECKHAM, J. D.; TYLER, K. L. North American Encephalitic Arboviruses. Neurologic Clinics, v. 26, n. 3, p. 727–757, ago. 2008. DAY, J. F.; EBERT, K. M.; EDMAN, J. D. Feeding Patterns of Mosquitoes (Diptera: Culicidae) Simultaneously Exposed to Malarious and Healthy Mice, Including a Method for Separating Blood Meals from Conspecific Hosts1. Journal of Medical Entomology, v. 20, n. 2, p. 120–127, 1983. DE CARVALHO, G. C. et al. Blood Meal Sources of Mosquitoes Captured in Municipal Parks in São Paulo, Brazil. Journal of Vector Ecology, v. 39, n. 1, p. 146–152, jun. 2014. DEKKER, T. et al. L‐lactic Acid: A Human‐signifying Host Cue for the Anthropophilic Mosquito Anopheles gambiae. Medical and Veterinary Entomology, v. 16, n. 1, p. 91–98, mar. 2002. DEKKER, T.; CARDÉ, R. T. Moment-to-Moment Flight Manoeuvres of the Female Yellow Fever Mosquito (Aedes aegypti) in Response to Plumes of Carbon Dioxide and Human Skin Odour. Journal of Experimental Biology, v. 214, n. 20, p. 3480–3494, 15 out. 2011. 64 DELATTE, H. et al. Blood-Feeding Behavior of Aedes albopictus, a Vector of Chikungunya on La Réunion. Vector-Borne and Zoonotic Diseases, v. 10, n. 3, p. 249–258, abr. 2010. DICK, G. W. A. Zika Virus (II). Pathogenicity and Physical Properties. Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 46, n. 5, p. 521–534, set. 1952. DUVALL, L. B. Mosquito Host-Seeking Regulation: Targets for Behavioral Control. Trends in Parasitology, v. 35, n. 9, p. 704–714, set. 2019. EDIJAN DEL SANTO. Após morte de 20 patos em dez dias, Esalq em Piracicaba restringe acesso a lago e investiga causas. Disponível em: <https://g1.globo.com/sp/piracicaba- regiao/noticia/2024/01/05/apos-morte-de-20-patos-em-dez-dias-esalq-em-piracicaba- restringe-acesso-a-lago-e-investiga-causas.ghtml>. Acesso em: 14 set. 2024a. EDIJAN DEL SANTO. Morte de 15 patos em lago do Bosque Maria Thereza intriga moradores em Limeira. Disponível em: <https://g1.globo.com/sp/piracicaba- regiao/noticia/2024/04/16/morte-de-15-patos-em-lago-do-bosque-maria-thereza-preocupa- moradores-em-limeira-entenda.ghtml> Acesso em: 14 set. 2024b. EDRISSIAN, Gh. H.; HAFIZI, A. Application of Enzyme-Linked Immunosorbent Assay (ELISA) to Identification of Anopheles Mosquito Bloodmeals. Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 76, n. 1, p. 54–56, jan. 1982. EIRAS, A. E.; JEPSON, P. C. Host Location by Aedes aegypti (Diptera: Culicidae): A Wind Tunnel Study of Chemical Cues. Bulletin of Entomological Research, v. 81, n. 2, p. 151–160, jun. 1991. EIRAS, A. E.; JEPSON, P. C. Responses of Female Aedes aegypti (Diptera: Culicidae) to Host Odours and Convection Currents Using an Olfactometer Bioassay. Bulletin of Entomological Research, v. 84, n. 2, p. 207–211, jun. 1994. FARAJI, A. et al. Comparative Host Feeding Patterns of the Asian Tiger Mosquito, Aedes albopictus, in Urban and Suburban Northeastern USA and Implications for Disease Transmission. PLoS Neglected Tropical Diseases, v. 8, n. 8, p. e3037, 7 ago. 2014. FERNANDES, D. da S. Estrutura de uma floresta seca de restinga em Cabo Frio, RJ. 2005. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro/Escola Nacional de Botânica Tropical, Rio de Janeiro, 2005. FIGUEIREDO, L. T. M. The Brazilian Flaviviruses. Microbes and Infection, v. 2, n. 13, p. 1643–1649, nov. 2000. FIGUEIREDO, L. T. M. Emergent Arboviruses in Brazil. Revista da Sociedade Brasileira de Medicina Tropical, v. 40, n. 2, p. 224–229, abr. 2007. FIKRIG, K.; HARRINGTON, L. C. Understanding and Interpreting Mosquito Blood Feeding Studies: The Case of Aedes albopictus. Trends in Parasitology, v. 37, n. 11, p. 959–975, nov. 2021. FLICK, R.; BOULOY, M. Rift Valley Fever Virus. Current Molecular Medicine, v. 5, n. 8, p. 827–834, 1 dez. 2005. 65 FLIES, E. J. et al. Regional Comparison of Mosquito Bloodmeals in South Australia: Implications for Ross River Virus Ecology. Journal of Medical Entomology, v. 53, n. 4, p. 902–910, jul. 2016. FOLEY, D. H.; RUEDA, L. M.; WILKERSON, R. C. Insight into Global Mosquito Biogeography from Country Species Records. 2007. FORATTINI, O. P. et al. Preferências alimentares e domiciliação de mosquitos Culicidae no Vale do Ribeira, São Paulo, Brasil, com especial referência a Aedes scapularis e a Culex (Melanoconion). Revista de Saúde Pública, v. 23, n. 1, p. 9–19, fev. 1989. FORATTINI, O. P. Culicidologia Médica: Identificação, Biologia e Epidemiologia. Depertamento de Epidemiologia, Universidade de São Paulo.: EdUsp, 2002. v. 2 FORRESTER, N. L. et al. Genome-Scale Phylogeny of the Alphavirus Genus Suggests a Marine Origin. Journal of Virology, v. 86, n. 5, p. 2729–2738, mar. 2012. FOSTER, W. A. Mosquito Sugar Feeding and Reproductive Energetics. Annual Review of Entomology, v. 40, p. 443–474, 1995. FOSTER, W. A.; WALKER, E. D. Mosquitoes (Culicidae). Em: Medical and Veterinary Entomology. Elsevier, 2019. p. 261–325. FRANZ, A. et al. Tissue Barriers to Arbovirus Infection in Mosquitoes. Viruses, v. 7, n. 7, p. 3741–3767, 8 jul. 2015. FREIRE, M. G. et al. Relationship between Environmental Conditions and Host-Seeking Activity of Ochlerotatus Albifasciatus (Diptera: Culicidae) in an Agroecosystem and in an Urban Area in Chubut, Central Patagonia, Argentina. Journal of Natural History, v. 50, n. 21–22, p. 1369–1380, 10 jun. 2016. GAIO, A. D. O. et al. Contribution of Midgut Bacteria to Blood Digestion and Egg Production in Aedes aegypti (Diptera: Culicidae). Parasites & Vectors, v. 4, n. 1, p. 105, dez. 2011. GANGULA, R. et al. Ensemble Machine Learning Based Prediction of Dengue Disease with Performance and Accuracy Elevation Patterns. Materials Today: Proceedings, v. 80, p. 3458– 3463, 2023. GAO, D. et al. Prevention and Control of Zika as a Mosquito-Borne and Sexually Transmitted Disease: A Mathematical Modeling Analysis. Scientific Reports, v. 6, n. 1, p. 28070, 17 jun. 2016. GARCIA-REJON, J. E. et al. An Updated Review of the Invasive Aedes albopictus in the Americas; Geographical Distribution, Host Feeding Patterns, Arbovirus Infection, and the Potential for Vertical Transmission of Dengue Virus. Insects, v. 12, n. 11, p. 967, 26 out. 2021. GEIER, M. Ammonia as an Attractive Component of Host Odour for the Yellow Fever Mosquito, Aedes aegypti. Chemical Senses, v. 24, n. 6, p. 647–653, 1 dez. 1999. 66 GEORGE, J. et al. Malaria Mosquitoes Host-Locate and Feed upon Caterpillars. PLOS ONE, v. 9, n. 11, 2014. GILLIES, M. T. Selection for hot preference in Anopheles gambiae. Nature, n. 203, p. 852– 54, 1964. GILLIES, M. T. The Role of Carbon Dioxide in Host-Finding by Mosquitoes (Diptera: Culicidae): A Review. Bulletin of Entomological Research, v. 70, n. 4, p. 525–532, dez. 1980. GILLIES, M. T.; WILKES, T. J. The Range of Attraction of Animal Baits and Carbon Dioxide for Mosquitoes. Studies in a Freshwater Area of West Africa. Bulletin of Entomological Research, v. 61, n. 3, p. 389–404, fev. 1972. GOMES, L. A. et al. Comparison between Precipitin and ELISA Tests in the Bloodmeal Detection of Aedes aegypti (Linnaeus) and Aedes fluviatilis (Lutz) Mosquitoes Experimentally Fed on Feline, Canine and Human Hosts. Memórias do Instituto Oswaldo Cruz, v. 96, n. 5, p. 693–695, jul. 2001. GÓMEZ-DÍAZ, E.; FIGUEROLA, J. New Perspectives in Tracing Vector-Borne Interaction Networks. Trends in Parasitology, v. 26, n. 10, p. 470–476, out. 2010. GOUAGNA, L. C. et al. Sugar-Source Preference, Sugar Intake and Relative Nutritional Benefits in Anopheles arabiensis Males. Acta Tropica, v. 132, p. S70–S79, abr. 2014. GOULD, E. et al. Emerging Arboviruses: Why Today? One Health, v. 4, p. 1–13, dez. 2017. GOUVEIA DE ALMEIDA, A. P. Os mosquitos (Diptera, Culicidae) e a sua importância médica em Portugal: desafios para o século XXI. Acta Médica Portuguesa, v. 24, n. 6, p. 961– 74, 20 jun. 2012. GRATZ, N. G. Critical Review of the Vector Status of Aedes albopictus. Medical and Veterinary Entomology, v. 18, n. 3, p. 215–227, set. 2004. GREENWALT, D. E. et al. Hemoglobin-Derived Porphyrins Preserved in a Middle Eocene Blood-Engorged Mosquito. Proceedings of the National Academy of Sciences of the United States of America, v. 110, n. 46, p. 18496–18500, 2013. GUAPIAÇU GRANDE VIDA. Documento de Concepção do Programa para Atividades de Reflorestamento. 2016. GUARNER, J.; HALE, G. L. Four Human Diseases with Significant Public Health Impact Caused by Mosquito-Borne Flaviviruses: West Nile, Zika, Dengue and Yellow Fever. Seminars in Diagnostic Pathology, v. 36, n. 3, p. 170–176, maio 2019. GUBLER, D. J. Human Arbovirus Infections Worldwide. Annals of the New York Academy of Sciences, v. 951, n. 1, p. 13–24, dez. 2001. GUO, X. et al. Potential Vector Competence of Mosquitoes to Transmit Baiyangdian Virus, a New Tembusu-Related Virus in China. Vector-Borne and Zoonotic Diseases, v. 20, n. 7, p. 541–546, 1 jul. 2020. 67 GYAWALI, N. et al. Identification of the Source of Blood Meals in Mosquitoes Collected from North-Eastern Australia. Parasites & Vectors, v. 12, n. 1, p. 198, dez. 2019. HADDOW, A. D. et al. Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage. PLoS Neglected Tropical Diseases, v. 6, n. 2, p. e1477, 28 fev. 2012. HADJ-HENNI, L. et al. Comparison of Vertebrate Cytochrome b and Prepronociceptin for Blood Meal Analyses in Culicoides. Frontiers in Veterinary Science, v. 2, 27 maio 2015. HAGAN, R. W. et al. Dehydration Prompts Increased Activity and Blood Feeding by Mosquitoes. Scientific Reports, v. 8, n. 1, p. 6804, 1 maio 2018. HALL, R. A. et al. Advances in Arbovirus Surveillance, Detection and Diagnosis. Journal of Biomedicine and Biotechnology, v. 2012, p. 1–2, 2012. HAMEL, R. et al. New Insights into the Biology of the Emerging Tembusu Virus. Pathogens, v. 10, n. 8, p. 1010, 10 ago. 2021. HARBACH, R. E. The Culicidae (Diptera): A Review of Taxonomy, Classification and Phylogeny*. Zootaxa, v. 1668, n. 1, p. 591–638, 21 dez. 2007. HARBACH, R. E.; KITCHING, I. J. Phylogeny and Classification of the Culicidae (Diptera). Systematic Entomology, v. 23, n. 4, p. 327–370, out. 1998. HARRIS, P.; RIORDAN, D. F.; COOK, D. Mosquitoes Feeding on Insect Larvae. Science, v. 164, n. 3876, p. 184–185, 1969. HARTKOPF-FRODER, C. et al. Mid-Cretaceous charred fossil flowers reveal direct observation of arthropod feeding strategies. Biology Letters, v. 8, n. 2, p. 295–298, 2012. HAYDON, D. T. et al. Identifying Reservoirs of Infection: A Conceptual and Practical Challenge. Emerging Infectious Diseases, v. 8, n. 12, p. 1468–1473, dez. 2002. HEBERT, P. D. N. et al. Biological Identifications through DNA Barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, v. 270, n. 1512, p. 313–321, 7 fev. 2003. HERNÁNDEZ-TRIANA, L. M. et al. Molecular Approaches for Blood Meal Analysis and Species Identification of Mosquitoes (Insecta: Diptera: Culicidae) in Rural Locations in Southern England, United Kingdom. Zootaxa, v. 4250, n. 1, 3 abr. 2017. HINZE, A. et al. Mosquito Host Seeking in 3D Using a Versatile Climate-Controlled Wind Tunnel System. Frontiers in Behavioral Neuroscience, v. 15, p. 643693, 11 mar. 2021. HOFFMANN, E. J.; MILLER, J. R. Reduction of Mosquito (Diptera: Culicidae) Attacks on a Human Subject by Combination of Wind and Vapor-Phase DEET Repellent. Journal of Medical Entomology, v. 39, n. 6, p. 935–938, 1 nov. 2002. HOLMES, E.; TWIDDY, S. The Origin, Emergence and Evolutionary Genetics of Dengue Virus. Infection, Genetics and Evolution, v. 3, n. 1, p. 19–28, maio 2003. 68 HOMONNAY, Z. G. et al. Tembusu-like Flavivirus (Perak Virus) as the Cause of Neurological Disease Outbreaks in Young Pekin Ducks. Avian Pathology, v. 43, n. 6, p. 552–560, 2 nov. 2014. HOPKEN, M. W. et al. Temporal and Spatial Blood Feeding Patterns of Urban Mosquitoes in the San Juan Metropolitan Area, Puerto Rico. Insects, v. 12, n. 2, p. 129, 2 fev. 2021. HORNE, K.; VANLANDINGHAM, D. Bunyavirus-Vector Interactions. Viruses, v. 6, n. 11, p. 4373–4397, 13 nov. 2014. HUSNINA, Z.; CLEMENTS, A. C. A.; WANGDI, K. Forest Cover and Climate as Potential Drivers for Dengue Fever in Sumatra and Kalimantan 2006–2016: A Spatiotemporal Analysis. Tropical Medicine & International Health, v. 24, n. 7, p. 888–898, jul. 2019. ILACQUA, R. C. et al. Reemergence of Yellow Fever in Brazil: The Role of Distinct Landscape Fragmentation Thresholds. Journal of Environmental and Public Health, v. 2021, p. 1–7, 23 jul. 2021. INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA, I. (ed.). Manual técnico da vegetação brasileira. 2a̲edição revista e ampliada ed. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística-IBGE, 2012. INSTITUTO CHICO MENDES DE CONSERVAÇÃO DA BIODIVERSIDADE. Plano de Manejo da Área de Proteção Ambiental da Bacia do Rio São João/Mico-Leão-Dourado. 2008. INSTITUTO CHICO MENDES DE CONSERVAÇÃO DA BIODIVERSIDADE. Relatório de Rotas e Áreas de Concentração de Aves Migratórias no Brasil. 3a edição, 2019. JOUANNIC, J.-M. et al. Zika Virus Infection in French Polynesia. The Lancet, v. 387, n. 10023, p. 1051–1052, mar. 2016. KEESING, F. et al. Impacts of Biodiversity on the Emergence and Transmission of Infectious Diseases. Nature, v. 468, n. 7324, p. 647–652, dez. 2010. KENNEDY, J. S. The Visual Responses of Flying Mosquitoes. Proceedings of the Zoological Society of London, v. A109, n. 4, p. 221–242, jan. 1940. KENNEY, J. L.; BRAULT, A. C. The Role of Environmental, Virological and Vector Interactions in Dictating Biological Transmission of Arthropod-Borne Viruses by Mosquitoes. Advances in Virus Research, Elsevier, v. 89, p. 39–83, 2004. KENT, R. J. Molecular Methods for Arthropod Bloodmeal Identification and Applications to Ecological and Vector-Borne Disease Studies. Molecular Ecology Resources, v. 9, n. 1, p. 4– 18, jan. 2009. KEVEN, J. B.; WALKER, E. D.; VENTA, P. J. A Microsatellite Multiplex Assay for Profiling Pig DNA in Mosquito Bloodmeals. Journal of Medical Entomology, v. 56, n. 4, p. 907–914, 27 jun. 2019. 69 KILPATRICK, A. M. et al. West Nile Virus Epidemics in North America Are Driven by Shifts in Mosquito Feeding Behavior. PLoS Biology, v. 4, n. 4, p. 82, 2006. KING, R. A. et al. INVITED REVIEW: Molecular Analysis of Predation: A Review of Best Practice for DNA‐based Approaches. Molecular Ecology, v. 17, n. 4, p. 947–963, fev. 2008. KLINEI, L.; LEMIRE, G. F. Field Evaluation of Heat as an Added Attractant to Traps Baited with Carbon Dioxide and Octenol for Aedes taeniorhynchus. Joumal of the American Mosquito Control Association, v. 11, n. 4, p. 454–456, 1995. KLOWDEN, M. J.; BRIEGEL, H. Mosquito Gonotrophic Cycle and Multiple Feeding Potential: Contrasts Between Anopheles and Aedes (Diptera: Culicidae). Journal of Medical Entomology, v. 31, n. 4, p. 618–622, 1 jul. 1994. KNOWLTON, N.; WEIGT, L. A. New Dates and New Rates for Divergence across the Isthmus of Panama. Proceedings of the Royal Society of London. Series B: Biological Sciences, v. 265, n. 1412, p. 2257–2263, 7 dez. 1998. KOCHER, T. D. et al. Dynamics of Mitochondrial DNA Evolution in Animals: Amplification and Sequencing with Conserved Primers. Proceedings of the National Academy of Sciences, v. 86, n. 16, p. 6196–6200, ago. 1989. KURTZ, B. C.; DE ARAUJO, D. S. D. Composição florística e estrutura do componente arbóreo de um trecho de Mata Atlântica na Estação Ecológica Estadual do Paraíso, Cachoeiras de Macacu, Rio de Janeiro, Brasil. Rodriguésia, v. 51, n. 78–79, p. 69–112, 2000. LACEY, E. S.; RAY, A.; CARDÉ, R. T. Close Encounters: Contributions of Carbon Dioxide and Human Skin Odour to Finding and Landing on a Host in Aedes aegypti. Physiological Entomology, v. 39, n. 1, p. 60–68, mar. 2014. LAHONDÈRE, C.; LAZZARI, C. R. Mosquitoes Cool Down during Blood Feeding to Avoid Overheating. Current Biology, v. 22, n. 1, p. 40–45, jan. 2012. LAPORTA, G. Z. et al. Malaria Transmission in Landscapes with Varying Deforestation Levels and Timelines in the Amazon: A Longitudinal Spatiotemporal Study. Scientific Reports, v. 11, n. 1, p. 6477, 19 mar. 2021. LATHOUWERS, M. et al. Migration Routes and Timing of European Nightjars (Caprimulgus Europaeus) Breeding in Eastern Mongolia. Journal of Ornithology, v. 163, n. 4, p. 881–890, out. 2022. LEAL, W. S. Odorant Reception in Insects: Roles of Receptors, Binding Proteins, and Degrading Enzymes. Annual Review of Entomology, v. 58, n. 1, p. 373–391, 7 jan. 2013. LEHANE, M. J. The Biology of Blood-Sucking in Insects. Second Edition ed. Inglaterra: Cambridge University Press, 2005. LEQUIME, S.; PAUL, R. E.; LAMBRECHTS, L. Determinants of Arbovirus Vertical Transmission in Mosquitoes. PLOS Pathogens, v. 12, n. 5, p. e1005548, 12 maio 2016. 70 LIU, M. et al. A Novel Goose-Origin Tembusu Virus Exhibits Pathogenicity in Day-Old Chicks with Evidence of Direct Contact Transmission. Poultry Science, v. 103, n. 2, p. 103332, fev. 2024. LOAIZA, J. R. et al. Disturbance and Mosquito Diversity in the Lowland Tropical Rainforest of Central Panama. Scientific Reports, v. 7, n. 1, p. 7248, 3 ago. 2017. LOAIZA, J. R. et al. Forest Disturbance and Vector Transmitted Diseases in the Lowland Tropical Rainforest of Central Panama. Tropical Medicine & International Health, v. 24, n. 7, p. 849–861, jul. 2019. LOPES, N.; NOZAWA, C.; LINHARES, R. E. C. Características gerais e epidemiologia dos arbovírus emergentes no Brasil. Revista Pan-Amazônica de Saúde, v. 5, n. 3, ago. 2014. LOUNIBOS, L. P. Invasions by Insect Vectors of Human Disease. Annual Review of Entomology, v. 47, n. 1, p. 233–266, jan. 2002. LYIMO, I. N.; FERGUSON, H. M. Ecological and Evolutionary Determinants of Host Species Choice in Mosquito Vectors. Trends in Parasitology, v. 25, n. 4, p. 189–196, abr. 2009. MACDONALD, A. J.; MORDECAI, E. A. Amazon Deforestation Drives Malaria Transmission, and Malaria Burden Reduces Forest Clearing. Proceedings of the National Academy of Sciences, v. 116, n. 44, p. 22212–22218, 29 out. 2019. MAIN, B. J. et al. The Genetic Basis of Host Preference and Resting Behavior in the Major African Malaria Vector, Anopheles arabiensis. PLOS Genetics, v. 12, n. 9, 2016. MARANO, N.; ARGUIN, P. M.; PAPPAIOANOU, M. Impact of Globalization and Animal Trade on Infectious Disease Ecology. Emerging Infectious Diseases, v. 13, n. 12, p. 1807– 1809, dez. 2007. MARM KILPATRICK, A. et al. Host Heterogeneity Dominates West Nile Virus Transmission. Proceedings of the Royal Society B: Biological Sciences, v. 273, n. 1599, p. 2327–2333, 22 set. 2006. MARTINA, B. E. et al. Human to Human Transmission of Arthropod-Borne Pathogens. Current Opinion in Virology, v. 22, p. 13–21, fev. 2017. MARTÍNEZ-DE LA PUENTE, J. et al. Effect of Blood Meal Digestion and DNA Extraction Protocol on the Success of Blood Meal Source Determination in the Malaria Vector Anopheles Atroparvus. Malaria Journal, v. 12, n. 1, p. 109, dez. 2013. MARTÍNEZ-PORCHAS, M.; VILLALPANDO-CANCHOLA, E.; VARGAS-ALBORES, F. Significant Loss of Sensitivity and Specificity in the Taxonomic Classification Occurs When Short 16S rRNA Gene Sequences Are Used. Heliyon, v. 2, n. 9, p. e00170, set. 2016. MARTÍN-VÉLEZ, V. et al. Functional Connectivity Network between Terrestrial and Aquatic Habitats by a Generalist Waterbird, and Implications for Biovectoring. Science of The Total Environment, v. 705, p. 135886, fev. 2020. 71 MCKINNEY, R. M.; SPILLANE, J. T.; HOLDEN, P. Mosquito blood meals: dentification by a fluorescent antibody method. The American Journal of Tropical Medicine and Hygiene, v. 21, n. 6, p. 999–1003, 1972. MELGAREJO-COLMENARES, K.; CARDO, M. V.; VEZZANI, D. Blood Feeding Habits of Mosquitoes: Hardly a Bite in South America. Parasitology Research, v. 121, n. 7, p. 1829– 1852, jul. 2022. MINISTÉRIO DA AGRICULTURA E PECUÁRIA. Panorama da ocorrência da infecção pelo vírus influenza A de alta patogenicidade (H5N1) em aves silvestres e domésticas de subsistência no Brasil - maio a julho de 2023. Disponível em: <https://www.gov.br/agricultura/pt-br/assuntos/sanidade-animal-e-vegetal/saude- animal/programas-de-saude-animal/pnsa/influenza-aviaria>. MIÑO, C. I. et al. Genetic Insights into the Range Expansion of the Cattle Egret (Pelecaniformes: Ardeidae) in Brazil and Population Differentiation between the Native and Colonized Areas. Biological Journal of the Linnean Society, v. 136, n. 2, p. 306–320, 26 maio 2022. MOLAEI, G. et al. Host-Feeding Patterns of Potential Mosquito Vectors in Connecticut, USA: Molecular Analysis of Bloodmeals from 23 Species of Aedes, Anopheles, Culex, Coquillettidia, Psorophora, and Uranotaenia. Journal of Medical Entomology, v. 45, n. 6, 2008. MOLAEI, G.; ANDREADIS, T. G. Identification of Avian- and Mammalian-Derived Bloodmeals in Aedes vexans and Culiseta melanura (Diptera: Culicidae) and Its Implication for West Nile Virus Transmission in Connecticut, U.S.A. Journal of Medical Entomology, v. 43, n. 5, 2006. MORENO, E. S. et al. Reemergence of Yellow Fever: Detection of Transmission in the State of São Paulo, Brazil, 2008. Revista da Sociedade Brasileira de Medicina Tropical, v. 44, n. 3, p. 290–296, 1 jul. 2011. MORENO, G. S. Burning, wildfires and arboviruses: emerging relationships in the pre and post pandemic. Revista Científica ANAP Brasil, v. 14, n. 33, p. 1984–3240, 2021. MOURÃO, M. P. G. et al. Oropouche Fever Outbreak, Manaus, Brazil, 2007–2008. Emerging Infectious Diseases, v. 15, n. 12, p. 2063–2064, dez. 2009. MTAMBO, J. et al. Comparison of Preservation Methods of Rhipicephalus appendiculatus (Acari: Ixodidae) for Reliable DNA Amplification by PCR. Experimental & Applied Acarology, v. 38, n. 2–3, p. 189–199, fev. 2006. MUCCI, L. F. et al. Feeding Habits of Mosquitoes (Diptera: Culicidae) in an Area of Sylvatic Transmission of Yellow Fever in the State of São Paulo, Brazil. Journal of Venomous Animals and Toxins including Tropical Diseases, v. 21, n. 1, p. 6, dez. 2015. MUKABANA, W. R. et al. Extent of Digestion Affects the Success of Amplifying Human DNA from Blood Meals of Anopheles gambiae (Diptera: Culicidae). Bulletin of Entomological Research, v. 92, n. 3, p. 233–239, jun. 2002. 72 MUKABANA, W. R.; TAKKEN, W.; KNOLS, B. G. J. Analysis of Arthropod Bloodmeals Using Molecular Genetic Markers. Trends in Parasitology, v. 18, n. 11, p. 505–509, nov. 2002. MURILLO B., C.; ASTAIZA V., R.; FAJARDO O., P. Biologia de Anopheles (Kerteszia) neivai H., D. & K., 1913 (Diptera: Culicidae) en la Costa Pacífica de Colombia: III. Medidas de luminosidad y el comportamiento de picadura. Revista de Saúde Pública, v. 22, n. 2, p. 109–112, abr. 1988. MUTURI, E. J. et al. Next Generation Sequencing Approach for Simultaneous Identification of Mosquitoes and Their Blood-Meal Hosts. Journal of Vector Ecology, v. 46, n. 1, 14 jun. 2021. NAGAKI, S. S. et al. Host Feeding Patterns of Nyssorhynchus darlingi (Diptera: Culicidae) in the Brazilian Amazon. Acta Tropica, v. 213, p. 105751, jan. 2021. NAKHAPAKORN, K.; TRIPATHI, N. K. An Information Value Based Analysis of Physical and Climatic Factors Affecting Dengue Fever and Dengue Haemorrhagic Fever Incidence. International Journal of Health Geographics, v. 4, n. 13, 2005. NASCI, R. S. et al. West Nile Virus in Overwintering Culex Mosquitoes, New York City, 2000. Emerging Infectious Diseases, v. 7, n. 4, p. 742–744, 2001. NGO, K. A.; KRAMER, L. D. Identification of Mosquito Bloodmeals Using Polymerase Chain Reaction (PCR) With Order-Specific Primers. Journal of Medical Entomology, v. 40, n. 2, p. 215–222, 1 mar. 2003. NIEBYLSKI, M. L.; SAVAGE, H. M. Blood Hosts of Aedes albopictus in The United States. Journal of the American Mosquito Control Association, v. 10, n. 3, p. 447–450, 1994. NINVILAI, P. et al. The Presence of Duck Tembusu Virus in Thailand since 2007: A Retrospective Study. Transboundary and Emerging Diseases, v. 65, n. 5, p. 1208–1216, out. 2018. NORRIS, D. E.; KENT, R. J. Identification of Mammalian Blood Meals in Mosquitoes By A Multiplexed Polymerase Chain Reaction Targeting Cytochrome B. The American Journal of Tropical Medicine and Hygiene, v. 73, n. 2, p. 336–342, 1 ago. 2005. NUNES, M. R. T. et al. Oropouche Virus Isolation, Southeast Brazil. Emerging Infectious Diseases, v. 11, n. 10, p. 1610–1613, out. 2005. OLSEN, B. et al. Global Patterns of Influenza A Virus in Wild Birds. Science, v. 312, n. 5772, p. 384–388, 21 abr. 2006. ORSBORNE, J. et al. Investigating the Blood-Host Plasticity and Dispersal of Anopheles Coluzzii Using a Novel Field-Based Methodology. Parasites & Vectors, v. 12, n. 1, p. 143, dez. 2019. ORTIZ, D. I. et al. The Impact of Deforestation, Urbanization, and Changing Land Use Patterns on the Ecology of Mosquito and Tick-Borne Diseases in Central America. Insects, v. 13, n. 1, p. 20, 23 dez. 2021. 73 OSHAGHI, M. A. et al. Effects of Post-Ingestion and Physical Conditions on PCR Amplification of Host Blood Meal DNA in Mosquitoes. Experimental Parasitology, v. 112, n. 4, p. 232–236, abr. 2006. PATEL, P. et al. Development of One-Step Quantitative Reverse Transcription PCR for the Rapid Detection of Flaviviruses. Virology Journal, v. 10, n. 1, p. 58, dez. 2013. PATIÑO, L. et al. Genomics for Arbovirus Surveillance: Considerations for Routine Use in Public Health Laboratories. Viruses, v. 16, n. 8, p. 1242, 2 ago. 2024. PATZ, J. A. et al. Unhealthy Landscapes: Policy Recommendations on Land Use Change and Infectious Disease Emergence. Environmental Health Perspectives, v. 112, n. 10, p. 1092– 1098, jul. 2004. PAVLIN, B. I.; SCHLOEGEL, L. M.; DASZAK, P. Risk of Importing Zoonotic Diseases through Wildlife Trade, United States. Emerging Infectious Diseases, v. 15, n. 11, p. 1721– 1726, nov. 2009. PEACH, D. A. H. et al. Multimodal Floral Cues Guide Mosquitoes to Tansy Inflorescences. Scientific Reports, v. 9, n. 1, p. 3908, 7 mar. 2019. PEACH, D. A. H.; GRIES, G. Mosquito Phytophagy – Sources Exploited, Ecological Function, and Evolutionary Transition to Haematophagy. Entomologia Experimentalis et Applicata, v. 168, n. 2, p. 120–136, fev. 2020. PENG, S.-H. et al. Genome Analysis of a Novel Tembusu Virus in Taiwan. Viruses, v. 12, n. 5, p. 567, 22 maio 2020. PETERSEN, L. R. et al. Zika Virus. New England Journal of Medicine, v. 374, n. 16, p. 1552–1563, 21 abr. 2016. PICHON, B. et al. Blood-Meal Analysis for the Identification of Reservoir Hosts of Tick-Borne Pathogens in Ireland. Vector-Borne and Zoonotic Diseases, v. 5, n. 2, p. 172–180, jun. 2005. POINAR, G. O. et al. Paleoculicis minutus(Diptera: Culicidae) n. Gen., n. Sp., from Cretaceous Canadian Amber, with a Summary of Described Fossil Mosquitoes. Acta Geologica Hispanica, v. 35, n. 1–2, 2000. QUICK, J. et al. Multiplex PCR Method for MinION and Illumina Sequencing of Zika and Other Virus Genomes Directly from Clinical Samples. Nature Protocols, v. 12, n. 6, p. 1261– 1276, jun. 2017. RAJALAKSHMI, S. DIFFERENT TYPES OF PCR TECHNIQUES AND ITS APPLICATIONS. International Journal of Pharmaceutical and Chemical Sciences, v. 7, n. 3, p. 285–292, 2017. RATNASINGHAM, S.; HEBERT, P. D. N. BARCODING, BOLD : The Barcode of Life Data System (Http://Www.Barcodinglife.Org). Molecular Ecology Notes, v. 7, n. 3, p. 355–364, maio 2007. 74 REEVES, L. E. et al. Maintenance of Host DNA Integrity in Field-Preserved Mosquito (Diptera: Culicidae) Blood Meals for Identification by DNA Barcoding. Parasites & Vectors, v. 9, n. 1, p. 503, dez. 2016. REIDENBACH, K. R. et al. Phylogenetic Analysis and Temporal Diversification of Mosquitoes (Diptera: Culicidae) Based on Nuclear Genes and Morphology. BMC Evolutionary Biology, v. 9, n. 1, p. 298, dez. 2009. REITER, P. Climate Change and Mosquito-Borne Disease. Environmental Health Perspectives, v. 109, 2001. RIBEIRO, J. M. C.; FRANCISCHETTI, I. M. B. Role of Arthropod Saliva in Blood Feeding: Sialome and Post-Sialome Perspectives. Annual Review of Entomology, v. 48, n. 1, p. 73–88, jan. 2003. ROCHA, C. F. D. et al. A Survey of the Leaf-Litter Frog Assembly from an Atlantic Forest Area (Reserva Ecológica de Guapiaçu) in Rio de Janeiro State, Brazil, with an Estimate of Frog Densities. Tropical Zoology, v. 20, p. 99–108, 2007. RYAN, S. J. et al. Global Expansion and Redistribution of Aedes-Borne Virus Transmission Risk with Climate Change. PLOS Neglected Tropical Diseases, v. 13, n. 3, p. e0007213, 28 mar. 2019. SALLUM, M. A. M. et al. Vector Competence, Vectorial Capacity of Nyssorhynchus darlingi and the Basic Reproduction Number of Plasmodium vivax in Agricultural Settlements in the Amazonian Region of Brazil. Malaria Journal, v. 18, n. 1, p. 117, dez. 2019. SAMUEL, P. P. et al. Host-Feeding Pattern of Culex quinquefasciatus Say and Mansonia annulifera (Theobald) (Diptera: Culicidae), the Major Vectors of Filariasis in a Rural Area of South India. Journal of Medical Entomology, v. 41, n. 3, p. 442–446, 1 maio 2004. SANTOS, C. S. et al. Molecular Identification of Blood Meals in Mosquitoes (Diptera, Culicidae) in Urban and Forested Habitats in Southern Brazil. PLOS ONE, v. 14, n. 2, p. e0212517, 19 fev. 2019. SANTOS, L. E. D. et al. First Records of Gray-Hooded Gull, Chroicocephalus cirrocephalus (Vieillot, 1818) (Charadriiformes, Laridae), in the State of Espírito Santo, Brazil. Check List, v. 17, n. 1, p. 21–26, 5 jan. 2021. SARDI, S. I. et al. Coinfections of Zika and Chikungunya Viruses in Bahia, Brazil, Identified by Metagenomic Next-Generation Sequencing. Journal of Clinical Microbiology, v. 54, n. 9, p. 2348–2353, set. 2016. SAVAGE, H. M. et al. Host-Feeding Patterns of Aedes albopictus (Diptera: Culicidae) at a Temperate North American Site. Journal of Medical Entomology, v. 30, n. 1, p. 27–34, 1 jan. 1993. SCARAFFIA, P. Y. Disruption of Mosquito Blood Meal Protein Metabolism. Genetic Control of Malaria and Dengue, n. Adelman ZN, p. 253–275, 2016. 75 SCOTT, T. W. et al. Detection of Multiple Blood Feeding in Aedes aegypti (Diptera: Culicidae) During a Single Gonotrophic Cycle Using a Histologic Technique. Journal of Medical Entomology, v. 30, n. 1, p. 94–99, 1 jan. 1993. SCOTT, T. W.; TAKKEN, W. Feeding Strategies of Anthropophilic Mosquitoes Result in Increased Risk of Pathogen Transmission. Trends in Parasitology, v. 28, n. 3, p. 114–121, mar. 2012. SEGURA, N. A. et al. Minireview: Epidemiological Impact of Arboviral Diseases in Latin American Countries, Arbovirus-Vector Interactions and Control Strategies. Pathogens and Disease, v. 79, n. 7, p. ftab043, 6 set. 2021. SEUTIN, G.; WHITE, B. N.; BOAG, P. T. Preservation of Avian Blood and Tissue Samples for DNA Analyses. Canadian Journal of Zoology, v. 69, n. 1, p. 82–90, 1 jan. 1991. SIMPSON, S. J. Mouthparts and feeding. Em: CHAPMAN, R. F. (Ed.). The Insects. 5. ed. Cambridge University Press, 2012. p. 15–45. SLAMA, D. et al. Blood Meal Analysis of Culicoides (Diptera: Ceratopogonidae) in Central Tunisia. PLOS ONE, v. 10, n. 3, p. e0120528, 20 mar. 2015. SLATKO, B. E.; GARDNER, A. F.; AUSUBEL, F. M. Overview of Next‐Generation Sequencing Technologies. Current Protocols in Molecular Biology, v. 122, n. 1, p. e59, abr. 2018. SMALLEGANGE, R. C. et al. The Effect of Aliphatic Carboxylic Acids on Olfaction-Based Host-Seeking of the Malaria Mosquito Anopheles gambiae Sensu Stricto. Journal of Chemical Ecology, v. 35, n. 8, p. 933–943, ago. 2009. SMALLEGANGE, R. C.; VERHULST, N. O.; TAKKEN, W. Sweaty Skin: An Invitation to Bite? Trends in Parasitology, v. 27, n. 4, p. 143–148, abr. 2011. SWAMI, K. K.; SRIVASTAVA, M. Original Article Blood Meal Preference of Some Anopheline Mosquitoes in Command and Non-Command Areas of Rajasthan, India. Journal of Arthropod-Borne Diseases, v. 6, n. 2, p. 98-103. 2012. TAANMAN, J.-W. The Mitochondrial Genome: Structure, Transcription, Translation and Replication. Biochimica et Biophysica Acta (BBA) - Bioenergetics, v. 1410, n. 2, p. 103–123, fev. 1999. TAKIZAWA, F. H. Levantamento Pedológico e Zoneamento Ambiental da Reserva Biológica de Poço das Antas. 1995. Departamento de Ciência do Solo, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba - SP, 1995. TAKKEN, W.; VERHULST, N. O. Host Preferences of Blood-Feeding Mosquitoes. Annual Review of Entomology, v. 58, n. 1, p. 433–453, 7 jan. 2013. TALEBZADEH, F. et al. Efficiency of Mitochondrial Genes and Nuclear Alu Elements in Detecting Human DNA in Blood Meals of Anopheles stephensi Mosquitoes: A Time-Course Study. Parasites & Vectors, v. 16, n. 1, p. 284, 14 ago. 2023. 76 TANG, Y. et al. Vector Competence of Culex quinquefasciatus for Tembusu Virus and Viral Factors for Virus Transmission by Mosquitoes. Veterinary Research, v. 55, n. 1, p. 109, 18 set. 2024. TATEM, A. J.; HAY, S. I.; ROGERS, D. J. Global Traffic and Disease Vector Dispersal. Proceedings of the National Academy of Sciences, v. 103, n. 16, p. 6242–6247, 18 abr. 2006. TEMPELIS, C. H. REVIEW ARTICLE1: Host-Feeding Patterns of Mosquitoes, with a Review of Advances in Analysis of Blood Meals by Serology. Journal of Medical Entomology, v. 11, n. 6, p. 635–653, 10 jan. 1975. THIEMANN, T. C. et al. Mosquito Host Selection Varies Seasonally with Host Availability and Mosquito Density. PLoS Neglected Tropical Diseases, v. 5, n. 12, p. e1452, 20 dez. 2011. THIEMANN, T. C.; REISEN, W. K. Evaluating Sampling Method Bias in Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae) Bloodmeal Identification Studies. Journal of Medical Entomology, v. 49, n. 1, p. 143–149, 1 jan. 2012. THONGSRIPONG, P. et al. Human–Mosquito Contact: A Missing Link in Our Understanding of Mosquito-Borne Disease Transmission Dynamics. Annals of the Entomological Society of America, v. 114, n. 4, p. 397–414, 8 jul. 2021. THONTIRAVONG, A. et al. Tembusu-Related Flavivirus in Ducks, Thailand. Emerging Infectious Diseases, v. 21, n. 12, p. 2164–2167, dez. 2015. TOBE, S. S.; KITCHENER, A. C.; LINACRE, A. M. T. Reconstructing Mammalian Phylogenies: A Detailed Comparison of the Cytochrome b and Cytochrome Oxidase Subunit I Mitochondrial Genes. PLoS ONE, v. 5, n. 11, p. e14156, 30 nov. 2010. TOWNSON, H. The Biology of Mosquitoes. Volume 1. Development, Nutrition and Reproduction. By A.N. Clements. (London: Chapman & Hall, 1992). Bulletin of Entomological Research, v. 83, n. 2, p. 307–308, jun. 1993. TOWNZEN, J. S.; BROWER, A. V. Z.; JUDD, D. D. Identification of Mosquito Bloodmeals Using Mitochondrial Cytochrome Oxidase Subunit I and Cytochrome b Gene Sequences. Medical and Veterinary Entomology, v. 22, n. 4, p. 386–393, dez. 2008. TRIVELLONE, V.; CAO, Y.; DIETRICH, C. H. Comparison of Traditional and Next- Generation Approaches for Uncovering Phytoplasma Diversity, with Discovery of New Groups, Subgroups and Potential Vectors. Biology, v. 11, n. 7, p. 977, 28 jun. 2022. VALERIO, L. et al. Host-Feeding Patterns of Aedes albopictus (Diptera: Culicidae) in Urban and Rural Contexts within Rome Province, Italy. Vector-Borne and Zoonotic Diseases, v. 10, n. 3, p. 291–294, abr. 2010. VALINSKY, L. et al. Molecular Identification of Bloodmeals From Sand Flies and Mosquitoes Collected in Israel. Journal of Medical Entomology, v. 51, n. 3, p. 678–685, 1 maio 2014. VAN BORM, S. et al. Highly Pathogenic H5N1 Influenza Virus in Smuggled Thai Eagles, Belgium. Emerging Infectious Diseases, v. 11, n. 5, p. 702–705, maio 2005. 77 VAN BREUGEL, F. et al. Mosquitoes Use Vision to Associate Odor Plumes with Thermal Targets. Current Biology, v. 25, n. 16, p. 2123–2129, ago. 2015. VARGHESE, J.; DE SILVA, I.; MILLAR, D. S. Latest Advances in Arbovirus Diagnostics. Microorganisms, v. 11, n. 5, p. 1159, 28 abr. 2023. VAZQUEZ-PROKOPEC, G. M. et al. A New, Cost-Effective, Battery-Powered Aspirator for Adult Mosquito Collections. Journal of Medical Entomology, v. 46, n. 6, p. 1256–1259, 1 nov. 2009. VEGA-RODRÍGUEZ, J. et al. Multiple Pathways for Plasmodium Ookinete Invasion of the Mosquito Midgut. Proceedings of the National Academy of Sciences, v. 111, n. 4, 28 jan. 2014. VELOSO, H. P.; RANGEL FILHO, A. L. R.; LIMA, J. C. A. Classificação da vegetação brasileira, adaptada a um sistema universal. Rio de Janeiro: Ministério da Economia, Fazenda e Planejamento, Fundação Instituto Brasileiro de Geografia e Estatística, Diretoria de Geociências, Departamento de Recursos Naturais e Estudos Ambientais, 1991. VERDONSCHOT, P. F. M.; BESSE-LOTOTSKAYA, A. A. Flight Distance of Mosquitoes (Culicidae): A Metadata Analysis to Support the Management of Barrier Zones around Rewetted and Newly Constructed Wetlands. Limnologica, v. 45, p. 69–79, mar. 2014. VIANA, D. S.; SANTAMARÍA, L.; FIGUEROLA, J. Migratory Birds as Global Dispersal Vectors. Trends in Ecology & Evolution, v. 31, n. 10, p. 763–775, out. 2016. WAAGE, J. K. The Evolution of Insect/Vertebrate Associations. Biological Journal of the Linnean Society, v. 12, n. 3, p. 187–224, nov. 1979. WALTON, W. E.; REISEN, W. K. Influence of Climate Change on Mosquito Development And Blood‐Feeding Patterns. Viral Infections and Global Change. 1. ed. Wiley, 2013. p. 35– 56. WASHINO, R. K.; TEMPELIS, C. H. Mosquito Host Bloodmeal Identification: Methodology and Data Analysis. Annual Review of Entomology, v. 28, n. 1, p. 179–201, jan. 1983. WEAVER, S. C.; FORRESTER, N. L. Chikungunya: Evolutionary History and Recent Epidemic Spread. Antiviral Research, v. 120, p. 32–39, ago. 2015. WEAVER, S. C.; REISEN, W. K. Present and Future Arboviral Threats. Antiviral Research, v. 85, n. 2, p. 328–345, fev. 2010. WIEGMANN, B. M. et al. Single-Copy Nuclear Genes Resolve the Phylogeny of the Holometabolous Insects. BMC Biology, v. 7, n. 1, p. 34, dez. 2009. WILKERSON, R. C. et al. Making Mosquito Taxonomy Useful: A Stable Classification of Tribe Aedini That Balances Utility with Current Knowledge of Evolutionary Relationships. PLOS ONE, v. 10, n. 7, p. e0133602, 30 jul. 2015. 78 WILSON, M. R. et al. Acute West Nile Virus Meningoencephalitis Diagnosed Via Metagenomic Deep Sequencing of Cerebrospinal Fluid in a Renal Transplant Patient. American Journal of Transplantation, v. 17, n. 3, p. 803–808, mar. 2017. WOLFF, G. H.; RIFFELL, J. A. Olfaction, Experience and Neural Mechanisms Underlying Mosquito Host Preference. Journal of Experimental Biology, v. 221, n. 4, 15 fev. 2018. WORLD HEALTH ORGANIZATION. Global vector control response 2017-2030. Geneva: World Health Organization, 2017. WORLD HEALTH ORGANIZATION. World malaria report. Geneva: World Health Organization, 2023. ZINSZER, K. et al. Reconstruction of Zika Virus Introduction in Brazil. Emerging Infectious Diseases, v. 23, n. 1, p. 91–94, jan. 2017. | pt_BR |
| dc.subject.cnpq | Biologia Geral | pt_BR |
| Aparece en las colecciones: | Mestrado em Biologia Animal | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | |
|---|---|---|---|---|
| 2025 - Dálete Cássia Vieira Alves.Pdf | 3.04 MB | Adobe PDF | ![]() Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.
