Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/21237
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLima, Mariah Almeida-
dc.date.accessioned2025-04-28T13:19:23Z-
dc.date.available2025-04-28T13:19:23Z-
dc.date.issued2025-01-14-
dc.identifier.citationLIMA, Mariah Almeida. Desenvolvimento e aplicação de nanoemulsão à base de alginato e óleo essencial de pimenta rosa como revestimento ativo em queijo minas frescal. 2025. 128 f. Tese (Doutorado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/21237-
dc.description.abstractEsta tese teve por finalidade desenvolver nanoemulsões à base de alginato de sódio e óleo essencial de pimenta rosa (PPEO) a partir da técnica de microfluidização. Oito formulações foram avaliadas quanto ao efeito do uso de óleo de girassol e lecitina de soja como estabilizantes, considerando suas propriedades físico-químicas, físicas e antimicrobianas contra os microrganismos patogênicos Salmonella sp., Escherichia coli, Listeria monocytogenes e Staphylococcus aureus. Além disso, investigou-se a aplicação dessas nanoemulsões como revestimento ativo em queijo Minas Frescal, analisando seus efeitos sobre as propriedades físico-químicas, de textura, cor e eficácia antimicrobiana frente à inoculação de Listeria monocytogenes e Staphylococcus aureus durante 28 dias (4 °C). Os resultados mostraram que as nanoemulsões apresentaram tamanho de gota inferior a 200 nm, comportamento reológico de fluido newtoniano e estabilidade cinética ao longo de 20 dias. A fase dispersa das nanoemulsões (PPEO) foi misturada a óleo de girassol, com o intuito de preservar o óleo essencial de condições de processo (altas pressões e temperatura).De fato, a adição de óleo de girassol na formulação proporcionou uma retenção de 80% do PPEO nas nanoemulsões. Testes antimicrobianos in vitro revelaram que as nanoemulsões foram eficazes contra Staphylococcus aureus e Listeria monocytogenes, com concentrações inibitórias mínimas (CIM) de 200 μg/mL e concentrações bactericidas mínimas (CBM) de 800 μg/mL e 400 μg/mL, respectivamente, destacando o potencial do PPEO como agente natural de biopreservação. As nanoemulsões com as melhores propriedades antimicrobianas contra Staphylococcus aureus e Listeria monocytogenes, foram utilizadas como revestimento ativo em queijo Minas Frescal. Os revestimentos ativos com nanoemulsão contribuíram para manutenção da umidade e preservação da coloração dos queijos Minas Frescal. Contudo, a interação do revestimento ativo com a matriz do queijo favoreceu o aumento da sinérese, afetando negativamente o dessoramento. No que se refere aos parâmetros de textura, o revestimento ativo reduziu a dureza e adesividade dos queijos, enquanto aumentou a coesividade, mastigabilidade e gomosidade. Apesar dos benefícios físico-químicos, a eficácia antimicrobiana do revestimento ativo in situ foi limitada, sem impacto significativo na redução das populações de Listeria monocytogenes e Staphylococcus aureus inoculadas, possivelmente devido às interações dos compostos ativos com a matriz do queijo e aos elevados níveis de sinérese. Conclui-se que as nanoemulsões à base de alginato de sódio e PPEO possuem relevante potencial como uma alternativa sustentável aos conservantes sintéticos. No entanto, o desempenho in situ evidenciou a necessidade de ajustes na formulação e novas estratégias de aplicação, além de estudos em outras matrizes alimentares, para ampliar sua eficiência e viabilidade para a indústria de alimentos.pt_BR
dc.description.sponsorshipConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqpt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJpt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo - FAPESPpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectNanoemulsõespt_BR
dc.subjectÓleo essencial de pimenta rosapt_BR
dc.subjectRevestimento ativopt_BR
dc.subjectMicrofluidizaçãopt_BR
dc.subjectQueijo Minas Frescalpt_BR
dc.subjectNanoemulsionspt_BR
dc.subjectPink pepper essential oilpt_BR
dc.subjectActive coatingpt_BR
dc.subjectMicrofluidizationpt_BR
dc.subjectMinas Frescal cheesept_BR
dc.titleDesenvolvimento e aplicação de nanoemulsão à base de alginato e óleo essencial de pimenta rosa como revestimento ativo em queijo minas frescalpt_BR
dc.title.alternativeDevelopment and application of sodium alginate-based nanoemulsion with pink pepper essential oil as an active coating for minas frescal cheeseen
dc.typeTesept_BR
dc.description.abstractOtherThe aim of this thesis was to develop nanoemulsions based on sodium alginate and pink peppercorn essential oil (PPEO) using the microfluidization technique. Eight formulations were evaluated for the effect of using sunflower oil and soy lecithin as stabilizers, considering their physicochemical, physical and antimicrobial properties against the pathogenic microorganisms Salmonella sp., Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. In addition, the application of these nanoemulsions as an active coating on Minas Frescal cheese was investigated, analyzing their effects on physicochemical properties, texture, color and antimicrobial efficacy against Listeria monocytogenes and Staphylococcus aureus inoculation for 28 days (4 °C). The results showed that the nanoemulsions had a drop size of less than 200 nm, Newtonian fluid rheological behavior and kinetic stability over 20 days. The dispersed phase of the nanoemulsions (PPEO) was mixed with sunflower oil in order to preserve the essential oil from process conditions (high pressure and temperature). In fact, the addition of sunflower oil to the formulation resulted in 80% retention of PPEO in the nanoemulsions. In vitro antimicrobial tests revealed that the nanoemulsions were effective against Staphylococcus aureus and Listeria monocytogenes, with minimum inhibitory concentrations (MIC) of 200 μg/mL and minimum bactericidal concentrations (MBC) of 800 μg/mL and 400 μg/mL, respectively, highlighting PPEO's potential as a natural biopreservation agent. The nanoemulsions with the best antimicrobial properties against Staphylococcus aureus and Listeria monocytogenes were used as active coatings on Minas Frescal cheese. The active coatings with nanoemulsions contributed to maintaining the humidity and preserving the color of the Minas Frescal cheeses. However, the interaction of the active coating with the cheese matrix favored increased syneresis, negatively affecting draining. With regard to texture parameters, the active coating reduced the hardness and adhesiveness of the cheeses, while increasing cohesiveness, chewiness and gumminess. Despite the physicochemical benefits, the antimicrobial efficacy of the in situ active coating was limited, with no significant impact on reducing the inoculated Listeria monocytogenes and Staphylococcus aureus populations, possibly due to the interactions of the active compounds with the cheese matrix and the high levels of syneresis. It is concluded that nanoemulsions based on sodium alginate and PPEO have significant potential as a sustainable alternative to synthetic preservatives. However, the in situ performance showed the need for adjustments to the formulation and new application strategies, as well as studies in other food matrices, in order to increase their efficiency and viability for the food industry.en
dc.contributor.advisor1Rosenthal, Amauri-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1329532290735502pt_BR
dc.contributor.advisor-co1Tonon, Renata Valeriano-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/3777203586166795pt_BR
dc.contributor.advisor-co2Cunha, Rosiane Lopes da-
dc.contributor.advisor-co2IDhttps://orcid.org/0000-0003-2228-5492pt_BR
dc.contributor.advisor-co2Latteshttp://lattes.cnpq.br/9508969101649184pt_BR
dc.contributor.referee1Rosenthal, Amauri-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1329532290735502pt_BR
dc.contributor.referee2Sato, Ana Carla Kawazoe-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/1781693799683797pt_BR
dc.contributor.referee3Fai, Ana Elizabeth Cavalcante-
dc.contributor.referee3IDhttps://orcid.org/0000-0002-8594-2667pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/6743437678632057pt_BR
dc.contributor.referee4Melo, Nathália Ramos de-
dc.contributor.referee4IDhttps://orcid.org/0000-0002-9533-506Xpt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/1836355123449583pt_BR
dc.contributor.referee5Silva, Otniel Freitas-
dc.contributor.referee5IDhttps://orcid.org/0000-0002-7658-8010pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/4067206563384738pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4707130846951847pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Tecnologiapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospt_BR
dc.relation.referencesA. SHAABAN, Hamdy. Essential Oil as Antimicrobial Agents: Efficacy, Stability, and Safety Issues for Food Application. In: ESSENTIAL OILS - BIOACTIVE COMPOUNDS, NEW PERSPECTIVES AND APPLICATIONS. [S. l.]: IntechOpen, 2020. Disponível em: https://www.intechopen.com/books/essential-oils-bioactive-compounds-new-perspectives- and-applications/essential-oil-as-antimicrobial-agents-efficacy-stability-and-safety-issues- for-food-application. ACEVEDO-FANI, Alejandra et al. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocolloids, [s. l.], v. 47, p. 168–177, 2015. ALMASI, Hadi; AZIZI, Saeedeh; AMJADI, Sajed. Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocolloids, [s. l.], v. 99, p. 105338, 2020. ANDRADE, Kátia S; PONCELET, Denis; FERREIRA, Sandra R S. Sustainable extraction and encapsulation of pink pepper oil. Journal of Food Engineering, [s. l.], v. 204, p. 38–45, 2017. Disponível em: http://www.sciencedirect.com/science/article/pii/S0260877417300651. AQEEL, Umra et al. Regulation of essential oil in aromatic plants under changing environment. Journal of Applied Research on Medicinal and Aromatic Plants, [s. l.], v. 32, p. 100441, 2023. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S2214786122000730. ARTIGA-ARTIGAS, M.; ACEVEDO-FANI, A.; MARTÍN-BELLOSO, O. Effect of sodium alginate incorporation procedure on the physicochemical properties of nanoemulsions. Food Hydrocolloids, [s. l.], v. 70, p. 191–200, 2017. ARTIGA-ARTIGAS, María; ACEVEDO-FANI, Alejandra; MARTÍN-BELLOSO, Olga. Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control, [s. l.], v. 76, p. 1–12, 2017. Disponível em: http://www.sciencedirect.com/science/article/pii/S0956713517300014. ASADINEZHAD, Shabnam et al. Effect of different parameters on orange oil nanoemulsion particle size: combination of low energy and high energy methods. Journal of Food Measurement and Characterization, [s. l.], v. 13, n. 4, p. 2501–2509, 2019. Disponível em: https://doi.org/10.1007/s11694-019-00170-z. Acesso em: 24 mar. 2021. BAJPAI, Vivek K.; SHARMA, Ajay; BAEK, Kwang-Hyun. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control, [s. l.], v. 32, n. 2, p. 582–590, 2013. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0956713513000558. BEDOYA-SERNA, Carolina M et al. Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: in vitro study and application in Minas Padrão cheese. Brazilian Journal of Microbiology, [s. l.], v. 49, n. 4, p. 929–935, 2018. Disponível em: http://www.sciencedirect.com/science/article/pii/S1517838218301242. 106 BOROTOVÁ, Petra et al. Chemical and Biological Characterization of Melaleuca alternifolia Essential Oil. Plants, [s. l.], v. 11, n. 4, p. 558, 2022. Disponível em: https://www.mdpi.com/2223-7747/11/4/558. BOURNE, Malcolm C. Principles of Objective Texture Measurement. Food Texture and Viscosity, [s. l.], p. 107–188, 2002. BOYACI, Derya et al. Development of flexible antimicrobial zein coatings with essential oils for the inhibition of critical pathogens on the surface of whole fruits: Test of coatings on inoculated melons. Food Packaging and Shelf Life, [s. l.], v. 20, p. 100316, 2019. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S2214289418304009. BRASIL. Ministério do Saúde. Instrução Normativa N° 161, de 01 de julho de 2022. Estabelece as listas de padrões microbiológicos para alimentos. Agência Nacional de Vigilância Sanitária, Diário Oficial da República Federativa do Brasil, Brasília, DF, 06 jul. 2022, Seção I, Edição 126, p. 235 - 246. BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa N° 30, de 26 de junho de 2018. Estabelece como oficiais os métodos constantes do Manual de Métodos Oficiais para Análise de Alimentos de Origem Animal, disponível no sítio eletrônico do MAPA, para realização de ensaios em amostras de produtos de origem animal, oriundas dos programas e controles oficiais do MAPA, Diário Oficial da República Federativa do Brasil, Brasília, DF, 13 jul. 2018, Seção I, Edição 134, p. 9. BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa N° 04, de 01 de março de 2004. Inclui o termo “Muito” na expressão “Alto Umidade” nos itens 2.2 (Classificação), 4.2.3 (Requisitos Físico-Químicos) e 5.1 (Aditivos), no regulamento técnico para fixação de identidade e qualidade do queijo Minas frescal, Diário Oficial da República Federativa do Brasil, Brasília, DF. Disponível em < https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=05/03/2004&jornal=1&pa gina=5&totalArquivos=120>. BUFFA, Martı́n N et al. Changes in textural, microstructural, and colour characteristics during ripening of cheeses made from raw, pasteurized or high-pressure-treated goats’ milk. International Dairy Journal, [s. l.], v. 11, n. 11–12, p. 927–934, 2001. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0958694601001418. BURITI, Flávia C.A.; DA ROCHA, Juliana S.; SAAD, Susana M.I. Incorporation of Lactobacillus acidophilus in Minas fresh cheese and its implications for textural and sensorial properties during storage. International Dairy Journal, [s. l.], v. 15, n. 12, p. 1279–1288, 2005. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0958694605000208. CAI, Rongrong et al. Fabrication of guar gum/chitosan edible films reinforced with orange essential oil nanoemulsion for cheese preservation. International Journal of Biological Macromolecules, [s. l.], v. 285, p. 138285, 2025. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0141813024090962. CAMPAGNOLLO, Fernanda B. et al. Growth potential of three strains of Listeria monocytogenes and Salmonella enterica in Frescal and semi-hard artisanal Minas microcheeses: Impact of the addition of lactic acid bacteria with antimicrobial activity. 107 LWT, [s. l.], v. 158, p. 113169, 2022. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0023643822001049. CHAKKA, Ashok Kumar; SRIRAKSHA, M.S.; RAVISHANKAR, C.N. Sustainability of emerging green non-thermal technologies in the food industry with food safety perspective: A review. LWT, [s. l.], v. 151, p. 112140, 2021. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0023643821012937. DANNENBERG, Guilherme et al. Antimicrobial and antioxidant activity of essential oil from pink pepper tree (Schinus terebinthifolius Raddi) in vitro and in cheese experimentally contaminated with Listeria monocytogenes. Innovative Food Science & Emerging Technologies, [s. l.], v. 36, p. 120–127, 2016. Disponível em: http://www.sciencedirect.com/science/article/pii/S146685641630114X. DANNENBERG, Guilherme da Silva et al. Essential oil from pink pepper (Schinus terebinthifolius Raddi): Chemical composition, antibacterial activity and mechanism of action. Food Control, [s. l.], v. 95, p. 115–120, 2019. Disponível em: http://www.sciencedirect.com/science/article/pii/S0956713518303712. DANNENBERG, Guilherme da Silva et al. Essential oil from pink pepper as an antimicrobial component in cellulose acetate film: Potential for application as active packaging for sliced cheese. LWT - Food Science and Technology, [s. l.], v. 81, p. 314–318, 2017. Disponível em: http://www.sciencedirect.com/science/article/pii/S0023643817302219. DE S. MEDEIROS, Bartolomeu G. et al. Physical Characterisation of an Alginate/Lysozyme Nano-Laminate Coating and Its Evaluation on ‘Coalho’ Cheese Shelf Life. Food and Bioprocess Technology, [s. l.], v. 7, n. 4, p. 1088–1098, 2014. Disponível em: http://link.springer.com/10.1007/s11947-013-1097-5. DIAO, Wen-Rui et al. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control, [s. l.], v. 35, n. 1, p. 109–116, 2014. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0956713513003393. DONG, Huiying et al. Activity and safety evaluation of natural preservatives. Food Research International, [s. l.], v. 190, p. 114548, 2024. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0963996924006185. EL-SAYED, Hoda S.; EL-SAYED, Samah M. A modern trend to preserve white soft cheese using nano-emulsified solutions containing cumin essential oil. Environmental Nanotechnology, Monitoring & Management, [s. l.], v. 16, p. 100499, 2021. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S221515322100074X. FALIH, Mohammed A. et al. Enhancing safety and quality in the global cheese industry: A review of innovative preservation techniques. Heliyon, [s. l.], v. 10, n. 23, 2024. Disponível em: http://www.cell.com/article/S2405844024164900/fulltext. Acesso em: 20 jan. 2025. FALLEH, Hanen et al. Essential oils: A promising eco-friendly food preservative. Food Chemistry, [s. l.], v. 330, p. 127268, 2020. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0308814620311304. 108 FERNANDES, Regiane Victória de Barros et al. Microencapsulated Rosemary ( Rosmarinus officinalis ) Essential Oil as a Biopreservative in Minas Frescal Cheese. Journal of Food Processing and Preservation, [s. l.], v. 41, n. 1, p. e12759, 2017. Disponível em: https://onlinelibrary.wiley.com/doi/10.1111/jfpp.12759. FONTES, Milena Ramos Vaz et al. Antimicrobial properties of PLA membranes loaded with pink pepper (Schinus terebinthifolius Raddi) essential oil applied in simulated cream cheese packaging. Food Biophysics, [s. l.], v. 18, n. 1, p. 107–119, 2023. Disponível em: https://link.springer.com/article/10.1007/s11483-022-09750-x. Acesso em: 31 mar. 2023. FOX, Patrick F. et al. Fundamentals of Cheese Science. Boston, MA: Springer US, 2017. Disponível em: http://link.springer.com/10.1007/978-1-4899-7681-9. GUPTA, Vatsla; BISWAS, Deblina; ROY, Swarup. A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. Materials, [s. l.], v. 15, n. 17, p. 5899, 2022. Disponível em: https://www.mdpi.com/1996- 1944/15/17/5899. IBARRA-SÁNCHEZ, Luis A. et al. Invited review: Advances in nisin use for preservation of dairy products. Journal of Dairy Science, [s. l.], v. 103, n. 3, p. 2041–2052, 2020. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0022030220300096. KAPOOR, Rohit; METZGER, Lloyd E. Process Cheese: Scientific and Technological Aspects—A Review. Comprehensive Reviews in Food Science and Food Safety, [s. l.], v. 7, n. 2, p. 194–214, 2008. Disponível em: https://ift.onlinelibrary.wiley.com/doi/10.1111/j.1541-4337.2008.00040.x. KAZEMEINI, Hamidreza; AZIZIAN, Asghar; ADIB, Hasti. Inhibition of Listeria monocytogenes growth in turkey fillets by alginate edible coating with Trachyspermum ammi essential oil nano-emulsion. International Journal of Food Microbiology, [s. l.], v. 344, p. 109104, 2021. KEYKHOSRAVY, Kobra et al. Chitosan-loaded nanoemulsion containing Zataria Multiflora Boiss and Bunium persicum Boiss essential oils as edible coatings: Its impact on microbial quality of turkey meat and fate of inoculated pathogens. International Journal of Biological Macromolecules, [s. l.], v. 150, p. 904–913, 2020. Disponível em: http://www.sciencedirect.com/science/article/pii/S0141813019402572. KUORWEL, Kuorwel K. et al. Antimicrobial Activity of Natural Agents Coated on Starch- Based Films against Staphylococcus aureus. Journal of Food Science, [s. l.], v. 76, n. 8, p. M531–M537, 2011. Disponível em: http://doi.wiley.com/10.1111/j.1750- 3841.2011.02344.x. Acesso em: 29 abr. 2021. LIMA, Mariah Almeida et al. Physicochemical Characterization, Rheological Properties, and Antimicrobial Activity of Sodium Alginate-Pink Pepper Essential Oil (PPEO) Nanoemulsions. Foods, [s. l.], v. 13, n. 19, p. 3090, 2024. Disponível em: https://www.mdpi.com/2304-8158/13/19/3090. LOCALI-PEREIRA, Adilson Roberto; LOPES, Nathalie Almeida; NICOLETTI, Vânia Regina. Pink Pepper (Schinus terebinthifolius Raddi) from Extracts to application: Truths about a Fake Pepper. https://doi.org/10.1080/87559129.2022.2062767, [s. l.], 2022. 109 Disponível em: https://www.tandfonline.com/doi/abs/10.1080/87559129.2022.2062767. Acesso em: 31 mar. 2023. LONG, Jiyang et al. The reduce of water vapor permeability of polysaccharide-based films in food packaging: A comprehensive review. Carbohydrate Polymers, [s. l.], v. 321, p. 121267, 2023. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0144861723007324. LU, Kuan-Wei et al. Design of organic/inorganic multilayer water vapor barrier thin films deposited via plasma polymerization for encapsulation. Thin Solid Films, [s. l.], v. 767, p. 139672, 2023. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0040609023000032. MAGENIS, Renata Bongiolo et al. Rheological, physicochemical and authenticity assessment of Minas Frescal cheese. Food Control, [s. l.], v. 45, p. 22–28, 2014. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0956713514001959. MCCLEMENTS, David Julian. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, [s. l.], v. 8, n. 6, p. 1719–1729, 2012. Disponível em: https://xlink.rsc.org/?DOI=C2SM06903B. MCCLEMENTS, David Julian; RAO, Jiajia. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Critical Reviews in Food Science and Nutrition, [s. l.], v. 51, n. 4, p. 285–330, 2011. Disponível em: https://www- tandfonline.ez30.periodicos.capes.gov.br/doi/abs/10.1080/10408398.2011.559558. Acesso em: 2 mar. 2021. MCSWEENEY, P.L.H. Syneresis. In: MCSWEENEY, P.L.H. (org.). Cheese problems solved. Boca Raton: CRC Press, 2007. p. 72–75. MILLER, K.S.; KROCHTA, J.M. Oxygen and aroma barrier properties of edible films: A review. Trends in Food Science & Technology, [s. l.], v. 8, n. 7, p. 228–237, 1997. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0924224497010510. MORO, Armando et al. Dairy matrix effect on the transference of rosemary ( Rosmarinus officinalis ) essential oil compounds during cheese making. Journal of the Science of Food and Agriculture, [s. l.], v. 95, n. 7, p. 1507–1513, 2015. Disponível em: https://onlinelibrary.wiley.com/doi/10.1002/jsfa.6853. NISAR, Tanzeela et al. Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, [s. l.], v. 106, p. 670–680, 2018. OLIVEIRA, Kátia C. et al. Essential Oil from the Leaves, Fruits and Twigs of Schinus terebinthifolius: Chemical Composition, Antioxidant and Antibacterial Potential. Molecules, [s. l.], v. 29, n. 2, p. 469, 2024. Disponível em: https://www.mdpi.com/1420- 3049/29/2/469. PARREIDT, Tugce; MÜLLER, Kajetan; SCHMID, Markus. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods, [s. l.], v. 7, n. 10, p. 170, 2018. 110 Disponível em: https://www.mdpi.com/2304-8158/7/10/170. Acesso em: 1 mar. 2021. PAVONI, Lucia et al. An Overview of Micro- and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability. Nanomaterials, [s. l.], v. 10, n. 1, p. 135, 2020. Disponível em: https://www.mdpi.com/2079-4991/10/1/135. Acesso em: 9 abr. 2021. PAVONI, Lucia et al. Green nanoemulsion interventions for biopesticide formulations. In: NANO-BIOPESTICIDES TODAY AND FUTURE PERSPECTIVES. [S. l.]: Elsevier, 2019. p. 133–160. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/B978012815829600005X. PAVONI, Lucia et al. Properties and stability of nanoemulsions: How relevant is the type of surfactant?. Journal of Drug Delivery Science and Technology, [s. l.], v. 58, p. 101772, 2020. Disponível em: http://www.sciencedirect.com/science/article/pii/S1773224720302768. PÉREZ-GAGO, Maria B.; KROCHTA, John M. Lipid particle size effect on water vapor permeability and mechanical properties of whey protein/beeswax emulsion films. Journal of Agricultural and Food Chemistry, [s. l.], v. 49, n. 2, p. 996–1002, 2001. PÉREZ-SOTO, Elizabeth et al. The Addition of Microencapsulated or Nanoemulsified Bioactive Compounds Influences the Antioxidant and Antimicrobial Activities of a Fresh Cheese. Molecules, [s. l.], v. 26, n. 8, p. 2170, 2021. Disponível em: https://www.mdpi.com/1420-3049/26/8/2170. PIERETTI, Gabriella Giani et al. Effect of an edible alginate coating with essential oil to improve the quality of a Fresh cheese. Acta Scientiarum. Technology, [s. l.], v. 41, n. 1, p. 36402, 2019. Disponível em: http://periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/36402. PIROZZI, Annachiara et al. Edible Coatings Containing Oregano Essential Oil Nanoemulsion for Improving Postharvest Quality and Shelf Life of Tomatoes. Foods, [s. l.], v. 9, n. 11, p. 1605, 2020. Disponível em: https://www.mdpi.com/2304-8158/9/11/1605. POLAT YEMIŞ, Gökçe; SEZER, Elif; SIÇRAMAZ, Hatice. Inhibitory Effect of Sodium Alginate Nanoemulsion Coating Containing Myrtle Essential Oil (Myrtus communis L.) on Listeria monocytogenes in Kasar Cheese. Molecules, [s. l.], v. 27, n. 21, p. 7298, 2022. Disponível em: https://www.mdpi.com/1420-3049/27/21/7298. PRAKASH, Anand; BASKARAN, Revathy; VADIVEL, Vellingeri. Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. LWT, [s. l.], v. 118, p. 108851, 2020. Disponível em: http://www.sciencedirect.com/science/article/pii/S0023643819311934. RADI, Mohsen et al. The use of orange peel essential oil microemulsion and nanoemulsion in pectin‐based coating to extend the shelf life of fresh‐cut orange. Journal of Food Processing and Preservation, [s. l.], v. 42, n. 2, p. e13441, 2018. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1111/jfpp.13441. Acesso em: 14 abr. 2021. RAMOS, Marina et al. Emulsions Incorporated in Polysaccharide-Based Active Coatings for Fresh and Minimally Processed Vegetables. Foods, [s. l.], v. 10, n. 3, p. 665, 2021. 111 Disponível em: https://www.mdpi.com/2304-8158/10/3/665. RATHER, Muzamil A. et al. Microbial biofilm: A matter of grave concern for human health and food industry. Journal of Basic Microbiology, [s. l.], v. 61, n. 5, p. 380–395, 2021. Disponível em: https://onlinelibrary.wiley.com/doi/10.1002/jobm.202000678. REIS, Douglas Rodrigues; AMBROSI, Alan; LUCCIO, Marco Di. Encapsulated essential oils: A perspective in food preservation. Future Foods, [s. l.], v. 5, p. 100126, 2022. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S2666833522000144. RIBEIRO JÚNIOR, José Carlos et al. Perfil do consumidor brasileiro e hábitos de consumo de leite e derivados. Archives of Veterinary Science, [s. l.], v. 25, n. 2, 2020. Disponível em: https://revistas.ufpr.br/veterinary/article/view/72429. ROCHA, Ramon S. et al. Possibilities for using ohmic heating in Minas Frescal cheese production. Food Research International, [s. l.], v. 131, p. 109027, 2020. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0963996920300521. SALVIA-TRUJILLO, Laura et al. Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocolloids, [s. l.], v. 43, p. 547–556, 2015. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0268005X14002550. SANCHEZ, Leidy T.; PINZON, Magda I.; VILLA, Cristian C. Development of active edible films made from banana starch and curcumin-loaded nanoemulsions. Food Chemistry, [s. l.], v. 371, p. 131121, 2022. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0308814621021270. SANDOVAL-COPADO, J. et al. Sensory profile development of Oaxaca cheese and relationship with physicochemical parameters. Journal of Dairy Science, [s. l.], v. 99, n. 9, p. 7075–7084, 2016. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0022030216304167. SANGALETTI, Naiane et al. Estudo da vida útil de queijo Minas. Ciência e Tecnologia de Alimentos, [s. l.], v. 29, n. 2, p. 262–269, 2009. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101- 20612009000200004&lng=pt&nrm=iso&tlng=pt. SHARMA, Simran et al. Efficacy of free and encapsulated natural antioxidants in oxidative stability of edible oil: Special emphasis on nanoemulsion-based encapsulation. Trends in Food Science & Technology, [s. l.], v. 91, p. 305–318, 2019. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0924224418305867. SILVA, Sofia P.M. et al. Application of an alginate-based edible coating with bacteriocin- producing Lactococcus strains in fresh cheese preservation. LWT, [s. l.], v. 153, p. 112486, 2022. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S002364382101639X. SILVA, Simone Faria et al. Impact of different modified atmosphere packaging on quality parameters and probiotic survival during storage of Minas Frescal cheese. Food Bioscience, [s. l.], v. 43, p. 101338, 2021. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S2212429221004636. 112 STINTZING, Florian C; CARLE, Reinhold. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in Food Science & Technology, [s. l.], v. 15, n. 1, p. 19–38, 2004. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0924224403001638. SZCZESNIAK, Alina Surmacka. Texture is a sensory property. Food Quality and Preference, [s. l.], v. 13, n. 4, p. 215–225, 2002. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0950329301000398. TADROS, Tharwat et al. Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, [s. l.], v. 108–109, p. 303–318, 2004. ULIANA, Michele Pereira et al. Composition and biological activity of Brazilian rose pepper (Schinus terebinthifolius Raddi) leaves. Industrial Crops and Products, [s. l.], v. 83, p. 235–240, 2016. VAN DER BILT, A.; ABBINK, J.H. The influence of food consistency on chewing rate and muscular work. Archives of Oral Biology, [s. l.], v. 83, p. 105–110, 2017. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0003996917302327. WALSTRA, P. et al. Dairy Science and Technology. [S. l.]: CRC Press, 2005. Disponível em: https://www.taylorfrancis.com/books/9781420028010. WANG, Qiannan et al. Novel Edible Coating with Antioxidant and Antimicrobial Activities Based on Whey Protein Isolate Nanofibrils and Carvacrol and Its Application on Fresh-Cut Cheese. Coatings, [s. l.], v. 9, n. 9, p. 583, 2019. Disponível em: https://www.mdpi.com/2079-6412/9/9/583. WEISANY, Weria et al. Targeted delivery and controlled released of essential oils using nanoencapsulation: A review. Advances in Colloid and Interface Science, [s. l.], v. 303, p. 102655, 2022. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0001868622000574. XIONG, Yun et al. Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging. Food Control, [s. l.], v. 114, p. 107226, 2020.pt_BR
dc.subject.cnpqCiência e Tecnologia de Alimentospt_BR
Appears in Collections:Doutorado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2025 - Mariah Almeida Lima.pdf2.48 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.