Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/22212Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | França, Rafaela Félix da | - |
| dc.date.accessioned | 2025-06-13T16:08:48Z | - |
| dc.date.available | 2025-06-13T16:08:48Z | - |
| dc.date.issued | 2022-08-29 | - |
| dc.identifier.citation | FRANÇA, Rafaela Felix da. Combinação de bactérias solubilizadoras de fosfato e biochars aumentam a disponibilidade de fósforo no solo. 2022. 93 f. Tese (Doutorado em Agronomia, Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/22212 | - |
| dc.description.abstract | Na agricultura moderna, a busca por tecnologias sustentáveis tem inserido a utilização de bactérias do solo capazes de solubilizar fosfato e aumentar a eficiência de uso de fósforo (P) pelas plantas. Outra tecnologia é o uso do biochar, que provém da pirólise de material orgânico sólido, e pode agir como biofertilizante e como veículo de inoculação de microrganismos. Esse estudo teve como objetivos: (i) apresentar uma revisão sobre a viabilidade do biochar como veículo de inoculação para bactérias solubilizadoras de fosfato; (ii) avaliar o efeito da inoculação de bactérias do gênero Klebsiella aerogenes associadas a diferentes fontes de biochar, aplicadas em sementes de milho em condições controladas e de campo, nas variáveis fitotécnicas da planta, e características bioquímicas e químicas do solo. No experimento em casa de vegetação, em vasos de 16 kg de solo, foram aplicadas diferentes combinações de inóculos e fontes de biochars em sementes de milho da variedade Batité. Foi adotado um delineamento fatorial 3x4 com 4 repetições, combinando 3 fontes de biochar: controle sem biochar, biochar de palha de arroz (PA) e biochar de uva branca (UB), e 4 cepas bacterianas: Klebsiella aerogenes UAGC17, Klebsiella aerogenes UAGC19, a mistura das duas cepas, e controle sem inoculação. Foram avaliadas características fitotécnicas da planta com 45 dias, e efetuadas análises químicas e de atividades enzimáticas no solo e nas frações de P. O biochar PA associado à bactéria UAGC17 aumentou as variáveis P orgânico lábil, P orgânico solúvel em meio básico, respiração basal do solo e as atividades das enzimas fosfatase alcalina e a β- glucosidase. Os biochars PA e UB se mostraram promissores como veículos de inoculação. Em condições de campo em Jupi, Pernambuco, foram avaliados os mesmos tratamentos citados anteriormente. Em geral, para as variáveis fitotécnicas, os tratamentos que receberam inoculação foram superiores aos que não foram inoculados, com destaque para o tratamento UAGC17+ UAGC19 associado a UB, que proporcionou maiores diâmetro do colmo e altura da primeira espiga. O tratamento UAGC17 associado a PA aumentou todas as frações de P do solo avaliadas, além de aumentar a atividade das enzimas fosfatases e a respiração basal do solo. Não foram observados ganhos com relação às variáveis de produção do milho verde (número de espigas comerciais, número total de espigas e peso de espiga). | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | Biocarvão | pt_BR |
| dc.subject | Klebsiella sp | pt_BR |
| dc.subject | Fósforo orgânico | pt_BR |
| dc.subject | Biochar | pt_BR |
| dc.subject | Organic phosphorus | pt_BR |
| dc.title | Combinação de bactérias solubilizadoras de fosfato e biochars aumentam a disponibilidade de fósforo no solo | pt_BR |
| dc.title.alternative | Combination of phosphate-solubilizing bacteria and biochars increases phosphorus availability in the soil | en |
| dc.type | Tese | pt_BR |
| dc.description.abstractOther | In the modern agriculture, the search for sustainable strategies has been including the use of soil bacteria capable of solubilizing phosphate and increasing efficiency of phosphorus (P) use by crops. Another technology is the use of biochar, which comes from the pyrolysis of solid organic material, and can act as a biofertilizer and a vehicle for inoculation of microorganisms. This study aimed to: (i) present a review on the viability of biochar as an inoculation vehicle for phosphate-solubilizing bacteria; (ii) evaluate bacteria of the genus Klebsiella aerogenes associated with different sources of biochar at controlled and field conditions, applied to maize seeds, and to evaluate the phytotechnical changes of the plant, and soil chemical and biochemical analysis. Two experiments were carried out. In experiment 1, in 16-kg pots with soil in a greenhouse, different combinations of inoculum and sources of biochars were applied to maize seeds of the Batité variety. A 3x4 factorial design with 4 replications was employed, combining 3 sources of biochar: without biochar, rice straw biochar and white grape biochar, and 4 bacterial strains: Klebsiella aerogenes UAGC17, Klebsiella aerogenes UAGC19, the mixture of the two strains, and control without inoculation. Phytotechnical traits of the plant were evaluated after 45 days, and chemical and enzymatic activity and fractions of P were analyzed in the soil. PA biochar, associated or not with UAGC17 bacteria, increased the soil labile organic P, soluble organic P in basic medium, soil basal respiration, activities of alkaline phosphatase and β-glucosidase enzymes. PA and UB biochars showed promise as inoculation vehicles. Under field conditions in Jupi, Pernambuco, the same treatments mentioned above were evaluated. In general, for the phytotechnical traits, the treatments that received inoculation were superior to those not inoculated, highlighting the treatment UAGC17+UAGC19 associated with UB, which provided greater stem diameter and height of the first ear. The UAGC17 treatment associated with PA increased all soil P fractions evaluated, the activity of phosphatase enzymes and basal soil respiration. No gains were observed regarding corn yield variables (number of commercial ears, total number of ears and ear weight). | en |
| dc.contributor.advisor1 | Araújo, Adelson Paulo de | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0002-4106-6175 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/5394022232015318 | pt_BR |
| dc.contributor.advisor-co1 | Medeiros, Erika Valente de | - |
| dc.contributor.advisor-co1ID | https://orcid.org/0000-0001-5543-9414 | pt_BR |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/0063883229793699 | pt_BR |
| dc.contributor.referee1 | Araújo, Adelson Paulo de | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0002-4106-6175 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/5394022232015318 | pt_BR |
| dc.contributor.referee2 | Coelho, Irene da Silva | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0003-1357-2529 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/2191695584157582 | pt_BR |
| dc.contributor.referee3 | Machado, Aroldo Ferreira Lopes | - |
| dc.contributor.referee3ID | https://orcid.org/0000-0001-6506-9728 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/1657705026007826 | pt_BR |
| dc.contributor.referee4 | Costa, Diogo Paes da | - |
| dc.contributor.referee4ID | https://orcid.org/0000-0002-8551-7345 | pt_BR |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/4490723335572161 | pt_BR |
| dc.contributor.referee5 | Hammecker, Claude | - |
| dc.contributor.referee5Lattes | - | pt_BR |
| dc.creator.ID | https://orcid.org/0000-0002-7640-3602 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/5797391461205665 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Agronomia | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Agronomia - Ciência do Solo | pt_BR |
| dc.relation.references | AMER, M.; SHAABAN, M.; HASSAN, M. U.; GUOQIN, H.; YING, L.; YING, T. H.; RASUL, F.; QIAOYING, M.; ZHUANLING, L.; RASHEED, A.; PENG, Z. Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH. J. Environ, Manage, 2020. https://doi.org/10.1016/j.jenvman.2019.109891 ABBOTT, S. L. Klebsiella, enterobacter, citrobacter, serratia, plesiomonas and other enterobacteriaceae. Manual of clinical microbiology, p. 639-657, 2011. ABIVEN, S.; SCHMIDT, M. W. I.; LEHMANN, J. Biochar by design. Nature Geoscience, v. 7, n. 5, p. 326-327, 2014. AFZAL, A., BANO, A. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int J Agric Biol, 10(1), 85-88, 2008. AHEMAD, M. Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3. Biotech, 5(2), 111–121, 2015. https://doi.org/10.1007/s13205-014-0206-0 AHEMAD, M.; KHAN, M. S. Effects of insecticides on plant-growth-promoting activities of phosphate solubilizing rhizobacterium Klebsiella sp. strain PS19. Pesticide Biochemistry and Physiology, v. 100, n. 1, p. 51-56, 2011. AHMED, H. F. S.; El-ARABYV, M. M. I. Evaluation of the influence of nitrogen fixation, phosphate solubilization and potassium mobilization biofertilizers on the growth, yield and fatty acid constituents of peanut and sun flower oil Afr. J. Biotechnol, v. 11, p. 10079 – 10088, 2012. AKHTAR, N.; IQBAL, A.; QURESHI, M. A.; KHAN, K. H. Effect of phosphate solubilizing bacteria on the phosphorus availability and yield cotton (Gossypium hirsutum). Journal of Scientific Research, 40(1), 15–24, 2010. AKOTO-DANSO, E. K.; MANKA’ABUSI, D.; STEINER, C.; WERNER, S.; HÄRING, V.; NYARKO, G.; MARSCHNER, B. DRESHEL, P.; BUERKERT, A. Agronomic effects of biochar and wastewater irrigation in urban crop production of Tamale, northern Ghana. Nutrient Cycling in Agroecosystems, v. 115, n. 2, p. 231-247, 2019. ALAM, S., KHALIL, S., AYUB, N., RASHID, M. In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganisms (PSM) from maize rhizosphere. Int J Agric Biol, 4(4), 454-458, 2002. AMEEN, F.; ALYAHYA, S. A.; ALNADHARI, S.; ALASMARI, H.; ALHOSHANI, F. WAINWRIGHT, M. Phosphate solubilizing bacteria and fungi in desert soils: species, limitations and mechanisms. Archives of Agronomy and Soil Science, 65(10), 1446–1459, 2019. https://doi.org/10.1080/03650340.2019.1566713 AMOAH-ANTWI, C.; KWIATKOWSKA-MALINA, J.; THORNTON, S. F.; FENTON, O.; MALINA, G.; SZARA, E. Restoration of soil quality using biochar and brown coal waste: A review. Science of the Total Environment, 722, 2020. https://doi.org/10.1016/j.scitotenv.2020.137852 71 ANDERSON, C. R.; CONDRON, L. M.; CLOUGH, T. J.; FIERS, M.; STEWART, A.; HILL, R. A.; SHERLOCK, R. R. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 54(5-6), 309-320, 2011. ANDRADE, V. D. C. Enterobacteriales no litoral de São Paulo: diversidade, resistência e sua relação com a contaminação por efluentes. 2020. 149 f. Tese (Doutorado em Ciências Biológicas). Universidade Estadual Paulista, Rio Claro, 2020. ANILLO, H. J. B.; ZENTELLA, M. L. C.; SIERRA, G. T. Burkholderia tropica Una Bacteria Con Gran Potencial Para Su Uso En La Agricultura. TIP Revista Especializada en Ciencias Químico-Biológicas, 19, 102–108, 2016. https://doi.org/10.1016/j.recqb.2016.06.003 ANLAUF, A. An extractive bioeconomy? Phosphate mining, fertilizer commodity chains, and alternative technologies. Sustainability Science, 18(2), 633-644, 2023. ARAÚJO NETO, L. J. D. Resposta de indicadores biológicos edáficos de caatinga impactadas pela exploração de madeira. Universidade federal de Campina Grande, 2013. ARAUJO, A. S. Biochar de lodo de esgoto e Trichoderma afroharzianum no controle de fungos fitopatogênicos. 2022. 160 f., il. Tese (Doutorado em Agronomia). Universidade de Brasília, Brasília. 2022. ARAÚJO, F. F. Seed inoculation with Bacillus subtilis, formulated with oyster meal and growth of corn, soybean and cotton. Ciência e Agrotecnologia, 32(2), 456–462, 2008. ARAÚJO, M. S. B.; SCHAEFER, C. E. G. R.; SAMPAIO, E. V. S. B. Frações de fósforo após extrações sucessivas com resina e incubação, em Latossolos e Luvissolos do semi-árido de Pernambuco. Revista Brasileira de Ciência do Solo, v. 28, n. 2, p. 259-268, 2004. ARAÚJO, R. M. Uso de resíduos na agricultura familiar de base ecológica: efeitos na qualidade do solo e no desempenho agronômico do feijoeiro. 2018. ARIF, M.; ILYAS, M.; RIAZ, M.; ALI, K.; SHAH, K.; HAQ, I. U.; FAHAD, S. Biochar improves phosphorus use efficiency of organic-inorganic fertilizers, maize-wheat productivity and soil quality in a low fertility alkaline soil. Field Crops Research, 214, 25-37, 2017. ARORA, N. K.; MISHRA, J. Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Applied Soil Ecology, 107, 405-407. 2016. https://doi.org/10.1016/j.apsoil.2016.05.020 ARRUDA, L. M. Seleção e caracterização de rizobactérias promotoras de crescimento de milho cultivadas no Rio Grande do Sul. 2012. ATKINSON, C. J.; FITZGERALD, J. D.; HIPPS, N. A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and soil, v. 337, n. 1, p. 1-18, 2010. BACKER, R., ROKEM, J. S., ILANGUMARAN, G., LAMONT, J., PRASLICKOVA, D., RICCI, E., ... & SMITH, D. L. Plant growth-promoting rhizobacteria: context, mechanisms of 72 action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in plant science, 9, 1473, 2018. BAGYALAKSHMI, B.; PONMURUGAN, P.; BALAMURUGAN, A. Potassium solubilization, plant growth promoting substances by potassium solubilizing bacteria (KSB) from southern Indian Tea plantation soil. Biocatalysis and Agricultural Biotechnology, 12, 116– 124, 2017. https://doi.org/10.1016/j.bcab.2017.09.011 BAHADIR, P. S.; LIAQAT, F.; ELTEM, R. Plant growth promoting properties of phosphate solubilizing Bacillus species isolated from the Aegean Region of Turkey. Turkish Journal of Botany, 42(2), 183–196, 2018. https://doi.org/10.3906/bot-1706-51 BARROSO, C. B.; NAHAS, E. The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates. Applied Soil Ecology, v. 29, n. 1, p. 73-83, 2005. BASHAN, Y.; DE-BASHAN, L. E.; PRABHU, S. R. Superior polymeric formulations and emerging innovative products of bacterial inoculants for sustainable agriculture and the environment. In: SINGH, H., SARMA, B., KESWANI, C. (eds) Agriculturally Important Microorganisms. Springer, Singapore. pp 15–46. 2016. https://doi.org/10.1007/978-981-10- 2576-1_2 BASHAN, Y.; DE-BASHAN, L.; PRABHU, S. R.; HERNANDEZ, J. P. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and Soil, 378, 1–33, 2014. https://doi.org/10.1007/s11104-013-1956-x BASHAN, Y.; LEVANONY, H. Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Canadian Journal of Microbiology, 36(9), 591–608, 1990. https://doi.org/10.1139/m90-105 BATISTA, E. S. Mineralogia e fósforo disponível em solos do Vale do Jari. Embrapa Amapá- Tese/dissertação (ALICE), 2020. BATISTA, F. D. C.; FERNANDES, T. A.; ABREU, C. S.; OLIVEIRA, M. C.; RIBEIRO, V. P.; GOMES, E. A.; OLIVEIRA-PAIVA, C. A. Potencial de microrganismos rizosféricos e endofíticos de milho em solubilizar o fosfato de ferro e produzir sideróforos, 2018. BEHERA, B. C.; SINGDEVSACHAN, S. K.; MISHRA, R. R.; DUTTA, S. K.; THATOI, H. N. Diversity, mechanism and biotechnology of phosphate solubilising microorganisms in mangrove- a review. Biocatalysis and Agricultural Biotechnology, 3, 97–110. 2014. https://doi.org/10.1016/j.bcab.2013.09.008 BELHARDI, D.; LAJUDIE, P.; RAMDANI, N.; ROUX, C. L.; BOULILA, P.; TISSEYRE, P.; BOULILA, A.; BENGUEDOUAR, A.; KACI, Y.; LAGUERRE, G. Vicia faba L. in the Bejaia region of Algeria is nodulated by Rhizobium leguminosarum sv. viciae, Rhizobium laguerreae and two new genospecies. Systematic and Applied Microbiology, 41, 122–130. 2018. BERNABEU, P. R., GARCÍA, S. S., GARCIA FERREYRA, G., GUIDI, V. I., GALAR, M. L., BOIARDI, J. L., LUNA, M. F. Mineral phosphate solubilization in Burkholderia tropica involves an inducible PQQ-glucose dehydrogenase, 2016. 73 BEZERRA, R. P. M.; LOSS, A.; PEREIRA, M. G.; PERIN, A. Frações de fósforo e correlação com atributos edáficos sob sistemas de plantio direto e integração lavoura-pecuária no Cerrado Goiano. Semina: Ciências Agrárias, 36(3), 1287-1306, 2015. BINDRABAN, P. S.; DIMKPA, C. O.; PANDEY, R. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biology and Fertility of Soils, 56(3), 299-317, 2020. BOJKOV V. N.; VASSILEVA, M. H.; MARTOS NÚÑEZ, M. V.; GARCÍA DEL MORAL GARRIDO, L. F.; KOWALSKA, J.; TYLKOWSKI, B.; MALUSA, E. Formulation of Microbial Inoculants by Encapsulation in Natural Polysaccharides: Focus on Beneficial Properties of Carrier Additives and Derivatives, 2020. BORHAM, A., BELAL, E., METWALY, M. Phosphate solubilization by Enterobacter cloacae and its impact on growth and yield of wheat plants. Journal of Sustainable Agricultural Sciences, 43(2), 89-103, 2017. BOWMAN, R. A.; COLE, C, V. An exploratory method for fractionation of organic phosphorus from grassland soils. Soil Science, v. 125, p.95-101, 1978. BRAGA, J. M.; DEFELIPO, B. V. Determinação espectrofotométrica de fósforo em extrato de solo e material vegetal. Rev. Ceres, Viçosa, v. 21, n. 1, p. 73-85, 1974. BRASIL, E. C.; DANTAS, R. C. R.; DA HUNGRIA, L. C.; DOS SANTOS, D. G.; VIEIRA, M. E., FERREIRA, J. N. Formas de fósforo lábil em solos sob diferentes sistemas de uso da terra na Amazônia, 2014. BROOKES, P. C. POWLSON, D. S. JENKINSON, D. S. Measurement of microbial biomass phosphorus in soil. Soil Biology Biochemistry, Oxford, v. 14, p. 319-329, 1982. BROWN, R. Biochar Production Technology. In: JOSEPH, J. L. A. S. (Ed.). Biochar for Environment Management – Science and Technology. London, United Kingdom: Earthscan, cap. 8, p. 127-146, 2010. BURNS, R. G.; DICK, R. P. (Ed.). Enzymes in the environment activity, ecology, and applications. CRC Press, 2002. BUTNAN, S.; DEENIK, J. L.; TOOMSAN, B.; ANTAL, M. J.; VITYAKON, P. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma, 237, 105–116, 2015. https://doi.org/10.1016/j.geoderma.2014.08.010 2015. CAMARGO, F. A. O.; SANTOS, G. DE A.; ZONTA, E. Alterações eletroquímicas em solos inundados. Ciência Rural, v. 29, n. 1, p. 171-180, 1999. CARDOSO, E. J. B. N.; ESTRADA-BONILLA, G. A. Inoculantes agrícolas. Biotecnologia Industrial: Processos fermentados e enzimáticos. Blucher, São Paulo, 2019. 74 CARVALHO, M. T. M; MAIA, A. H. N; MADARI, B. E.; BASTIAANS, L.; VAN OORT, P. A. J. Biochar increases plant available water in a sandy soil under an aerobic rice cropping system. Solid Earth, v. 5, n. 1, p. 939-952, 2014. Available in: doi: 10.5194/sed-6-887, 2014. CASARIN, V.; STIPP, S. R. Quatro medidas corretas que levam ao uso eficiente dos fertilizantes. Informações Agronômicas, 142, 14-20, 2013. CHABOT, R.; ANTON, H.; CESCAS, M. C. Growth promotion of maize and lettuce by Rhizobium leguminosarum biovar phaseoli phosphate solubilizer. Plant Soil, v. 184, p 311 – 321, 1996. CHAGAS JUNIOR, A. F., OLIVEIRA, L. A. D., OLIVEIRA, A. N. D., ANDRÉ, L. W. Phosphate solubilizing ability and symbiotic efficiency of isolated Rhizobia from Amazonian soils. Volume 32, Número 2, Pags. 359-366, 2010. CHAGAS, L. F. B.; MARTINS, A. L. L.; DE CARVALHO FILHO, M. R.; DE OLIVEIRA MILLER, L.; DE OLIVEIRA, J. C.; JUNIOR, A. F. C. Bacillus subtilis and Trichoderma sp. in biomass increase in soybean, beans, cowpea, corn and rice plants. Agri-Environmental Sciences, 3(2), 10–18, 2017. CHEN, Y. C. Y.; YANG, H. Y. H.; WANG, X. W. X.; ZHANG, S. Z. S.; CHEN H. C. H. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature, 2012. CHEN, M.; ALIM, N.; ZHANG, Y.; XU, N.; CAO, X. Contrasting effects of biochar nanoparticles on the retention and transport of phosphorus in acidic and alkaline soils. Environmental Pollution, 239, 562–570, 2018. https://doi.org/10.1016/j.envpol.2018.04.050 CHEN, Y. P., REKHA, P. D., ARUN, A. B., SHEN, F. T., LAI, W. A., YOUNG, C. C. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied soil ecology, 34(1), 33-41, 2006. CHENG, J.; ZHUANG, W.; LI, N. N.; TANG, C. L.; YING, H. J. Efficient biosynthesis of d- ribose using a novel co-feeding strategy in Bacillus subtilis without acid formation. Letters in Applied Microbiology, 64(1), 73–78, 2017. https://doi.org/10.1111/lam.12685 CHINTALA, R.; SCHUMACHER, T. E.; MCDONALD, L. M.; CLAY, D. E.; MALO, D. D.; PAPIERNIK, S. K.; CLAY, S. A.; JULSON, J. L. Phosphorus sorption and availability from biochars and soil/biochar mixtures. Clean–Soil, Air, Water, 42(5), 626–634, 2014. https://doi.org/10.1002/clen.201300089 CISNEROS-ROJAS, C. A.; SÁNCHEZ-DE PRAGER, M.; MENJIVAR-FLORES, J. C. Efecto de bacterias solubilizadoras de fosfatos sobre el desarrollo de plántulas de café. Agronomía Mesoamericana, 28(1), 149–158, 2017. https://doi.org/10.15517/am.v28i1.22021 CORDELL, D.; DRANGERT, J. O.; WHITE, S. The story of phosphorus: global food security and food for thought. Global Environ., v. 19, n. 2, p. 292-305, 2009. 75 CORTÉS-PATIÑO, S.; BONILLA, R. R. Polymers selection for a liquid inoculant of Azospirillum brasilense based on the Arrhenius thermodynamic model. African Journal of Biotechnology, 14(33), 2547–2553, 2015. https://doi.org/10.5897/ajb2015.14777 COSTA, A. R. Formas de fósforo do solo em sítios de terra preta arqueológica na Amazônia Oriental. Dissertação, UFRA-PA, 2011. COSTA, E. M. D., NÓBREGA, R. S. A., CARVALHO, F. D., TROCHMANN, A., FERREIRA, L. D. V. M., MOREIRA, F. M. D. S. Promoção do crescimento vegetal e diversidade genética de bactérias isoladas de nódulos de feijão-caupi. Pesquisa Agropecuária Brasileira, 48, 1275-1284, 2013. DA SILVA, E. E.; DE AZEVEDO, P. H. S.; DE-POLLI, H. Determinação da respiração basal (RBS) e quociente metabólico do solo (qCO2), 2007. DAI, Z.; MENG, J.; MUHAMMAD, N.; LIU, X.; WANG, H.; HE, Y..; XU, J. The potential feasibility for soil improvement, based on the properties of biochars pyrolyzed from different feedstocks. Journal of Soils and Sediments, 13, 989-1000, 2013. DAMO, J. L. C.; RAMIREZ, M. D. A.; AGAKE, S. I.; PEDRO, M.; BROWN, M.; SEKIMOTO, H..; OHKAMA-OHTSU, N. Isolation and characterization of phosphate solubilizing bacteria from paddy field soils in Japan. Microbes and Environments, 37(2), ME21085, 2022. DEAKER, R.; LÁSZLÓ, M.; ROSE, M. T.; AMPRAYN, K.; GANISAN, K.; TRAN, T. K. C.; NGA, V. T.; CONG, P. T.; HIEN, M. T.; KENNEDY, I. R. Practical methods for the quality control of inoculant biofertilisers. Centre for International Agricultural Research, Australian, 2011. DEAKER, R.; ROUGHLEY, R. J.; KENNEDY, I. R. Legume seed inoculation technology-a review. Soil Biology & Biochemistry, 36(8), 1275-1288, 2004. https://doi.org/10.1016/j.soilbio.2004.04.009. DEBODE, J.; EBRAHIMI, N.; D'HOSE, T.; CREMELIE, P.; VIAENE, N.; VANDECASTEELE, B. Has compost with biochar added during the process added value over biochar or compost to increase disease suppression? Applied Soil Ecology, 153, 103571, 2020. https://doi.org/10.1016/j.apsoil.2020.103571 DELVASTO, A.; VALVERDE, A.; BALLESTER, J. M.; IGUAL, J. A.; MUNOZ, F.; GONZALEZ, M. L.; BLAZQUEZ, C.; GARCIA. Characterization of brushite as a re- crystallization product formed during bacterial solubilization of hydroxyapatite in batch cultures. Soil Biol. Biochem., v. 38, n. 9, p. 2645-2654, 2006. DÖBEREINER, J.; DAY, J. M. Associative symbiosis in tropical grass: Characterization of microorganisms and dinitrogen fixing sites. Symposium on Nitrogen Fixation, Washington State Univ Press, 1976. DONATO, A.; MAIA, T. F.; CONTO, T. D.; PEREIRA, M. G.; FRAGA, M. E. Microbiota produtora de fitase isolada de solo e serapilheira do Bioma Cerrado. Ciência Florestal, 29(3), 1270–1281, 2019. https://doi.org/10.5902/1980509815586 76 DU, J.; ZHANG, Y.; QU, M.; YIN, Y.; FAN, K.; HU, B.; ZHANG, H.; WEI, M.; MA, C. Effects of biochar on the microbial activity and community structure during sewage sludge composting. Bioresource Technology, 272, 171–179, 2019. https://doi.org/10.1016/j.biortech.2018.10.020 DUDA, G. P. Conteúdo de fósforo microbiano, orgânico e biodisponível em diferentes classes de solo, UFRRJ-RJ, 2000. DURAN-BEDOLLA, J., GARZA-RAMOS, U., RODRÍGUEZ-MEDINA, N., AGUILAR VERA, A., BARRIOS-CAMACHO, H. Exploring the environmental traits and applications of Klebsiella variicola. Brazilian Journal of Microbiology, 1-13, 2021. DWORZANSKI, J. P.; DESHPANDE, S. V.; CHEN, R.; JABBOUR, R. E.; SNYDER, A. P.; WICK, C. H.; LI, L. Mass spectrometry-based proteomics combined with bioinformatic tools for bacterial classification. Journal of Proteome Research, 5(1), 76–87, 2006. https://doi.org/10.1021/pr050294t.s001 EIVAZI, F., TABATABAI, M. A. Glucosidases and galactosidases in soils. Soil Biology and Biochemistry, 20(5), 601-606, 1988. EIVAZI, F.; TABATABAI, M. A. Phosphatases in soils. Soil Biology and Biochemistry, 9(3), 167-172, 1977. EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Dependência externa de fertilizantes NPK é debatida em Audiência Pública. Embrapa Notícias, 2017. EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Milho em números (safra 2013/2014). Londrina, 2015. Disponível em: Primeiro passo para o sucesso no milho é escolher a semente correta para o plantio - Portal Embrapa. Acesso em: 23 jul. 2021. EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Sistemas diferenciais de cultivo do milho verde. Embrapa Agência de Informação, 2021. Disponível em: https://www.embrapa.br/en/agencia-de-informacao- tecnologica/cultivos/milho/producao/sistemas-diferenciais-de-cultivo/milho-verde FAO - Food and Agriculture Organization of the United Nations. Production crops, 2019. Disponível em: http://www.fao.org/ faostat/en/#data/QC Acesso em: 20 maio 2021. FLORENTINO, L. A.; SILVA, A. B.; LANDGRAF, P. R.; SOUZA, F. R. Inoculação de bactérias produtoras de ácido 3-indol acético em plantas de alface (Lactuca sativa L.). Revista Colombiana de Ciencias Hortícolas, 11(1), 89–96, 2017. https://doi.org/10.17584/rcch.2017v11i1.5780 FOLTRAN, E. C.; ROCHA, J. H. T.; BAZANI, J. H.; DE MORAES GONCALVES, J. L.; RODRIGUES, M.; PAVINATO, P.; GARCIA-MINA, J. M. Phosphorus pool responses under different P inorganic fertilizers for a eucalyptus plantation in a loamy Oxisol. Forest Ecology and Management, 435, 170-179, 2019. https://doi.org/10.1016/j.foreco.2018.10.053. FRANÇA, R. F.; DE MEDEIROS, E. V.; SILVA, R. O.; DA SILVA FAUSTO, R. A.; DE SOUZA, C. A. F.; DE OLIVEIRA, J. B..; ARAÚJO, A. P. Perspectives for Biochar as a vehicle 77 for inoculation of phosphate solubilizing bacteria: a review. Research, Society and Development, 11(1), e36211124885-e36211124885, 2022. FRANCHINI, J. C.; CRISPINO, C. C.; SOUZA, R. A.; TORRES, E.; HUNGRIA, M. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil and Tillage Research, 92(1-2), 18–29, 2007. https://doi.org/10.1016/j.still.2005.12.010. GAHOONIA, T. S.; CLAASSEN, N.; JUNGK, A. Mobilization of phosphate in different soils by ryegrass supplied with ammonium or nitrate. Plant and Soil, v. 140, n. 2, p. 241-248, 1992. GALINDO, F. S.; TEIXEIRA FILHO, M.; BUZETTI, S., LUDKIEWICZ, M. G.; ROSA, P. A.; TRITAPEPE, C. A. Technical and economic viability of co-inoculation with Azospirillum brasilense in soybean cultivars in the Cerrado. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(1), 51–56, 2018. https://doi.org/10.1590/1807-1929/agriambi.v22n1p51-56 GALVANI, R. Fracionamento de fósforo inorgânico no solo em função de fontes de fósforo na soja cultivada em semeadura direta. In: Reunião Brasileira de Fertilidade do Solo e Nutrição de Plantas. Anais, 2004. GARBEVA, P.; VAN VEEN, J. A.; VAN ELSAS, J. D. Assessment of the diversity, and antagonismo towards Rhizoctonia solani AG3, of Pseudomonas species in soil from diferente agricultural regimes. FEMS Microbiology Ecology, v. 47, n. 1, p. 51-64, 2004. GATIBONI, L. C.; KAMINSKI, J.; RHEINHEIMER, D. dos S.; FLORES, J. P. C. Bioavailability of soil phosphorus forms in no tillage system. Revista Brasileira de Ciência do Solo, v. 31, n. 4, p.691–699. 2007. GAUR, A. C.; ARORA, D.; PRAKASH, N. Electron microscopy of some rock phosphate dissolving bacteria and fungi. Folia microbiologica, v. 24, p. 314-317, 1979. GHADERI, A., ALIASGHARZAD, N., OUSTAN, S., OLSSON, P. A. Efficiency of three Pseudomonas isolates in releasing phosphate from an artificial variable-charge mineral (iron III hydroxide). Soil Environ, 27(1), 71-76, 2008. GIAGNONI, L.; MAIENZA, A.; BARONTI, S.; VACCARI, F. P.; GENESIO, L.; TAITI, C.; RENELLA, G. Long-term soil biological fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar amendment. Geoderma, v. 344, p. 127-136, 2019. GŁĄB, T.; ŻABIŃSKI, A.; SADOWSKA, U.; GONDEK, K.; KOPEĆ, M.; MIERZWA- HERSZTEK, M..; STANEK-TARKOWSKA, J. Fertilization effects of compost produced from maize, sewage sludge and biochar on soil water retention and chemical properties. Soil and Tillage Research, 197, 104493, 2020. https://doi.org/10.1016/j.still.2019.104493 GOMES, O. M. T.; GORESTEIN, M. R.; TATEYAMA, G. H. Diferentes doses de adubação de cobertura em milho (Zea Mays L.) com sulfato de amônio farelado. Revista Científica Eletrônica de Agronomia, v. 5, n. 10, p. sn, 2010. 78 GRANT, C. A.; FLATEN, D. N.; TOMASIEWICZ, D. J.; SHEPPARD, S. C. A importância do fósforo no desenvolvimento inicial da planta. Informações Agronômicas, n. 95, Piracicaba, Instituto Potafós, 2001. GRANT, M. J., BOOTH, A. A typology of reviews: an analysis of 14 review types and associated methodologies. Health information & libraries journal, 26(2), 91-108, 2009. GUERRA, J. G. M. Produção sazional de Brachiaria decumbens Stapf., conteúdo de fósforo orgânico e microbiano em solos tropicais de baixa fertilidade natural 234f. Tese (Doutorado) - Universidade Federal do Rio de Janeiro, 1993. GUERRA, J. G. M.; FONSECA, M. C.; ALMEIDA, D. L.; DE-POLLI, H.; FERNANDES, M. S. Conteúdo de fósforo da biomassa microbiana de um solo cultivado com Brachiaria decumbens Stapf. Pesquisa Agropecuária Brasileira, Brasília, v. 30. p. 543-551, 1995. GUPTA, M.; KIRAN, S.; GULATI, A.; SINGH, B.; TEWARI, R. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiological Research, 167(6), 358–363, 2012. https://doi.org/10.1016/j.micres.2012.02.004 HAJJAM, Y.; CHERKAOUI, S. The influence of phosphate solubilizing microorganisms on symbiotic nitrogen fixation: Perspectives for sustainable agriculture. Journal of Materials Science, 8(3), 801–808, 2017. HALE, L.; LUTH, M.; CROWLEY, D. Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biology & Biochemistry, 81, 228– 235, 2015. https://doi.org/10.1016/j.soilbio.2014.11.023 HERATH, H. M. L. I.; MENIKDIWELA, K. R.; IGALAVITHANA, A. D.; SENEVIRATNE, G. Developed fungal-bacterial biofilms having nitrogen fixers: Universal biofertilizers for legumes and non-legumes. Biological Nitrogen Fixation, 2(2), 1041-1046, 2015. HOU, E.; LUO, Y.; KUANG, Y.. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637, 2020. https://doi.org/10.1038/s41467-020-14492-w HOWIESON, J. G.; DILWORTH, M. J. Working with rhizobia. Centre for International Agricultural Research, Canberra, Australian, 2016. HUNGRIA, M.; FRANCHINI, J. C.; CAMPO, R. J.; GRAHAM, P. H. The importance of nitrogen fixation to soybean cropping in South America. Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment, 25–42, 2005. https://doi.org/10.1007/1-4020-3544-63 HUSNA, N.; BUDIANTA, D.; NAPOLEON, A. Evaluation of several biochar types as inoculant carrier for indigenous phosphate solubilizing microorganism from acid sulphate soil. Journal of Ecological Engineering, 20(6), 1-8, 2019. https://doi.org/10.12911/22998993/109078 79 IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Levantamento sistemático da produção agrícola, 2019. Disponível em: https://sidra.ibge.gov.br/home/lspa/brasil. 2019. Acesso em: 22 de mai. de 2021. IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Safra recorde no ano de 2022. Disponível em: https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013- agencia-de-noticias/releases/33998-em-maio-ibge-preve-safra-recorde-de-263-0-milhoes-de- toneladas-para-2022 IPA - Empresa Pernambucana de Pesquisa Agropecuária. Recomendações de Adubação para o Estado de Pernambuco (2a Aproximação). 2.ed. Recife: Empresa Pernambucana de Pesquisa Agropecuária, 198p, 2008. IPA – Sementes crioulas e a resistência no Agreste pernambucano, 2020. Disponível em: http://www.ipa.br/novo/noticia?n=2294 IRFAN, M.; ZAHIR, A. Z.; ASGHAR, H. N.; KHAN, M. Y.; AHMAD, H. T.; ALI, Q. Effect of multi-strain bacterial inoculation with different carriers on growth and yield of maize under saline conditions. International Journal of Agriculture and Biology, 22, 1407–1414, 2019. JORQUERA, M. A.; HERNÁNDEZ, M. T.; RENGEL, Z.; MARSCHNER, P.; DE LA LUZ MORA, M. Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biology and Fertility of Soils, 44(8), 1025, 2008. https://doi.org/10.1007/s00374-008-0288-0 KALAYU, G. Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy, 2019(1), 4917256, 2019. https://doi.org/10.1155/2019/4917256 KANG, S. M.; JOO, G. J.; HAMAYUN, M.; NA, C. I.; SHIN, D. H.; KIM, H. Y.; HONG, J. K.; LEE, I. J. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnology Letters, 31(2), 277– 281, 2009. https://doi.org/10.1007/s10529-008-9867-2 KEJELA, T. Phytohormone-Producing Rhizobacteria and Their Role in Plant Growth. Intech Open, 2024. doi: 10.5772/intechopen.1002823 KHAN, A. A.; JILANI, G.; AKHTAR, M. S.; NAQVI, S. M. S.; RASHEED, M. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 1(1):48-58, 2009. KHAN, T. F.; AHMED, M. M.; HUQ, S. M. I. Effects of biochar on the abundance of three agriculturally important soil bacteria. Journal of Agricultural Chemistry and Environment, 3(02), 31, 2014. KHOSO, M. A.; WAGAN, S.; ALAM, I.; HUSSAIN, A.; ALI, Q.; SAHA, S.; POUDEL, T. R.; MANGHWAR, H.; LIU, F. Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective. Plant Stress, Volume 11, 100341, ISSN 2667-064X, 2024. 80 KHUMAIRAH; F. H.; SETIAWATI, M. R.; FITRIATIN, B. N.; SIMARMATA, T.; ALFARAJ, S.; ANSARI, M. J..; NAJAFI, S. Halotolerant plant growth-promoting rhizobacteria isolated from saline soil improve nitrogen fixation and alleviate salt stress in rice plants. Frontiers in Microbiology, 13, 905210, 2022. KOCHANEK, J.; SOO, R. M.; MARTINEZ, C.; DAKUIDREKETI, A.; MUDGE, A. M. Biochar for intensification of plant-related industries to meet productivity, sustainability and economic goals: A review. Resources, Conservation and Recycling, 179, 106109, 2022. KOCHIAN, L. V. Rooting for more phosphorus. Nature, v. 488, n. 7412, p. 466-467, 2012. KUCEY, R. M. N.; JANZEN, H. H.; LEGGETT, M. E. Microbially mediated increases in plant- available phosphorus. Advances in Agronomy, 42, 199-228, 1989. https://doi.org/10.1016/s0065-2113(08)60525-8 KUMAR, A. Phosphate solubilizing bacteria in agriculture biotechnology: diversity, mechanism and their role in plant growth and crop yield. International Journal of Advanced Research, 4(5), 116–124, 2016. https://doi.org/10.21474/ijar01/111 KUMAR, A., KUMAR, A., PATEL, H. Role of microbes in phosphorus availability and acquisition by plants. International journal of current microbiology and applied Sciences, 7(5), 1344-1347, 2018. KUMAR, C., WAGH, J., ARCHANA, G., NARESH KUMAR, G. Sucrose dependent mineral phosphate solubilization in Enterobacter asburiae PSI3 by heterologous overexpression of periplasmic invertases. World journal of microbiology and biotechnology, 32, 1-10, 2016. KUSALE, S. P.; ATTAR, Y. C.; SAYYED, R. Z.; EL ENSHASY, H.; HANAPI, S. Z.; ILYAS, N..; MARRAIKI, N. Inoculation of Klebsiella variicola alleviated salt stress and improved growth and nutrients in wheat and maize. Agronomy, 11(5), 927, 2021. LANDAU, E. C.; HIRSCH, A.; GUIMARÃES, D. P.; MOURA, L.; SANTOS, A. H.; NERY, R. N. Variação geográfica da produção de grãos e principais culturas agrícolas no Brasil em 2013. Sete Lagoas: Embrapa Milho e Sorgo, Documentos, 182. 143 p. il, 2015. LARA, N.; FIGUEROA, L.; CARVAJAL, F.; ZAPATA, Y.; URBINA, C.; ESCOBAR, H. Quantitative differentiation between soil organic carbon and biochar carbon in Aridisol. International Journal of Agriculture and Natural Resources, 40(2), 387-395, 2013. https://doi.org/10.4067/s0718-16202013000200013 LEE, K. E.; ADHIKARI, A.; KANG, S. M.; YOU, Y. H.; JOO, G. J.; KIM, J. H.; KIM, S. J.; LEE, I. J. Isolation and Characterization of the High Silicate and Phosphate Solubilizing Novel Strain Enterobacter ludwigii GAK2 that Promotes Growth in Rice Plants. Agronomy 9(3), 144- 155, 2019. https://doi.org/10.3390/agronomy9030144 LEHMANN, J.; JOSEPH, S. Biochar for environmental management: science and technology. Earthscan, 1, 1-12, 2009. LEHMANN, J.; RILLIG, M. C.; THIES, J.; MASIELLO, C. A.; HOCKADAY, W. C.; CROWLEY, D. Biochar effects on soil biota – a review. Soil biology and biochemistry, 43(9), 1812-1836, 2011. 81 LI, H.; DONG, X.; DA SILVA, E. B.; DE OLIVEIRA, L. M., CHEN, Y.; MA, L. Q. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere, 178:466-478, 2017. https://doi.org/10.1016/j.chemosphere.2017.03.072 LI, S.; WANG, S.; FAN, M.; WU, Y. SHANGGUAN, Z. (2020). Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community. Soil and Tillage Research, 196, 104437, 2020. https://doi.org/10.1016/j.still.2019.104437 LIANG, B.; LEHMANN, J.; SOLOMON, D.; KINYANGI, J.; GROSSMAN, J.; O'NEILL, B. J. O. J. F. J. J. E. G..; NEVES, E. G. Black carbon increases cation exchange capacity in soils. Soil science society of America journal, 70(5), 1719-1730, 2006. LIANG, X.; JIN, Y.; HE, M.; LIU, Y.; HUA, G.; WANG, S.; TIAN, G. Composition of phosphorus species and phosphatase activities in a paddy soil treated with manure at varying rates. Agriculture, Ecosystems & Environment, 237, 173–180, 2017. https://doi.org/10.1016/j.agee.2016.12.033 LIFFOURRENA, A. S.; LUCCHESI, G. I. Alginate-perlite encapsulated Pseudomonas putida A (ATCC 12633) cells: Preparation, characterization and potential use as plant inoculants. Journal of Biotechnology, 278, 28–33, 2018. https://doi.org/10.1016/j.jbiotec.2018.04.019 LIMA, J. R. DE S.; DE MORAES SILVA, W., DE MEDEIROS, E. V., DUDA, G. P., CORRÊA, M. M., MARTINS FILHO, A. P.; CLERMONT-DAUPHIN, C.; DANTAS, A. C.; HAMMECKER, C. Effect of biochar on physicochemical properties of a sandy soil and maize growth in a greenhouse experiment. Geoderma, 319, 14–23, 2018. https://doi.org/10.1016/j.geoderma.2017.12.033 LIRA-CADETE, L.; FARIAS, A. R. B.; RAMOS A. P. S.; COSTA, D. P.; FREIRE, F. J.; KUKLINSKY-SOBRAL, J. Variabilidade genética de bactérias diazotróficas associadas a plantas de cana-de-açúcar capazes de solubilizar fosfato inorgânico. Biosci. J. 28:122-129, 2012. LIU, B.; CAI, Z.; ZHANG, Y.; LIU, G.; LUO, X.; ZHENG, H. Comparison of efficacies of peanut shell biochar and biochar-based compost on two leafy vegetable productivity in an infertile land. Chemosphere, v. 224, p. 151-161, 2019. LIU, Y.; HOSSEINI, B. S.; WANG, J.; HU, D.; WU, R.; ZHANG, W.; ZHANG, M. Strain Klebsiella ZP-2 inoculation activating soil nutrient supply and altering soil phosphorus cycling. Journal of Soils and Sediments, 1-12, 2022. LYU, H., ZHANG, H., CHU, M., ZHANG, C., TANG, J., CHANG, S. X., OK, Y. S. Biochar affects greenhouse gas emissions in various environments: A critical review. Land Degradation & Development, 33(17), 3327-3342, 2022. MALAVOLTA, E. Manual de nutrição mineral de plantas. São Paulo: Agronômica Ceres, 631p. 2006. MANZOOR, M.; ABBASI, M. K.; SULTAN, T. Isolation of phosphate solubilizing bacteria from maize rhizosphere and their potential for rock phosphate solubilization–mineralization 82 and plant growth promotion. Geomicrobiology Journal, 34(1), 81–95, 2017. https://doi.org/10.1080/01490451.2016.1146373 MAPA – INSTRUÇÃO NORMATIVA SDA No 13, DE 24 DE MARÇO DE 2011. Disponível em: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos- agricolas/fertilizantes/legislacao/in-sda-13-de-24-03-2011-inoculantes.pdf MAPA – PLANO NACIONAL DE FERTILIZANTES – PNF 2022-2050, 2022. Disponível em: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos- agricolas/fertilizantes/plano-nacional-de-fertilizantes/o-plano-nacional-de-fertilizantes MARDAD, I.; SERRANO DELGADO, A.; SOUKRI, A. Solubilization of inorganic phosphate and production of organic acids by bacteria isolated from a Moroccan mineral phosphate deposit. African Journal of Microbiology Research, 7, 626-635, 2013. MARTINAZZO, R.; RHEINHEIMER D. S.; GATIBONI L. C.; BRUNETTO C.; KAMINSKI, J. Fósforo microbiano do solo sob sistema plantio direto em resposta à adição de fosfato solúvel. Brasileira de Ciência do Solo, 31:563-570, 2007. MARTINEZ, C. L. M.; JESUS, M. S.; VAKKILAINEN, E.; CARDOSO, M.; ALMEIDA, G. M. Bioenergy Technology Solutions in Brazil. Brazilian Journal of Wood Science, 10(2), 112– 122, 2019. https://doi.org/10.12953/2177-6830/rcm.v10n2p112-122 MARTINS FILHO, A. P.; DE MEDEIROS, E. V.; DE SOUSA LIMA, J. R.; DUDA, G. P.; DE MORAES SILVA, W.; ANTONINO, A. C. D.; DA SILVA, J. S. A. Impact of coffee biochar on soil carbon, microbial biomass and enzymatic activities in Semiarid Sandy soil cultivated with maize. Revista Brasileira de Geografia Física, 13(02), 903-914, 2020. https://doi.org/10.26848/rbgf.v13.3.p903-914 MARTINS, L. R. G.; PATAH, L. A. Barreiras e oportunidades para escolha do modelo de canal da agroindústria brasileira de fertilizantes. Quaestum, v. 3, p. 1-15, 2022. MASSENSSINI, A. M., TÓTOLA, M. R., BORGES, A. C.; COSTA, M. D. (2015). Potential Phosphate Solubilization Mediated by Rhizospheric Microbiota of Eucalyptus Cultivated in a Typical Toposequence of the Zona da Mata, Minas Gerais. Revista Brasileira de Ciência do Solo, 39(3), 692–700, 2015. https://doi.org/10.18178/ijesd.2017.8.5.979 MCGILL, W. B.; COLE, C. V. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma, 26(4), 267-286, 1981. MCLAUGHLIN, M. J.; ALSTON, A. M.; MARTIN, J. K. Measurement of phosphorus in the soil microbial biomass: a modified procedure for field soil. Soil Biology Biochemistry, Oxford, v. 18, p. 437-443, 1986. MEDEIROS, E. V.; DOS SANTOS, M. D. C. H.; DA COSTA, D. P.; DUDA, G. P.; DE OLIVEIRA, J. B.; DA SILVA, J. A.; LIMA, J. R. S.; HAMMECKER, C. Effect of biochar and inoculation with Trichoderma aureoviride on melon growth and sandy Entisol quality. Aust J Crop Sci 14(6):971–977, 2020. https://doi.org/10.21475/ajcs.20.14.06.p2302 83 MEDEIROS, E. V.; MORAES, M. C.; COSTA, D. P.; SILVA, J. S.; OLIVEIRA, J. B.; LIMA, J. R. S.; MENEZES, R. S. C.; HAMMECKER, C. Biochar and Trichoderma aureoviride applied to the sandy soil: effect on soil quality and watermelon growth. Not. Bot. Horti. Agrobot. Cluj Napoca 48(2):735–751, 2020. https://doi.org/10.15835/nbha48211851 MEDEIROS, E. V.; SILVA, A. O.; DUDA, G. P.; DOS SANTOS, U. J.; DE SOUZA JUNIOR, A. J. The combination of Arachis pintoi green manure and natural phosphate improves maize growth, soil microbial community structure and enzymatic activities. Plant and Soil, 435(1), 175–185, 2019. https://doi.org/10.1007/s11104-018-3887-z MELO, A. L.; CASIMIRO, E. L. N. Emergência do milho submetido a diferentes doses de enraizador a base de molibdênio e potássio. Revista Cultivando o Saber, ed. esp., p. 109-116, 2017. MENDES, I. D. C.; DOS REIS JUNIOR, F. B. Microrganismos e disponibilidade de fósforo (P) nos solos: uma análise crítica. Embrapa Cerrados, Documentos, Planaltina Brasil, 2003. MOHAMED, H. M.; ALMAROAI, Y. A. Effect of phosphate solubilizing bacteria on the uptake of heavy metals by corn plants in a long-term sewage wastewater treated soil. International Journal of Environmental Science and Development, 8(5), 366, 2017. https://doi.org/10.18178/ijesd.2017.8.5.979 2017. MÓL, P. C. G.; JÚNIOR, J. C. Q.; VERÍSSIMO, L. A. A.; BOSCOLO, M.; GOMES, E.; MINIM, L. A.; DA SILVA, R. β-glucosidase: An overview on immobilization and some aspects of structure, function, applications and cost. Bioquímica de Processos, v. 130, p. 26-39, 2023. https://doi.org/10.1016/j.procbio.2023.03.035 MORAES, CARIME; DOS SANTOS, ROBERTA MENDES; RIGOBELO, EVERLON CID. Rock phosphate fertilization harms' Azospirillum brasilense'selection by maize. Australian Journal of Crop Science, v. 13, n. 12, p. 1967-1974, 2019. MUKHERJEE, T.; BANIK, A.; MUKHOPADHYAY, S. K. Plant growth-promoting traits of a thermophilic strain of the Klebsiella group with its effect on rice plant growth. Current Microbiology, v. 77, n. 10, p. 2613-2622, 2020. NADEEM, S. M.; ZAHIR, Z. A.; NAVEED, M.; NAWAZ, S. Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Annals of Microbiology, 63(1), 225–232, 2013. https://doi.org/10.1007/s13213-012-0465-0 NAJAR, G. R.; GANIE, M. A.; TAHIR, A. L. I. Biochar for sustainable soil health: a review of prospects and concerns. Pedosphere, 25(5), 639-653, 2015. NAKBANPOTE, W., PANITLURTUMPAI, N., SANGDEE, A., SAKULPONE, N., SIRISOM, P. & PIMTHONG, A. (2014). Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions. Journal of Plant Interactions, 9(1), 379–387, 2014. https://doi.org/10.1080/17429145.2013.842000 84 NANNIPIERI, P.; GIAGNONI, L.; LANDI, L.; RENELLA, G. Role of Phosphatase Enzymes in Soil. In: BÜNEMANN, E.; OBERSON, A.; FROSSARD, E. (Eds.) Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling. Springer, Berlin, p. 215–243, 2011. NARDI, S.; SCHIAVON, M.; FRANCIOSO, O. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules, v. 26, n. 8, p. 2256, 2021. NAUTIYAL, C. S. An eficiente microbiological growth médium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, v. 170, p. 265-270, 1999. NIGUSSIE, A.; KISSI, E.; MISGANAW, M.; AMBAW, G. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. American-Eurasian Journal of Agriculture and Environmental Science, 12(3), 369-376, 2012. NOBILE, C. M.; BRAVIN, M. N.; BECQUER T.; PAILLAT J. M. Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: Importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation. Chemosphere 239:124709, 2020. https://doi.org/10.1016/j.chemosphere.2019.124709 NÓBREGA, I. P. C. Efeitos do biochar nas propriedades físicas e químicas do solo: Sequestro de carbono no solo (Doctoral dissertation, Universidade Tecnica de Lisboa (Portugal)), 2011. OGUT, M. E. R. F.; KANDEMIR, N. Phosphate solubilization potentials of soil Acinetobacter strains. Biology and Fertility of Soils, 46(7), 707–715, 2010. https://doi.org/10.1007/s00374- 010-0475-7 OKON, Y.; LABANDERA-GONZALEZ, C. A. Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biology & Biochemistry, 26(12), 1591–1601, 1994. https://doi.org/10.1016/0038-0717(94)90311-5 OLIVARES, F. L.; BALDANI, V. L.; REIS, V. M.; BALDANI, J. I.; DÖBEREINER, J. Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biology and Fertility of Soils, 21(3), 197–200, 1996. https://doi.org/10.1007/s003740050049 OLIVEIRA FILHO, J. S.; FERRARI, A. C.; PEREIRA, M. G.; PINTO, L. A. S. R.; ZONTA E.; MATOS, T. S. Phosphorus accumulation in soil after successive applications of swine manure: a long-term study in Brazil. Environ. Earth Sci. 79(2):62, 2020. https://doi.org/10.1007/s12665-019-8805-z OLIVEIRA JÚNIOR, A.; CASTRO, C.; OLIVEIRA, F. A.; JORDÃO, L. T. Adubação potássica da soja: cuidados no balanço de nutrientes. Informações Agronômicas; n. 143, p. 1- 10, set. 2013. OLIVEIRA, R. I.; GAMA-RODRIGUES, A. C.; GAMA-RODRIGUES, E. F.. Fósforo orgânico em horizontes diagnósticos superficiais de diferentes classes de solo. Revista Brasileira de Ciência do Solo, v. 38, n. 5, p. 1411-1420, 2014. 85 OLIVEIRA, Z. M. Rizobactérias promotoras de crescimento vegetal isoladas de cana-de-açúcar sob fertilização orgânica e/ou convencional. 2009. Tese de Doutorado. Universidade de São Paulo, 2009. OWEN, D.; WILLIAMS, A. P.; GRIFFITH, G. W.; WITHERS, P. J. Use of commercial bio- inoculants to increase agricultural production through improved phosphrous acquisition. Appl. Soil Ecol. 86:41–54, 2015. https://doi.org/10.1016/j.apsoil.2014.09.012 PAIVA, C. A. O.; MARRIEL, I. E.; GOMES, E. A.; COTA, L. V.; DOS SANTOS, F. C.; TINOCO, S. M. S.; LANA, U. G. P.; OLIVEIRA, M. C.; MATTOS, B. B.; ALVES, V. M. C., RIBEIRO, V. P.; VASCO JUNIOR, R. Recomendação agronômica de cepas de Bacillus subtilis e Bacillus megaterium na cultura do milho. Embrapa Milho e Sorgo, Circular Técnica. 2020. PAIVA, M. R. F. C.; SILVA, G. F.; TAVARES, F. H.; PEREIRA, R. G.; QUEIROGA, F. M. Doses de nitrogênio e de fósforo recomendadas para produção econômica de milho-verde na Chapada do Apodi-RN. Revista Caatinga, v. 25, n. 4, p. 1-10, 2012. PALANSOORIYA, K. N.; WONG, J. T. F.; HASHIMOTO, Y.; HUANG, L.; RINKLEBE, J.; CHANG, S. X.; BOLAN, N.; WANG, H.; OK, Y. S. Response of microbial communities to biochar-amended soils: a critical review. Biochar 1(1), 3–22, 2019. https://doi.org/10.1007/s42773-019-00009-2 PANDE, A., KAUSHIK, S., PANDEY, P., NEGI, A. Isolation, characterization, and identification of phosphate-solubilizing Burkholderia cepacia from the sweet corn cv. Golden Bantam rhizosphere soil and effect on growth-promoting activities. International Journal of Vegetable Science, 26(6), 591-607, 2020. PANDEY, D.; DAVEREY, A.; ARUNACHALAM, K. Biochar: Production, properties and emerging role as a support for enzyme immobilization. Journal of Cleaner Production, 255, 120267, 2020. https://doi.org/10.1016/j.jclepro.2020.120267 PANTANO, G.; GROSSELI, G. M.; MOZETO, A. A.; FADINI, P. S. Sustentabilidade no uso do fósforo: uma questão de segurança hídrica e alimentar. Química Nova, 39, 732-740, 2016. PARK, H. S., YEOM, Y. H., YOON, M. H. Comparison on phosphate solubilization ability of Pantoea rodasil and Burkholderia stabilis isolated from button mushroom media. Journal of Mushroom, 16(1), 31-38, 2018. PATHY, A.; RAY, J.; PARAMASIVAN, B. Biochar amendments and its impact on soil biota for sustainable agriculture. Biochar, 2(3), 287-305, 2020. PAVINATO, P. S.; ROSOLEM, C. A. Effects of organic compounds produced by plants on soil nutrient availability. Revista Brasileira de Ciência do Solo, v. 32, n. 3, p. 911-920, 2008. PEIX, A., RIVAS-BOYERO, A. A., MATEOS, P. F., RODRIGUEZ-BARRUECO, C., MARTINEZ-MOLINA, E., VELAZQUEZ, E. Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biology and Biochemistry, 33(1), 103-110, 2001. PEREIRA FILHO, I. A.; CRUZ, J. C.; GAMA, E. E. G. Cultivares de milho para o consumo verde, 2002. 86 PEREIRA, D. S.; DA COSTA, Y. K. S., DE CARVALHO, L. B. O elemento P: formas e dinâmica em solos tropicais. Revista Agronomia Brasileira, 2594-6781, Vol 5. doi: 10.29372/rab202124, 2021. PEREIRA, M. E.; VARANDA, L. D.; NAKASHIMA, G. T; HANSTED, A. L. S.; SILVA, D. A.; TOMELERI, J. O. P.; BELINI G. B.; YAMAJI, F. M. Caracterização da biomassa de cama de frango para fabricação de biochar. Revista Virtual de Química, v. 11, n. 4, p. 13301343. doi: 10.21577/1984-6835.20190092, 2019. PERIN, L.; MARTÍNEZ-AGUILAR, L.; PAREDES-VALDEZ, G.; BALDANI, J. I.; ESTRADA DE LOS SANTOS, P.; REIS, V. M.; CABALLERO-MELLADO, J. Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. International Journal of Systematic and Evolutionary Microbiology, 56(8), 1931–1937, 2006. https://doi.org/10.1099/ijs.0.64362-0 PIKOVSKAYA, R. I. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya, 17, 362–370, 1948. POSSO E. J. S.; DE PRAGER, M. S. Production of organic acids by rhizosphere microorganisms isolated from a Typic Melanudands and its effects on the inorganic phosphates solubilization. Acta Agronómica 66(2):1–23, 2017. PRABHU, N.; BORKAR, S.; GARG, S. Phosphate solubilization by microorganisms: overview, mechanisms, applications and advances. Advances in Biological Science Research, 161–176, 2019. https://doi.org/10.1016/B978-0-12-817497-5.00011-2 PRABHU, N.; BORKAR, S.; GARG, S. Phosphate solubilization mechanisms in alkaliphilic bacterium Bacillus marisflavi FA7. Current Science, 114(4), 845–853, 2018. https://doi.org/10.18520/cs/v114/i04/845-853 PRAKONGKEP, N.; GILKES, R. J.; WIRIYAKITNATEEKUL, W. Forms and solubility of plant nutrient elements in tropical plant waste biochars. Journal of Plant Nutrition and Soil Science, v. 178, n. 5, p. 732-740, 2015. QIAN, L.; CHEN, Y.; OUYANG, D.; ZHANG, W.; HAN, L.; YAN, J.; KVAPIL, P.; CHEN, M. Field demonstration of enhanced removal of chlorinated solvents in groundwater using biochar-supported nanoscale zero-valent iron. Science of the Total Environment, 698, 134215, 2020. https://doi.org/10.1016/j.scitotenv.2019.134215 R CORE TEAM R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. 2021. RANGJAROEN, C.; RERKASEM, B.; TEAUMROONG, N.; NOISANGIAM, R.; LUMYONG, S. Promoting plant growth in a commercial rice cultivar by endophytic diazotrophic bacteria isolated from rice landraces. Annals of Microbiology, 65, 253-266, 2015. https://doi.org/10.1007/s13213-014-0857-4 RASHID, M.; CURI, N.; SANTANA, D. P.; ALAM, S.; LATIF, F. Organic acids production and phosphorate solutibilizing microorganisms (PSM) inder in vitro conditions. Pakistan Jornal of Biological Sciences, v. 7, p. 187 – 196, 2004. 87 RAZZAGHI, F.; OBOUR, P. B.; ARTHUR, E. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 114055, 2020. https://doi.org/10.1016/j.geoderma.2019.114055 REETHA, S.; BHUVANESWARI, G.; THAMIZHINIYAN, P.; MYCIN, T. R. Isolation of indole acetic acid (IAA) producing rhizobacteria of Pseudomonas fluorescens and Bacillus subtilis and enhance growth of onion (Allim cepa L.). International Journal of Current Microbiology and Applied Sciences, 3(2), 568–574, 2014. REETZ, H. F. Fertilizantes e o seu uso eficiente. São Paulo: ANDA, 178. 2017. Disponível em: https://www.ufla.br/dcom/wp-content/uploads/2018/03/Fertilizantes-e-seu-uso-eficiente- WEB-Word-Ouubro-2017x-1.pdf REGKOUZAS, P.; DIAMADOPOULOS, E. Adsorption of selected organic micro-pollutants on sewage sludge biochar. Chemosphere, v. 224, p. 840-851, 2019. REHMAN, M. Z. U., RIZWAN, M., ALI, S., FATIMA, N., YOUSAF, B., NAEEM, A., ... & OK, Y. S. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicology and Environmental Safety, 133, 218-225, 2016. REIS, M., OLIVARES, F. L.; DÖBEREINER, J. Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World Journal of Microbiology & Biotechnology, 10(4), 401–405, 1994. https://doi.org/10.1007/bf00144460 RHEINHEIMER, D. S.; GATIBONI, L. C.; KAMINSKI, J. Fatores que afetam a disponibilidade do fósforo e o manejo da adubação fosfatada em solos sob sistema de plantio direto. Ciência Rural, v. 38, n.2, p. 576-586, 2008. RIBEIRO, H. Influência da adição de biochar sobre as modificações das propriedades físicas de um Latossolo Amarelo Distrófico da Amazônia Central, 2020. RICHARDSON, A. E. Prospects for using soli microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology, v. 28, p. 897-906, 2001. RICHARDSON, A. E.; HOCKING, P. J.; SIMPSON, R. J.; GEORGE, T. S. Plant mechanisms to optimise access to soil phosphorus. Crop and Pasture Science, 60(2), 124-143, 2009. RICHARDSON, A. E.; SIMPSON, R. J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant physiology, v. 156, n. 3, p. 989-996, 2011. RILLIG, M. C.; MUMMEY, D. L. Mycorrhizas and soil structure. New Phytologist, v. 171, n. 1, p. 41-53, 2006. RODRIGUEZ, H., GONZALEZ, T., GOIRE, I., BASHAN, Y. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften, 91, 552-555, 2004. SANI, M. N. H.; HASAN, M.; UDDAIN, J.; SUBRAMANIAM, S. Impact of application of Trichoderma and biochar on growth, productivity and nutritional quality of tomato under reduced NPK fertilization. Annals of Agricultural Sciences, v. 65, n. 1, p. 107-115, 2020. 88 SANTOS, A. D; CURADO, F. F; TAVARES, E. D. Pesquisas com sementes crioulas e suas interações com as políticas públicas na região Nordeste do Brasil. Cadernos de Ciência & Tecnologia, 36: 119, 2019. SANTOS, D. R. D.; GATIBONI, L. C.; KAMINSKI, J. Factors affecting the phosphorus availability and the fertilization management in no-tillage system. Ciência Rural, 38(2), 576– 586, 2008. SANTOS, H. G., JACOMINE, P. K. T., DOS ANJOS, L. H. C., DE OLIVEIRA, V. A., LUMBRERAS, J. F., COELHO, M. R., ... & CUNHA, T. J. F. (2018). Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa, 2018. SATYAPRAKASH, M.; NIKITHA, T.; REDDI, E. U. B.; SADHANA, B.; VANI, S. S. Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. International Journal of Current Microbiology and Applied Sciences, 6(4), 2133–2144, 2017. https://doi.org/10.20546/ijcmas.2017.604.251 SCHMALENBERGER, A.; FOX, A. Bacterial mobilization of nutrients from biochar-amended soils. In: GADD, G. M.; SARIASLANI, S. (Eds.) Advances in Applied Microbiology, Academic Press, pp 109–159, 2016. https://doi.org/10.1016/bs.aambs.2015.10.001 SHAHZAD, S.; KHAN, M. Y.; ZAHIR, Z. A.; ASGHAR, H. N.; CHAUDHRY, U. K. Comparative effectiveness of different carriers to improve the efficacy of bacterial consortium for enhancing wheat production under salt affected field conditions. Pakistan Journal of Botany, 49(4), 1523–1530, 2017. SHARMA, S. B., SAYYED, R. Z., TRIVEDI, M. H., GOBI, T. A. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 1-14, 2013. SHI, W.; JU, Y.; BIAN, R.; LI, L.; JOSEPH, S.; MITCHELL, D. R.; MUNROE, P.; TAHERYMOOSAVI, S.; PAN, G. Biochar bound urea boosts plant growth and reduces nitrogen leaching. Science of the Total Environment, 701, 134424, 2020. https://doi.org/10.1016/j.scitotenv.2019.134424 SILVA, M. F. D.; OLIVEIRA, P. J. D.; XAVIER, G. R.; RUMJANEK, N. G.; REIS, V. M. Inoculants containing polymers and endophytic bacteria for the sugarcane crop. Pesquisa Agropecuária Brasileira, 44(11), 1437–1443, 2009. SILVA, M. F.; DE SOUZA ANTÔNIO, C.; DE OLIVEIRA, P. J.; XAVIER, G. R.; RUMJANEK, N. G.; DE BARROS SOARES, L. H.; REIS, V. M. Survival of endophytic bacteria in polymer-based inoculants and efficiency of their application to sugarcane. Plant and Soil, 356(1-2), 231–243, 2012. https://doi.org/10.1007/s11104-012-1242-3 SILVA, R. D. N.; SENNA, T. O.; SÁ MENDONÇA, E.. Formas de fósforo em Luvissolo Crómico Órtico sob sistemas agroflorestais no município de Sobral-CE. Revista Ciência Agronômica, v. 39, n. 4, 494-502, 2008. SINDERAÇÕES Balanço do setor de alimentação animal 2021. https://sindiracoes.org.br/sindiracoes-anuncia-o-balanco-do-setor-de-alimentacao-animal-em- 2021, 2021. Acessado em: 21 de Mar de 2022. 89 SINGH, H.; NORTHUP, B. K.; RICE, C. W.. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar 4, 8(2022), 2022. https://doi.org/10.1007/s42773-022-00138-1 SINGLETON, P.; KEYSER, H.; SANDE, E. Development and evaluation of liquid inoculants. Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR Proceedings 109e, Canberra 52–66, 2002. SINHA, A.; LULU, S.; VINO, S.; OSBORNE, W. J. Reactive green dye remediation by Alternanthera philoxeroides in association with plant growth promoting Klebsiella sp. VITAJ23: a pot culture study. Microbiological Research, v. 220, p. 42-52, 2019. doi.org/10.1016/j.micres.2018.12.004 SITEPU, I. R.; HASHIDOKO, Y.; SANTOSO, E.; TAHARA, S. Potent phosphate-solubilizing bacteria isolated from dipterocarps grown in peat swamp forest in Central Kalimantan and their possible utilization for biorehabilitation of degraded peatland. In: Proceedings of the international symposium and workshop on tropical Peatland, Yogyakarta (pp. 27-29), 2007. SIVAKUMAR, P. K.; PARTHASARTHI, R.; LAKSHMIPRIYA, V. P. Encapsulation of plant growth promoting inoculant in bacterial alginate beads enriched with humic acid. International Journal of Current Microbiology and Applied Sciences, 3(6), 415–422, 2014. SMITH, R. S. Legume inoculant formulation and application. Canadian Journal of Microbiology, 38(6), 485-492. https://doi.org/10.1139/m92-080 1992. SOHI, S. P.; KRULL, E.; LOPEZ-CAPEL, E.; BOL, R. A review of biochar and its use and function in soil. Advances in agronomy, 105, 47-82, 2010. SON, H. J., PARK, G. T., CHA, M. S., & HEO, M. S. Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource technology, 97(2), 204-210, 2006. SOUCHIE, E. L.; AZCÓN, R.; BAREA, J. M.; SAGGIN-JÚNIOR, O. J.; SILVA, E. M. R. D. Solubilização de fosfatos em meios sólido e líquido por bactérias e fungos do solo. Pesquisa Agropecuária Brasileira, 40, 1149-1152, 2005. SOUSA, C. A.; JUNIOR, M. D. A. L.; FRACETTO, G. G. M.; FREIRE, F. J.; SOBRAL, J. K. Evaluation methods used for phosphate-solubilizing bacteria. African Journal of Biotechnology, 15(34), 1796-1805, 2016. SOUSA, G. G.; THALES, V. D. A.; BRAGA, E. S.; DE AZEVEDO, B. M.; MARINHO, A. B.; BORGES, F. R. Fertigation with bovine biofertilizer: Effects on growth, gas exchang and yield of physic nut (Jatropha curcas). Revista Brasileira de Ciências Agrárias, 8(3), 503–509, 2013. SOUSA, M. DOS S.; ECHER, M. M. Microrganismos promotores de crescimento: uma alternativa sustentável no desempenho agronômico da beterraba. Concilium, v. 23, n. 10, p. 529-541, 2023. 90 SOUZA, A. E.; REIS, J. G. M.; RAYMUNDO, J. C.; PINTO, R. S. Estudo da produção do milho no Brasil: regiões produtoras, exportação e perspectivas. South American Development Society Journal, v. 04, n. 11, p. 182-194, 2018. STEINER, C.; DAS, K. C.; GARCIA, M.; FÖRSTER, B.; ZECH, W. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia, 51(5-6), 359-366, 2008. STEINER, C.; GLASER, B.; GERALDES TEIXEIRA, W.; LEHMANN, J.; BLUM, W. E.; ZECH, W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science, 171(6), 893-899, 2008. STEPHENS, J. H. G.; RASK, H. M. Inoculant production and formulation. Field Crops Research, 65(2-3), 249–258, 2000. https://doi.org/10.1016/s0378-4290(99)00090-8 SZILAGYI-ZECCHIN, V. J.; MÓGOR, A. F.; RUARO, L.; RÖDER, C. Tomato seedlings growth (Solanum lycopersicum) promoted by bacteria Bacillus amyloliquefaciens subsp. Plantarum FZB42 in organic system. Revista de Ciências Agrárias, 38(1), 26–33, 2015. TAMURA K.; STECHER G.; KUMAR S. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 2021. https://doi.org/10.1093/molbev/msab120. TEIXEIRA, M. A.; I. S. DE MELO, I. S.; VIEIRA, R. F.; F. E. C. COSTA; HARAKAVA, R. Microrganismos endofíticos de mandioca de áreas comerciais e etnovariedades em três estados brasileiros. Pesq. Agropec. Bras., v. 42, n. 1, p. 43-49. Brasília, 2007. TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. Manual de Métodos de Análise de Solo. Embrapa, 2017. TENG, Z.; SHAO, W.; ZHANG, K.; HUO, Y.; LI, M. Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization. Journal of Environmental Management, 231, 189–197, 2019. https://doi.org/10.1016/j.jenvman.2018.10.012 THAKUR, D., KAUSHAL, R., SHYAM, V. Phosphate solubilising microorganisms: role in phosphorus nutrition of crop plants-a review. Agricultural Reviews, 35(3), 159-171, 2014. THEIS, J.; RILLIG, M. Characteristics of biochar biological properties, biochar for environment management science and technology. Earthscan, London, v. 85, 2009. THUNSHIRN, P.; WENZEL, W. W.; PFEIFER, C. Pore characteristics of hydrochars and their role as a vector for soil bacteria: A critical review of engineering options. Critical Reviews in Environmental Science and Technology, p. 1-25, 2021. TURNER, B. L.; MAHIEU, N.; CONDRON, L. M. Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH–EDTA extracts. Soil Science Society of America Journal, v. 67, n. 2, p. 497-510, 2003. 91 USEPA. Method 365.3: Phosphorous, All Forms (Colorimetric, Ascorbic Acid, Two Reagent). United States Environmental Protection Agency, 1978. https://www.epa.gov/sites/production/files/2015-08/documents/method_365- 3_1978.pdf VANCE, C. P., UHDE‐STONE, C. & ALLAN, D. L. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157(3), 423–447, 2003. https://doi.org/10.1046/j.1469-8137.2003.00695.x VANEK, S. J.; THIES, J.; WANG, B.; HANLEY, K.; LEHMANN, J. Pore-size and water activity effects on survival of Rhizobium tropici in biochar inoculant carriers. J. Microb. Biochem. Technol, 8, 296-306, 2016. VASSILEV, N.; EICHLER-LÖBERMANN, B.; VASSILEVA, M. Stress-tolerant P- solubilizing microorganisms. Applied Microbiology and Biotechnology, 95(4), 851–859, 2012. https://doi.org/10.1007/s00253-012-4224-8 VERHEIJEN, F.; JEFFERY, S.; BASTOS, A. C.; VAN DER VELDE, M.; DIAFAS, I. Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. EUR, 24099, 162, 2010. WAKELIN, R. A.; WARREN, P. R.; HARVEY, M. H.; RYDER. Phosphate solubilization by Penicillium spp. closely associated with wheat roots Biol. Fert. Soils, v. 40, p. 36-43, 2004. WALPOLA, B. C.; YOON, M. H. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African Journal of Microbiology Research, 6(37), 6600–6605, 2012. https://doi.org/10.5897/ajmr12.889 WANG, C.; PAN, G.; LU, X.; QI, W. Phosphorus solubilizing microorganisms: potential promoters of agricultural and environmental engineering. Frontiers in Bioengineering and Biotechnology, 11, 1181078, 2023. https://doi.org/10.3389/fbioe.2023.1181078 WANG, J.; XIONG, Z.; KUZYAKOV, Y. Biochar stability in soil: meta-analysis of decomposition and priming effects. Gcb-Bioenergy, 8(3), 512–523, 2016. https://doi.org/10.1111/gcbb.12266 WARNOCK, D. D.; LEHMANN, J.; KUYPER, T. W.; RILLIG, M. C. Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant and soil, 300(1), 9-20, 2007. WEI, C. Y.; LIN, L.; LUO, L. J.; XING, Y. X.; HU, C. J.; YANG, L. T..; AN, Q. Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth. Biology and Fertility of Soils, 50(4), 657-666, 2014. WEI, Y.; ZHAO, Y.; LU, Q.; CAO, Z.; WEI, Z. Organophosphorus-degrading bacterial community during composting from different sources and their roles in phosphorus transformation. Bioresource technology, 264, 277-284, 2018. WELCH, S. A.; TAUNTON, A. E.; BANFIELD, J. F. Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiology Journal, v. 19, n. 3, p. 343-367, 2002. 92 WENDIMU, A.; YOSEPH, T.; AYALEW, T. Ditching phosphatic fertilizers for phosphate- solubilizing biofertilizers: a step towards sustainable agriculture and environmental health. Sustainability, 15(2), 1713, 2023. WITHERS, P. J., RODRIGUES, M., SOLTANGHEISI, A., DE CARVALHO, T. S., GUILHERME, L. R., BENITES, V. D. M., GATIBONI, L. C., DE SOUSA, D. M. G., NUNES, R. S., ROSOLEM, C. A., ANDREOTE, F. D., OLIVEIRA JR, A., COUTINHO, E. L. M. & PAVINATO, P. S. Transitions to sustainable management of phosphorus in Brazilian agriculture. Scientific Reports, 8(1), 1-13, 2018. https://doi.org/10.1038/s41598-018-20887-z XIAO, Y., LYU, HH, TANG, JC, WANG, K., SUN, HW. Efeitos da moagem de bolas na fotoquímica do biochar: degradação da enrofloxacina e possíveis mecanismos. Chemical Engineering Journal, 384, 123311, 2020. https://doi.org/10.1016/j.cej.2019.123311 YAN, Y.; SARKAR, B.; ZHOU, L.; ZHANG, L.; LI, Q.; YANG, J.; BOLAN, N. Phosphorus- rich biochar produced through bean-worm skin waste pyrolysis enhances the adsorption of aqueous lead. Environmental Pollution, 266, 115177, 2020. https://doi.org/10.1016/j.envpol.2020.115177 YANG, W.; FENG, G.; MILES, D.; GAO, L.; JIA, Y.; LI, C.; QU, Z. Impact of biochar on greenhouse gas emissions and soil carbon sequestration in corn grown under drip irrigation with mulching. Science of the Total Environment, 729, 138752, 2020. YE, S.; ZENG, G.; TAN, X.; WU, H.; LIANG, J.; SONG, B.; TANGA, N.; ZHANGA, P.; YANGA, Y.; CHENA, Q.; LI, X. Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer. Applied Catalysis B: Environmental, 269, 118850, 2020. https://doi.org/10.1016/j.apcatb.2020.118850 YOU, M., FANG, S., MACDONALD, J., XU, J., & YUAN, Z. C. Isolation and characterization of Burkholderia cenocepacia CR318, a phosphate solubilizing bacterium promoting corn growth. Microbiological Research, 233, 126395, 2020. YRJÄLÄ, K.; LOPEZ-ECHARTEA, E. Structure and function of biochar in remediation and as carrier of microbes. Advances in Chemical Pollution, Environmental Management and Protection (Vol. 7, pp. 263-294). Elsevier, 2021. ZENG, Q., WU, X., WANG, J., & DING, X. Phosphate solubilization and gene expression of phosphate-solubilizing bacterium Burkholderia multivorans WS-FJ9 under different levels of soluble phosphate, 2017. ZHANG, X.; ZHAO, Y.; ZHU, L.; CUI, H.; JIA, L.; XIE, X.; LI, J.;WEI, Z. Assessing the use of composts from multiple sources based on the characteristics of carbon mineralization in soil. Waste Management, v. 70, p. 30-36, 2017. ZHENG, B. X.; DING, K.; YANG, X. R.; WADAAN, M. A.; HOZZEIN, W. N.; PEÑUELAS, J.; ZHU, Y. G. Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake. Science of the total environment, 647, 1113-1120, 2019. 93 ZHU, J.; LI, M.; WHELAN, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Science of the Total Environment, 612, 522–537, 2018. https://doi.org/10.1016/j.scitotenv.2017.08.095 ZUFFO, A. M.; BRUZI, A. T.; DE REZENDE, P. M.; DE CARVALHO, M. L. M.; ZAMBIAZZI, E. V.; SOARES, I. O.; SILVA, K. B. Foliar application of Azospirillum brasilense in soybean and seed physiological quality. African Journal of Microbiology Research, 10(20), 675–680, 2016. https://doi.org/10.5897/ajmr2016.7911 | pt_BR |
| dc.subject.cnpq | Agronomia | pt_BR |
| Appears in Collections: | Doutorado em Agronomia - Ciência do Solo | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| RAFAELA FÉLIX DA FRANÇA.pdf | 4.86 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
