Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/22286Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Silva, Carine Moutinho da | - |
| dc.date.accessioned | 2025-07-07T15:42:38Z | - |
| dc.date.available | 2025-07-07T15:42:38Z | - |
| dc.date.issued | 2023-08-25 | - |
| dc.identifier.citation | SILVA, Carine Moutinho. Extração assistida por ultrassom para a obtenção de extratos ricos em carotenoides a partir do resíduo do processamento de frutos de caqui. 2023. 55 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2023. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/22286 | - |
| dc.description.abstract | A crescente demanda por alimentos ricos nutricionalmente e ricos em compostos bioativos vinculada à necessidade de aproveitamento de resíduos gerados nas produções de alimentos é uma pauta que vem ganhando força nos últimos anos. Para tal, foi avaliada a tecnologia de extração assistida por ultrassom (EAU), que apresenta como vantagens em relação a extração sólido-líquido convencional, operações com menor tempo e menor energia, resultando em menor custo. Usualmente, a extração desses compostos é realizada por métodos tradicionais de extração com solventes orgânicos, como hexano. Contudo, surge a necessidade da utilização de solventes menos agressivos à saúde humana e ao meio ambiente, os chamados solventes verdes. Dessa forma, a EAU foi comparada a extração convencional utilizando o resíduo do processamento de frutos de caqui, com solvente óleo de girassol e solvente acetato de etila. Caquis in natura foram despolpados, obtendo o resíduo composto majoritariamente de casca. O resíduo foi seco em secador convectivo por 16 horas a 60°C e moído. O pó foi caracterizado quanto ao teor de carotenoides totais (6439,20 μg/100g base seca), pH (5,61), sólidos solúveis (36,8 °Brix), acidez total titulável (1,67 g/100g) e umidade (11%). Foi proposto um delineamento composto central rotacional baseado na metodologia de superfície de resposta para a EAU, que foi comparada a extração convencional realizada nas mesmas condições. A EAU apresentou a concentração de carotenoide três vezes maior do que a extração convencional. O solvente acetato de etila extraiu aproximadamente 50% a mais de carotenoides totais (1887,04 μg/100g de extrato) comparado ao óleo de girassol (930,85 μg/100g de extrato), sendo influenciado apenas pela variável tempo. A melhor condição de extração foi no acetato de etila, com 150 W de potência, 5,49 minutos a 50° C. Os extratos líquidos obtidos nas extrações foram avaliados quanto a análise de cor instrumental, obtendo os parâmetros L, a* e b*. Os extratos com a coloração amarela mais intensa foram os extratos com maior concentração de carotenoides totais, obtidos na EAU. Para o acetato de etila, foram observados valores do parâmetro b de 93,85, e no óleo de girassol 78,88. Os resultados obtidos nesse trabalho mostram que a EAU foi eficiente na extração de carotenoides do resíduo de caqui utilizando solventes verdes, com potencial para a obtenção de extratos concentrados ricos em compostos bioativos que podem ser incorporados posteriormente como corantes naturais. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | Biomassa | pt_BR |
| dc.subject | extração sólido-líquido | pt_BR |
| dc.subject | acetato de etila | pt_BR |
| dc.subject | óleo de girassol | pt_BR |
| dc.subject | Biomass | pt_BR |
| dc.subject | solid-liquid extraction | pt_BR |
| dc.subject | ethyl acetate | pt_BR |
| dc.subject | sunflower oil | pt_BR |
| dc.title | Extração assistida por ultrassom para a obtenção de extratos ricos em carotenoides a partir do resíduo do processamento de frutos de caqui | pt_BR |
| dc.title.alternative | Ultrasound-assisted extraction to obtain carotenoid-rich extracts from persimmon fruit processing waste | en |
| dc.type | Dissertação | pt_BR |
| dc.description.abstractOther | The growing demand for nutritionally rich foods rich in bioactive compounds linked to the need to reuse waste generated in food production is an agenda that has been gaining strength in recent years. To this end, the technology of ultrasound-assisted extraction (UAE) was evaluated, which has advantages over conventional solid-liquid extraction, operations with less time and less energy, resulting in lower costs. Usually, the extraction of these compounds is performed by traditional methods of extraction with organic solvents, such as hexane. However, there is a need to use solvents that are less harmful to human and environmental health, the so-called green solvents. Thus, the UAE was compared to the conventional extraction using the residue from the processing of persimmon fruits, with sunflower oil solvent and ethyl acetate solvent. Fresh persimmons were pulped, obtaining the residue composed mainly of bark. The residue was dried in a convective dryer for 16 hours at 60°C and ground. The powder was characterized in terms of total carotenoid content (6439.20 μg/100g dry basis), pH (5.61), soluble solids (36.8 °Brix), total titratable acidity and moisture (11%). A rotational central composite design based on response surface methodology for UAE was proposed, which was compared to conventional extraction performed under the same conditions without the presence of power. The presence of ultrasound extracted 3 times more carotenoids than conventional extraction. The ethyl acetate solvent extracted approximately 50% more total carotenoids (1887.04 μg/100g of extract) compared to sunflower oil (930.85 μg/100g of extract), obtaining significant influence only from time. The best extraction condition was in ethyl acetate, with 150W of power, 5.49 minutes at 50°C. The liquid extracts obtained in the extractions were evaluated for instrumental color analysis, obtaining the parameters L, a* and b*. The extracts with the most intense yellow color were the extracts with the highest concentration of total carotenoids, obtained from the UAE. For ethyl acetate, b* parameter values of 93.85 were observed, and for sunflower oil 78.88. The obtained results showed that UAE was efficient in extracting carotenoids from persimmon residue using green solvents, with the potential to obtain concentrated extracts rich in bioactive compounds that can be incorporated later as natural colorant. | en |
| dc.contributor.advisor1 | Cabral, Lourdes Maria Correa | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0003-2513-0381 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/7249897840870537 | pt_BR |
| dc.contributor.advisor-co1 | Matta, Virgínia Martins da | - |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/0750508672604543 | pt_BR |
| dc.contributor.advisor-co2 | Tonon, Renata Valeriano | - |
| dc.contributor.advisor-co2Lattes | http://lattes.cnpq.br/3777203586166795 | pt_BR |
| dc.contributor.referee1 | Cabral, Lourdes Maria Correa | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0003-2513-0381 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/7249897840870537 | pt_BR |
| dc.contributor.referee2 | Rosenthal, Amauri | - |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/1329532290735502 | pt_BR |
| dc.contributor.referee3 | Ribeiro, Leilson de Oliveira | - |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/3593134261774540 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/0856113897785323 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Tecnologia | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos | pt_BR |
| dc.relation.references | ALARCÓN-ROJO, A. D. Power ultrasound in meat processing. Meat Science, v. 107, p. 86– 93, 2015. ALMEIDA, H. H. S.; BARROS, L.; BARREIRA, J. C. M.; CALHELHA, R. C.; HELENO, S. A.; SAYER, C.; MIRANDA, C. G.; LEIMANN, F. V.; BARREIRO, M. F.; FERREIRA, I. C. F. R. Bioactive evaluation and application of different formulations of the natural colorant curcumin (E100) in a hydrophilicmatrix (yogurt). Food Chem, v. 261, p. 224–232, 2018. ANTUNES, R. C.; REIS, R. B.; GONÇALVES, L. C.; RODRIGUES, J. A. S.; RODRIGUEZ, N. M.; BORGES, A. L. C. C.; BORGES, I. Modificações na composição química e padrão de fermentação em silagens de seis híbridos de milho. Revista Brasileira de Milho e Sorgo, v. 5, n.3, p. 422-430, 2006. AQUINO, A. C. M. S.; MÓES, R. S.; LEÃO, K. M. M.; FIGUEIREDO, A. V. D.; CASTRO, A. A. Avaliação físico-química e aceitação sensorial de biscoitos tipo cookies elaborados com farinha de resíduos de acerola. Revista do Instituto Adolfo Lutz, v. 69, n. 3, p.379-386, 2010. ARIMBOOR, R. Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability - a review. Journal of Food Science and Technology, v. 52, n. 3, p. 1258–1271, 2015. AOAC.Official Methods of Analysis. Arlington, VA, USA: Association of Official Analytical Chemist, 2005. AOAC.Official Methods of Analysis. Arlington, VA, USA: Association of Official Analytical Chemist, 2010. AOAC.Official Methods of Analysis. Arlington, VA, USA: Association of Official Analytical Chemist, 2016. BARBOSA, Mayra Cristina Freitas. Caracterização de caquis ‘Giombo’ e ‘Rama forte’ produzidos no semiárido nordestino. Orientador: Patrícia Lígia Dantas de Morais. Dissertação (mestrado). Programa de Pós-Graduação em Fitotecnia, Universidade Federal Rural do Semi-Árido, Mossoró, 2019. BHIMJIYANI, V. H.; BORUGADDA, V. B.; NAIK, S.; DALAI, A. K. Enrichment of flaxseed (Linum usitatissimum) oil with carotenoids of sea buckthorn pomace via ultrasound-assisted 46 extraction technique: Enrichment of flaxseed oil with sea buckthorn. Curr. Res. Food Sci, v. 4, p. 478–488, 2021. BORDIGA, M.; TRAVAGLIA, F.; GIUFFRIDA, D.; MANGRAVITI, D.; RIGANO, F.; MONDELLO, L.; ARLORIO, M.; COISSON, J. D. Characterization of peel and pulp proanthocyanidins and carotenoids during ripening in persimmon “KakiTipo” cv, cultivated in Italy. Food Research International, v. 120, p. 800-809, 2019. BOTELLA, S.; CHAMBA, B.; LA CASA, L.; BERMEO, J.; MARTÍ, N.; MATÍNEZ, M. C.; VALERO, M.; SAURA, D. Pharmaceutics, v. 2, p. 11-13 2021. BRASIL. Ministério da agricultura, pecuária e abastecimento. Perdas e desperdício de alimentos. Disponível em <https://www.gov.br/agricultura/pt- br/assuntos/sustentabilidade/perdas-e-desperdicio-de-alimentos>. Acesso em: 07 de abril de 2022. BROCK, J.; NOGUEIRA, M. R.; ZARKZEVSKI, C.; CORAZZA, F. C.; CORAZZA, M. L.; DE OLIVEIRA, J. V. Experimental measurements of viscosity and termal conductivity of vegetabl eoils. Food Science and technology, v. 28, p. 3, 2008. CHAROUX, C. M. G. Applications of airborne ultrasonic technology in the food industry. Journal of Food Engineering, v. 208, p. 28–36, 2017. CHEMAT, F. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, v. 34, p. 540–560, 2017. CHEN, X. N.; FAN, J. F.; YUE, X.; WU, X. R.; LI, L. T. Radical scavenging activity and phenolic compounds in persimmon (Diospyros kaki L. cv. Mopan). Journal of Food Science, 2008. CHEN, Z. G.; GUO, X. Y.; WU, T. A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods. UltrasonicsSonochemistry, v. 30, p. 28-34, 2016. CHRANIOTI, C.; NIKOLOUDAKI, A.; TZIA, C. Saffron and beetroot extracts encapsulated in maltodextrin, gum Arabic, modified starch and chitosan: Incorporation in a chewing gum system. Carbohydr. Polym, v. 127, p. 252–263, 2015. 47 CHUNG, C.; ROJANASASITHARA, T.; MUTILANGI, W.; MCCLEMENTS, D. J. Stabilization of natural colors and nutraceuticals: Inhibition of anthocyanin degradation in model beverages using polyphenols. Food Chem, v. 212, p. 596–603, 2016. CHUTIA, H.; MAHANTA, C. L. Green ultrasound and microwave extraction of carotenoids from passion fruit peel using vegetable oils as a solvent: Optimization, comparison, kinetics, and thermodynamic studies. Innovative FoodScience and Emerging Technologies, 2020. CHUYEN, H. V.; ROACH, P. D.; GOLDING, J. B.; PARKS, S. E.; NGUYEN, M. H. Ultrasound-Assisted Extraction of GAC Peel: An Optimization of Extraction Conditions for Recovering Carotenoids and Antioxidant Capacity. MDPI, 2019. COELHO, T. L. S.; SILVA, D. S. N.; DOS SANTOS, J. M .J.; DANTAS, C.; NOGUEIRA, A. R. A.; JÚNIOR, C. A. L.; VIEIRA, E. C. Multivariate optimization and comparison between conventional extraction (CE) and ultrasonic-assisted extraction (UAE) of carotenoid extraction from cashew apple. UltrasonicsSonochemistry, v. 84, 2022. CONESA, C.; LAGUARDA, N.; FITO, P.; SEGUI, L. Evaluation of Persimmon (Diospyros kaki Thunb. cv. RojoBrillante) Industrial Residue as a Source for Value Added Products. Springer Nature, 2019. DEUS, Gilcileia Inácio de. Efeitos da temperatura de secagem nos teores de compostos cianogênicos totais e fibra alimentar de casca de maracujá. Orientador: Maria Sebastiana Silva. 2011. Dissertação (mestrado). Programa de pós-graduação em Ciência e Tecnologia de Alimentos, Universidade Federal de Goiás, Goiás, 2011. DOS SANTOS, S. M. C.; MALUF, R. S. J. Insegurança Alimentar e Covid-19 no Brasil. São Paulo: Rede Brasileira de Pesquisa em Soberania e Segurança Alimentar. (Rede PENSSAN), 2021. Disponível em: <http://olheparaafome.com.br/VIGISAN_Inseguranca_alimentar.pdf >. DREHER, M. L. Whole Fruits and Fruit Fiber Emerging Health Effects. Nutrients, 2018. DU, J.; DANG, M.; KHALIFA, I.; DU, X.; XU, YUJUAN.; LI, C. Persimmon tannin changes the properties and the morphology of wheat gluten by altering the cross-linking, and the secondary structure in a dosedependent manner. Food Research International, v. 137, 2020. ELETR, A. A.; SILIHA, H. A. E.; ELSHOBARGY, G. A.; GALAL, G. A. Evaluation of lycopene extracted from tomato processing waste as a natural antioxidant in some bakery products. Zagazig. J. Agric. Res, v. 44, p.1389–1401, 2017. 48 ELIAS, N. F.; BERBERT, P, A.; MOLINA, M. A. B.; VIANA, A. P.; DIONELLO, R. G.; QUEIROZ, V. A. A. Ciência e Tecnologia de Alimentos, 2008. FAO. Food and Agriculture Organization of the United Nations. Global Food Loss and Waste, Food Loss Index. Rome, 2016. Disponível em: https://www.fao.org/sustainable-development- goals/indicators/12.3.1/en/. Acesso em 10 abril 2022. FU, L.; LU, W. Q.; ZHOU, X. M. Phenolic Compounds and in Vitro Antibacterial and Antioxidant Activities of Three Tropic Fruits: Persimmon, Guava, and Sweetsop. Biomed Res. Int. 2016. GARCIA, C. E. R.; BOLOGNESI, V. J.; DIAS, J. F.; MIGUEL, O. G.; COSTA, C. K. Carotenoids bixin and norbixin from annatto (Bixa orellana L.) as antioxidants in meat products. Ciência Rural, v. 42, p. 1510-1517, 2012. GIORDANI, E.; DOUMETT, S.; NIN, S.; DEL BUBBA, M. A Review of Analytical Methods and Current Knowledge of Fruit Composition and Health Benefits. Food Research International, v. 44, p. 1752–1767, 2011. GIORDANI, E.; DOUMETT, S.; NIN, S.; DEL BUBBA, M. Selected primary and secondary metabolites in fresh persimmon (Diospyros kaki Thunb.): a review of analytical methods and current knowledge of fruit composition and health benefits. Food Research Internacional, p. 1752–1767, 2011. GOMES, F. S.; SILVA, L. O. M.; BERES, C.; PAGANI, M. M.; BRÍGIDA, A. I. S.; SANTIAGO, M. C. P. A.; PACHECO, S.; GODOY, R. L. O.; CABRAL, L. M. C. Processing tomato waste as a potential bioactive compounds source: phenolic compounds, antioxidant capacity and bioacessibility studies. Ciência Rural, v.52, n. 2, 2022. GOÑI, I.; SERRANO, J.; SAURA-CALIXTO, F. Bioaccessibility of β-Carotene, Lutein, and Lycopene from Fruits and Vegetables. Journal of Agricultural and food chemistry, v. 54, n. 15, p. 5382-5387, 2006. GONZÁLEZ, E.; VEGARA, S.; MARTI, N.; VALERO, M.; SAURA, D. Physicochemical Characterization of Pure Persimmon Juice: Nutritional Quality and Food Acceptability. Journal Food Science, v. 80, p. 532- 539, 2015. GONZÁLEZ, L. R.; FERNÁNDEZ-LÓPEZ, J.; PÉREZ-ÁLVAREZ, J.A.; VIUDA-MARTOS, M. Effect of particle size on phytochemical composition and antioxidant properties of two 49 persimmon flours from Diospyros kaki Thunb. vars. ‘RojoBrillante’ and ‘Triumph’ coproducts. J. Sci. Food Agric. 98, 504–510, 2018. GOULA, A. M.; VERVERI, M.; ADAMOPOULOU, A.; KADERIDES, K. Green ultrasound- assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrasonics Sonochemistry, v.34, p. 821–830, 2017. GRYGORIEVA, O.; BRINDZA, J.; VIETORIS, V.; KUCELOVÁ, L.; TÓTH, D.; ABRAHAM, V.; HRICOVÁ, M. Morphological and Organoleptic Fruit Properties of Various Persimmon Species (Diospyros Spp.). Potravinárstvo, v.5, p. 11–19, 2011. GU, H.; LI, C.; XU, Y.; HU, W.; CHEN, M.; WAN, Q. Structural features and antioxidant activity of tannin from persimmon pulp. Food Research Internacional , v. 41, p. 208-2017, 2008. GUO, Y.; LIANG P.; TANG, Y.; ZHANG, M.; LI, B. Effects of postharvest deastringency and 1-methylcyclopropene treatments on membrane permeability, membrane-degrading enzymes and their encoding genes in persimmon (Diospyros kaki, cvMopanshi) fruit. Scientia Horticulturae, v. 297, 2022. HAN, L.; QI, S.; LU, Z.; LI, L. Effects of immature persimmon (Diospyros kaki linn. F.) juice on the pasting, textural, sensory and color properties of rice noodles. J. Texture Stud, v. 43, p. 187–194, 2012. IBGE. Instituto Brasileiro de Geografia e Estatística. Produção Agrícola Municipal. Disponível em https://cidades.ibge.gov.br/brasil/pesquisa/15/0?indicador=11911&localidade2=35 acesso em 06 de abril de 2021. JERMAN, T; TREBŠE, P; VODOPIVEC, B. M. Ultrasound-assisted solid liquid extraction (USLE) of olive fruit (Olea europaea) phenolic compounds, Food Chem, v. 123, p. 175–182, 2010. KACI, M.; ARAB-TEHRANY, E.; DESJARDINS, I.; BANON-DESOBRY, S.; DESOBRY, S. Emulsifier free emulsion: Comparative study between a new high frequency ultrasound process and standard emulsification processes. Journal of Food Engineering, v. 194, p. 109- 118, 2017. 50 KASHIF, M.; AKHTAR, N.; MUSTAFA, R. An Overview of Dermatological and Cosmeceutical Benefits of Diospyros Kaki and Its Phytoconstituents. Rev. Bras. Farmacogn, v. 27, p. 650–662, 2017. KIM, S. K.; LEE, G. D.; JEONG, S. K. Monitoring on fermentation of persimmon vinegar from persimmon peel. Korean J. Food Sci. Technol, v. 35, p. 642–647, 2003. KIM, Y.J.; LEE, S. J.; KIM, M. Y.; KIM, G. R.; CHUNG, H. S.; PARK, H. J.; KIM, M. O.; KWON, J. H. Physicochemical and organoleptic qualities of sliced-dried persimmons as affected by drying methods. Korean J. Food Sci. Technol, v. 41, p. 64–68, 2009. KIM,Y. C.; KIM, J. B.; CHO, K. J.; LEE, I. S.; CHUNG, S. K. Carotenoid content of Korean persimmon peel and their changes in storage, Food Science andBiotechnology, v. 11, n. 5, p. 477–479, 2002. KULTYS, E.; KUREK, M. A. Green Extraction of Carotenoids from Fruit and Vegetable Byproducts: A Review. Molecules, v. 27, p. 518, 2022. LARA-ABIA, S.; WELTI-CHANES, J.; CANO, M. P.; Effect of Ultrasound-Assisted Extraction of Carotenoids from Papaya (Carica papaya L. cv. Sweet Mary) Using Vegetable Oils. Molecules, v. 27, p. 638, 2022. LINARES, G.; ROJAS, M. L. Ultrasound-assisted extraction of natural pigments from food processing by-products: a review. Frontiers in nutrition, v. 9, 2022. LIU, M.; YANG, K.; WANG, J.; ZHANG, J.; QI, Y.; WEI, X.; FAN, M. Young Astringent Persimmon Tannin Inhibits Methicillin-resistant Staphylococcus Aureus Isolated from Pork. LWT – Food Sci. Technol, v. 100, p. 48–5, 2019. Liu, M.; Yang, K.; Wang, J.; Zhang, J.; Qi, Y.; Wei, X.; Fan, M. Young O tanino adstringente do caqui inibe o Staphylococcus aureus resistente à meticilina isolado da carne de porco.LWT – Food Sci. Tecnol.2019,100,48–55 LOBO, F.A.T.; SILVA, V.; DOMINGUES, J.; RODRIGUES, S.; COSTA, V.; FALCÃO, D.; DE LIMA ARAÚJO, K.G. Inclusion complexes of yellow bell pepper pigments with β- cyclodextrin: Preparation, characterisation and application as food natural colorant. J. Sci. Food Agric, v. 98, p. 2665–2671, 2018. MAOKA, T. Carotenoids as natural functional pigments. Journal of Natural Medicines, v. 74, p. 1-76, 2020. 51 MARTÍNEZ-LAS HERAS, R.; LANDINES, E. F.; HEREDIA, A.; CASTELLÓ, M. L.; ANDRÉS, A. Influence of drying process and particle size of persimmon fibre on its physicochemical, antioxidant, hydration and emulsifying properties. J. Food Sci. Technol, v. 54, p. 2902– 2912, 2017. MATHEUS, J. R. V.; ANDRADE, C. J.; MIYAHIRA, R. F.; FAI, A. E. C. Persimmon (Diospyros Kaki L.): Chemical Properties, Bioactive Compounds and Potential Use in the Development of New Products – A Review. Food Reviews International, 2020. MADHU, B.; SRINIVAS, M. S.; SRINIVAS, G.; JAIN, S. K. Ultrasonic technology and its applications in quality control, processing and preservation of food: A review. Current Journal of Applied Science and Technology, v. 32, p. 1-11, 2019. MAKKI, K.; DEEHAN, E. C.; WALTER, J.; BÄCKHED, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe, v. 6, p. 705-715, 2018. MENDONÇA, V. Z.; DAIUTO, E. R.; FURLANETO, K, A.; RAMOS, J. A.; FUJITA, E.; VIEITES, R. L.; TECCHIO, M. A.; CARVALHO, L. R. Aspectos físico-químicos e bioquímicos durante o armazenamento refrigerado do caqui em atmosfera modificada passiva. Pesquisas Agrárias e Ambientais, v. 3, n. 01, p. 16, 2015. MENDONÇA, V. Z. Métodos físicos na conservação de caqui cv. Kioto in natura e minimamente processado. 2016. 125f. Tese (Doutorado em Ciências Agronômicas) – Universidade Estadual Paulista. Botucatu. 2016. MUNERA, S.; ALEIXOS, N.; BESADA, C.; G ́OMEZ-SANCHIS, J.; SALVADOR, A.; CUBERO, S.; BLASCO, J. Discrimination of astringent and deastringed hard ‘RojoBrillante’ persimmon fruit using a sensory threshold by means of hyperspectral imaging. Journal of Food Engineering, v. 263, p. 173–180, 2019. NOUR, V.; CORBU, A.R.; ROTARU, P.; KARAGEORGOU, I.; LALAS, S. Effect of carotenoids, extracted from dry tomato waste, on the stability and characteristics of various vegetable oils. GrasasAceites, v. 69, 2018. NOWACKA, M.; WEDZIK, M. Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue. Appl. Acoust, v. 103, p. 163–171, 2016. 52 NUNES, J. S.; LINS, A. D. F.; GOMES, J. P.; SILVA, W. P.; SILVA, F. B. Influência da temperatura de secagem nas propriedades físico-química de resíduos abacaxi. Revista Agropecuária Técnica, v. 1, n. 1, p. 41-46, 2017. PACHECO, P.; PEIXOTO, F. M.; BORGUINI, R. G.; NASCIMENTO, L. S. M.; BOBEDA, C. R. R.; SANTIAGO, M. C. P. A.; GODOY, R. L. O. Microscale extraction method for HPLC carotenoid analysis in vegetable matrices. Scientia Agricola, v. 71, p. 345-355, 2014. PACHECO, S. Validação da metodologia de determinação de carotenoides por Cromatografia Líquida de Alta Eficiência. Dissertação (Mestrado) – Universidade Federal Rural do Rio de Janeiro, Departamento de Ciência e tecnologia de Alimentos, Rio de Janeiro, 2009. PATIST, A.; BATES, D. Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innovative Food Science & Emerging Technologies, v. 9, n. 2, p. 147–154, 2008. PAZNOCHT, L.; KOTÍKOVÁ, Z.; ŠULC, M.; LACHMAN, J.; ORSÁK, M.; ELIÁŠOVÁ, M.; MARTINEK, P. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains. Food Chemistry, v. 240, p. 670–678, 2018. PIRES, T. C. S. P.; DIAS, M. I.; BARROS, L.; BARREIRA, J. C. M.; SANTOS-BUELGA, C.; FERREIRA, I. C. F. R. Incorporation of natural colorants obtained from edible flowers in yogurts. LWT, v 97, p. 668–675, 2018. RANA, A.; PARMAR, M. Y.; ANITA RANA, C. Ultrasonic processing and its use in food industry: A review. International Journal of Chemical Studies, v.5, p. 1961–1968, 2017. RE, R.; PELLEGRINI, N.; PROTEGGENTE. A.; PANNALA, A.; YANG, M.; RICE-EVANS, C. Antioxidant activity applying na improved abts radical cátionsdecolorization assay. Free Radical Biology & Medicine, v, 26, p. 1231-1237, 1999. RESENDE, K. K. O.; S, S. S.; GUEDES, S. F.; LOSS, R. A. Cinética de secagem e avaliaçãofísico-química de fruta-pão (Artocarpus altilis) variedade seminífera. Revista de agricultura neotropical, v. 6, n. 1, p.74-81, 2018. RODRIGUEZ-AMAYA, D. B. A Guide to Carotenoid Analysis in Foods. 1st ed. Washington, DC, 2001. 53 ROSARIO, D. K. A.; DUARTE, A. L. A.; MADALAO, M. C. M.; LIBARDI, M. C.; TEIXEIRA, L. J. Q.; CONTE-JUNIOR, C. A.; BERNARDES, P. C. Ultrasound improves antimicrobial effect of sodium hypochlorite and instrumental texture on fresh-cut yellow melon. Journal of Food Quality, p. 1-7, 2018. Sá, N. S.; Camilo, Y. M. V.; Damasceno, G. D. B.; & Nascimento, L. M. Caracterização pós- colheita de variedade de caqui produzidas no Cerrado de Goiás. Agrarian, v. 11, p. 324–327, 2018. SANTOS, M. L.; MACHADO, A. V.; ALVES, F. M. S.; COSTA, A. L. Estudo físico-químico de maçã desidratada em secador convectivo. Revista Verde de Agroecologia e Desenvolvimento Sustentável, v. 8 , n. 1 , p.30 – 37, 2013. SILVA, G. S.; SANTOS, S. P. S.; BARBOSA, N. F. P.; SANTOS, R. G.; BERY, C. S.; SILVA, G. F. Secagem e caracterização físico-química da uva Crimson. In: CONGRESSO BRASILEIRO DE SISTEMAS PARTICULADOS, XXXVII, 2015, São Paulo. TIWARI, S.; UPADHYAY, N.; SINGH, A. K.; MEENA, G. S.; ARORA, S. Organic solvent- free extraction of carotenoids from carrot bio-waste and its physico-chemical properties. J. Food Sci. Technol, v. 56, p. 4678–4687, 2019. ROSTAGNO, M. A.; PALMA, M.; BARROSO, C. G. Microwave assisted extraction of soy isoflavones, Anal. Chim, v. 588, p. 274–282, 2007. RUFINO, M. S. M. et al. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre ABTS+. Fortaleza: EmbrapaAgroindústria Tropical, p.4, 2007. SACHINDRA, N. M.; MAHENDRAKAR, N. S. Stability of carotenoids recovered from shrimp waste and their use as colorant in fish sausage, J. Food Sci. Technol, v.47, p. 77-83, 2010. SAINI, R.K.; KEUM, Y-S.; Carotenoid extraction methods: a review of recent developments, Food Chemistry, 2017. SANTOS, A. D. D. C.; FONSECA, F. A.; DUTRA, L. M.; SANTOS, M. F. C.; MENEZES, L. R. A.; CAMPOS, F. R.; NAGATA, N.; AYUB, R.; BARISON, A. 1H HR-MAS NMR-based Metabolomics Study of Different Persimmon Cultivars (Diospyros Kaki) during Fruit Development. Food Chemistry, p. 511–519, 2018. 54 SHARONI, Y. et al. Carotenoids and apocarotenoids in cellular signaling related to cancer: A review. Molecular Nutrition & Food Research., v. 56, n. 2, p. 259-269, 2016. SHI, H.; ZHANG, X.; CHEN, X.; FANG, R.; ZOU, Y.; WANG, D.; XU, W. How ultrasound combined with potassium alginate marination tenderizes old chicken breast meat: Possible mechanisms from tissue to protein. Food Chemistry, v. 328, p. 127-144, 2020. SILVA, H. R. P.; IWASSA, I. J.; MARQUES, J.; POSTAUE, N.; STEVANATO, N.; DA SILVA, C. Enrichment of sunflower oil with β-carotene from carrots: Maximization and thermodynamic parameters of the β-carotene extraction and oil characterization. J.Food Process, v. 44, p. 1–10, 2020. SINGH, A.; AHMAD, S.; AHMAD, A. Green extraction methods and environmental applications of carotenoids-a review, v. 77, n. 5, p. 62358–62393, 2015. SONG, J. et al. Degradation of carotenoids in dehydrated pumpkins as affected by different storage conditions. Food Research International, v. 107, p. 130-136, 2018. SOWMYA, R; SACHINDRA, N. M. Protective effect of shrimp carotenoids against ammonia stress in common carp, Cyprinuscarpio, Ecotoxicol. Environ, p. 207–213, 2014. SPIGNO, G.; TRAMELLI, L.; DE FAVERI, D. M. Effects of extraction time, temperature and solvent onconcentration and antioxidant activity ofgrape marc phenolics, J. Food Eng, p 200– 208, 2007. SZABO1, K.; TELEKY, B.; RANGA1, F.; ROMANO, I.; KHAOULA, H.; BOUDAYA, E.; LTAIEF, A. B.; AOUANI, W.; THIAMRAT, M.; VODNAR, D. C. Carotenoid Recovery from tomato processing by-products through green chemistry. Molecules, v. 27, p.37-71, 2022. TROJANOWSKA, A.; TSIBRANSKA, I.; DZHONOVA, D.; WROBLEWSKA, M.; HAPONSKA, M.; JOVANCIC, P.; MARTURANO, V.; TYLKOWSKI, B. Ultrasound- assisted extraction of biologically active compounds and their successive concentration by using membrane processes. Chemical Engineering Research & Design, v. 147, p. 378-389, 2019. THOO, Y. Y. Optimal binary solvent extraction system for phenolic antioxidants from Mengkudu (Morindacitrifolia) fruit. Molecules, v. 18, p. 7004-7022, 2013. 55 VEBERIC, R.; JUHAR, J.; MIKULIC-PETKOVSEK, M.; STAMPAR, F.; SCHMITZER, V. Comparative study of primary and secondary metabolites in 11 cultivars of persimmon fruit (Diospyros kaki L.). Food Chemistry, v. 119, p. 477-483, 2010. WRIGHT, K.; KADER, A. A. Effect of slicing and controlled-atmosphere storage on the ascorbate content and quality of strawberries and persimmons. Postharvest Biology and Technology, v. 10, p. 39-48, 1997. YAQUB, S.; FAROOQ, U.; SHAfi, A.; AKRAM, K.; MURTAZA, M. A.; KAUSAR, T.; SIDDIQUE, F. Chemistry and Functionality of Bioactive Compounds Present in Persimmon. J. Chem, p. 1-13, 2016. YARA-VARÓN, E.; FABIANO-TIXIER, A. S.; BALCELLS, M.; CANELA-GARAYOA, R.; BILY, A.; CHEMAT, F. Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study. RSC. Adv, v. 6, p. 27750– 27759, 2016. YUAN, B.; XU, H. L.; LENG, S. P. Content and chemical composition of carotenoids in persimmon fruit. Chinese Agricultural Science Bulletin, vol. 22, pp. 277–280, 2006. ZHANG, Q. A.; ZHANG, Z. Q.; YUE, X. F.; FAN, X. H.; LI, T.; CHEN, S. F. Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder, Food Chem, p. 513–518, 2009. ZHANG, G.; HE, L.; HU, M.; Optimized ultrasonic-assisted extraction of flavonoids from Prunella vulgaris L. and evaluation of antioxidant activities in vitro. Innovative Food Sci. Emerg. Technol, v. 12, p. 18-25, 2011. ZHOU, C.; ZHAO, D.; SHENG, Y.; TAO, J.; YANG, Y. Carotenoids in fruits of different persimmon cultivars. Molecules, v. 16, p. 624-636, 2011. | pt_BR |
| dc.subject.cnpq | Ciência e Tecnologia de Alimentos | pt_BR |
| Appears in Collections: | Mestrado em Ciência e Tecnologia de Alimentos | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 2023 - Carine Moutinho da Silva.pdf | 1.99 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
