Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/22292Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Cunha Júnior, Paulo Cezar da | - |
| dc.date.accessioned | 2025-07-08T15:10:18Z | - |
| dc.date.available | 2025-07-08T15:10:18Z | - |
| dc.date.issued | 2023-09-15 | - |
| dc.identifier.citation | CUNHA JÚNIOR, Paulo Cezar da. Desenvolvimento de ingrediente alimentício natural multifuncional oriundo de batata-doce de polpa roxa: caracterização e aplicação. 2023. 144 f. Tese (Doutorado em Ciência e Tecnologia de Alimentos). Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2023. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/22292 | - |
| dc.description.abstract | Aditivos e ingredientes sintéticos são historicamente utilizados pela indústria alimentícia. Contudo, frente às evidências de efeitos negativos decorrentes da ingestão desses componentes, os consumidores vêm buscando opções mais saudáveis e próximas ao natural, onde os alimentos são obtidos por processamentos mais simples. Nesse contexto, há uma tendência de substituição de aditivos e ingredientes sintéticos por opções naturais, com destaque para os corantes. Dentre os corantes naturais, destacam-se as antocianinas, pigmento vegetal responsável por uma ampla gama de cores na natureza devido a sua capacidade de apresentar diferentes colorações frente ao pH do meio. Tal propriedade é denominada como interconversão de cores. Além disso, as antocianinas apresentam destacável capacidade bioativa. A batata-doce de polpa roxa apresenta alto teor de antocianinas, além de ser uma reconhecida fonte de amido, carboidrato de grande importância para a indústria. Assim, a utilização da batata-doce de polpa roxa para obtenção de um ingrediente natural pode acarretar na melhoria das características nutricionais, tecnológicas e bioativas de produtos. Este trabalho teve como objetivo obter e caracterizar pós liofilizados (PL) de diferentes colorações provenientes da batata-doce de polpa roxa da variedade (BDPR), bem como a avaliar da aplicação desses pós como ingrediente alimentício natural multifuncional e seus possíveis impactos nas propriedades tecnológicas, físicas, químicas, funcionais e bioativas em iogurte tipo Grego e iogurte batido. A tese foi composta por introdução geral, objetivos geral e específicos, revisão bibliográfica e quatros capítulos de resultados, apresentados no formato de artigo, que abordaram a caracterização, estabilidade e aspectos tecnológicos dos pós liofilizados e dos iogurtes enriquecidos. A fim de explorar a capacidade de interconversão de cor, o batata-doce foi tratada termicamente a 80 °C/10 minutos por imersão em soluções de diferentes concentrações de ácido ascórbico (Tratamentos: A0 - 0%, A1 - 1,5%, A2 - 3% e A3 - 4,5%), com posterior trituração, congelamento, liofilização e moagem, obtendo assim quatro pós de diferentes colorações. O Capítulo I teve como objetivo caracterizar a BDPR e PL. Os principais resultados mostraram que BDPR apresentou teores iguais 16,97% para fibra alimentar total e 0,84% para lipídios, com a concentração de antocianinas de 56,84 mg cianidina-3-glicosídeo por 100 g de amostra, enquanto os pós liofilizados apresentaram teores entre 11,49% e 12,50% para fibra alimentar total, entre 3,87 e 4,22% para proteínas, entre 2,23 e 2,76% para cinzas e próximos a 0,6% para lipídios, com teores de antocianinas entre 50,59 e 53,21 mg cianidina-3-glicosídeo por 100 g de amostra. Os pós apresentaram colorações roxa (para controle) e rosa em diferentes tonalidades. Os rendimentos observados foram entre 27,30 e 32,98%, com atividade de água entre 0,167 e 0,327. Para as propriedades tecnológicas, os pós apresentaram poder de inchamento superiores a 7%, índice de solubilidade em água superior a 49%, índices de absorção de óleo superior a 5,5%, capacidades de emulsificação entre 50% e 87% e estabilidades de emulsão entre 51% e 98%. A partir dos resultados do Capítulo I, foi possível observar que explorar a capacidade de interconversão de cores das antocianinas presentes na BDPR e que os resultados para as propriedades tecnológicas avaliadas poderiam ser interessantes na elaboração de iogurtes, motivando o Capítulo II, que teve como objetivo avaliar os efeitos da adição dos pós liofilizados de BDPR nas propriedades físico-químicas e texturais do iogurte tipo Grego, com enriquecimento em duas concentrações (2% e 4% m/m) para cada um dos quatro pós (A0, A1, A2 e A3), tendo como controle iogurte sem enriquecimento. Os iogurtes apresentaram colorações rosadas, em diferentes tonalidades e intensidades após a adição dos pós. Os tratamentos com A0 mostraram maior estabilidade em relação ao pH, acidez e sinérese, além de promover iogurtes com maior firmeza. Os resultados obtidos neste capítulo foram promissores para evidenciar o uso de PL como ingrediente multifuncional em iogurtes. Entretanto, estes mesmos resultados levaram a questionar a reprodutibilidade da obtenção de PL e do experimento realizado, sendo esta a motivação para a realização do capítulo III, que teve como objetivo avaliar o efeito da adição de pó liofilizado de batata-doce de polpa roxa nas características físicas, químicas e tecnológicas do iogurte grego. Neste estudo, foi utilizado o enriquecimento apenas o pó A0 em duas concentrações (2% e 4%), uma vez que este foi o que promoveu melhorias tecnológicas no iogurte no estudo anterior. Como resultados principais, A0 apresentou maior teor de amido resistente quando comparado à BDPR (16,82% versus 2,77%). BDPR e A0 apresentaram destacáveis teores de compostos fenólicos (superiores a 80 mg ácido gálico equivalente/g) e antocianinas monoméricas (superiores a 50 mg cianidina-3- glicosídeo/100 g), bem como boas respostas nos ensaios de FRAP (50,40 e 112,93 trolox equivalente/g, respectivamente) e DPPH (superiores a 16 equivalente/g). O enriquecimento com A0 promoveu melhorias significativas (P<0,05) no que se refere ao teor de antocianinas, teor de compostos fenólicos e capacidade de redução do ferro (FRAP). A realização do estudo mostrou que o processo de obtenção de PL e por consequência o enriquecimento de iogurte tipo Grego é reprodutível e vantajoso no aspecto tecnológico. O capítulo IV teve como objetivo investigar a utilização da batata-doce de polpa roxa na forma de pó liofilizado como ingrediente multifuncional e seus impactos nas propriedades de iogurte batido, a fim de verificar se os efeitos observados no iogurte tipo Grego seriam similares no iogurte batido. Foram utilizadas três concentrações no enriquecimento (2%, 4% e 6%). Como principais resultados, os iogurtes enriquecidos não apresentaram pós-acidificação e tiveram coloração estável ao longo de todo armazenamento. Os iogurtes apresentaram microestruturas mais estáveis, com redes mais reticuladas e com maior organização, com melhoria na textura e sinérese do iogurte. Portanto, a BDPR mostrou-se como uma matéria-prima viável para o desenvolvimento de um ingrediente alimentício multifuncional, uma vez que PL promoveu melhorias nos aspectos tecnológicos e de qualidade do iogurte tipo Grego e iogurte batido. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | antocianinas | pt_BR |
| dc.subject | pigmentos naturais | pt_BR |
| dc.subject | produtos lácteos | pt_BR |
| dc.subject | clean label | pt_BR |
| dc.subject | anthocyanins | pt_BR |
| dc.subject | natural pigments | pt_BR |
| dc.subject | dairy products | pt_BR |
| dc.title | Desenvolvimento de ingrediente alimentício natural multifuncional oriundo de batata-doce de polpa roxa: caracterização e aplicação | pt_BR |
| dc.title.alternative | Development of a natural multifunctional food ingredient from purple fleshed sweet potatoes: characterization and application | en |
| dc.type | Tese | pt_BR |
| dc.description.abstractOther | Synthetic ingredients have historically been used by the food industry. However, in view of the evidence of negative effects resulting from the ingestion of these components, consumers have been looking for healthier and closer to natural options, where food is obtained by simpler processing. In this context, there is a trend to replace additives and synthetic ingredients with natural options, especially dyes. Among the natural dyes, anthocyanins stand out, a plant pigment responsible for a wide range of colors in nature due to its ability to present different colors in relation to the pH of the medium. This property is called color interconversion. In addition, anthocyanins have a remarkable bioactive capacity. Purple-fleshed sweet potatoes have a high content of anthocyanins, in addition to being a recognized source of starch, a carbohydrate of great importance for the industry. Thus, the use of purple-fleshed sweet potatoes to obtain a natural ingredient can lead to the improvement of the nutritional, technological and bioactive characteristics of products. The objective of this work was to obtain and characterize lyophilized powders (LP) of different colorations from purple-fleshed sweet potatoes of the variety Beni imo" (PFSP), as well as to evaluate the application of these powders as a multifunctional natural food ingredient and their possible impacts on the technological, physical, chemical, functional and bioactive properties in Greek yogurt and whipped yogurt. The thesis was composed of a general introduction, general and specific objectives, a literature review and four chapters of results, presented in the format of an article, which addressed the characterization, stability and technological aspects of lyophilized powders and enriched yogurts. In order to explore the color interconversion capacity, the sweet potato was heat-treated at 80 °C/10 minutes by immersion in solutions of different concentrations of ascorbic acid (Treatments: A0 - 0%, A1 - 1.5%, A2 - 3% and A3 - 4.5%), with subsequent crushing, freezing, freeze-drying and grinding, thus obtaining four powders of different colors. Chapter I aimed to characterize PFSP and LP. The main results showed that PFSP presented equal contents of 16.97% for total dietary fiber and 0.84% for lipids, with an anthocyanin concentration of 56.84 mg cyanidin-3- glucoside per 100 g of sample, while the lyophilized powders presented ratios between 11.49% and 12.50% for total dietary fiber, between 3.87 and 4.22% for proteins, between 2.23 and 2.76% for ashes and close to 0.6% for lipids. with anthocyanin contents between 50.59 and 53.21 mg cyanidin-3-glycoside per 100 g of sample. The powders presented purple (for control) and pink colorations in different shades. The yields observed were between 27.30 and 32.98%, with water activity between 0.167 and 0.327. For the technological properties, the powders showed swelling power greater than 7%, water solubility index greater than 49%, oil absorption indices greater than 5.5%, emulsification capacities between 50% 87% and emulsion stability between 51% 98%. From the results of Chapter I, it was possible to observe that to explore the color interconversion capacity of the anthocyanins present in the PFSP and that the results for the evaluated technological properties could be interesting in the elaboration of yogurts, motivating Chapter II, which aimed to evaluate the effects of the addition of lyophilized PFSP powders on the physicochemical and textural properties of Greek yogurt, with enrichment in two concentrations (2% and 4% w/w) for each of the four powders (A0, A1, A2 and A3), with unenriched yogurt as control. The yogurts showed pink colors, in different shades and intensities after the addition of the powders. The treatments with A0 showed greater stability in relation to pH, acidity and syneresis, in addition to promoting yogurts with greater firmness. The results obtained in this chapter were promising to show the use of LP as a multifunctional ingredient in yogurts. However, these same results led to question the reproducibility of obtaining LP and of the experiment carried out, which is the motivation for the realization of chapter III, which aimed to evaluate the effect of the addition of freeze-dried powder of PFSP on the physical, chemical and technological characteristics of Greek yogurt. In this study, we used the enrichment of only the A0 powder in two concentrations (2% and 4%), since this was the one that promoted technological improvements in yogurt in the previous study. As main results, A0 presented higher resistant starch content when compared to PFSP (16.82% vs 2.77%). PFSP and A0 showed remarkable levels of phenolic compounds (greater than 80 mg gallic acid equivalent/g) and monomeric anthocyanins (greater than 50 mg cyanidin-3- glucoside/100 g), as well as good responses in the FRAP (50.40 and 112.93 equivalent/g, respectively) and DPPH (greater than 16 enrichment with A0 promoted significant improvements (P<0.05) in terms of anthocyanin content, phenolic compound content and iron reduction capacity (FRAP). The study showed that the process of obtaining LP and consequently the enrichment of Greek yogurt is reproducible and advantageous in the technological aspect. Chapter IV aimed to investigate the use of purple-fleshed sweet potato in the form of freeze-dried powder as a multifunctional ingredient and its impacts on the properties of whipped yogurt, in order to verify whether the effects observed in Greek-type yogurt would be similar in whipped yogurt. Three concentrations were used in the enrichment (2%, 4% and 6%). As main results, the enriched yogurts did not show post-acidification and had stable color throughout storage. The yogurts showed more stable microstructures, with more cross- linked networks and greater organization, with improvement in the texture and syneresis of the yogurt. Therefore, PFSP proved to be a viable raw material for the development of a multifunctional food ingredient, since LP promoted improvements in the technological and quality aspects of Greek yogurt and whipped yogurt. | en |
| dc.contributor.advisor1 | Ferreira, Elisa Helena da Rocha | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0002-9701-1253 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/9247021829603724 | pt_BR |
| dc.contributor.advisor-co1 | Barbosa, Maria Ivone Martins Jacintho | - |
| dc.contributor.advisor-co1ID | https://orcid.org/0000-0002-9624-9139 | pt_BR |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/3609445478725882 | pt_BR |
| dc.contributor.advisor-co2 | Saraiva, Jorge Manuel Alexandre | - |
| dc.contributor.advisor-co2ID | https://orcid.org/0000-0002-5536-6056 | pt_BR |
| dc.contributor.referee1 | Ferreira, Elisa Helena da Rocha | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0002-9701-1253 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/9247021829603724 | pt_BR |
| dc.contributor.referee2 | Dias, Anelise | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0002-3695-6958 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/1541468600424364 | pt_BR |
| dc.contributor.referee3 | Coneglian, Regina Celi Cavestré | - |
| dc.contributor.referee3ID | https://orcid.org/0000-0002-0663-1028 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/2905501317891423 | pt_BR |
| dc.contributor.referee4 | Guerra, André Fioravante | - |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/4426970348820801 | pt_BR |
| dc.contributor.referee5 | Chaves, Ana Carolina Sampaio Doria | - |
| dc.contributor.referee5Lattes | http://lattes.cnpq.br/6837359373384421 | pt_BR |
| dc.creator.ID | https://orcid.org/0000-0002-9414-4915 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/3128670702749949 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Tecnologia | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos | pt_BR |
| dc.relation.references | AHMAD, I.; XIONG, Z.; XIONG, H.; AADIL, R. M.; KHALID, N.; LAKHOO, A. B. J.; ZIA-UD-DIN; NAWAZ, A.; WALAYAT, N.; KHAN, R. S. Physicochemical, rheological and antioxidant profiling of yogurt prepared from non-enzymatically and enzymatically hydrolyzed potato powder under refrigeration. Food Science and Human 139 Wellness, v. 12, n. 1, p. 69 78, 2022. https://doi.org/10.1016/j.fshw.2022.07.024 ALAM, M. K. A comprehensive review of sweet potato (Ipomoea batatas [L.] Lam): Revisiting the associated health benefits. Trends in Food Science and Technology, v. 115, n. April, p. 512 529, 2021. https://doi.org/10.1016/j.tifs.2021.07.001 ALAPPAT, B.; ALAPPAT, J. Anthocyanin pigments: Beyond aesthetics. Molecules, v. 25, n. 23, 2020. https://doi.org/10.3390/molecules25235500 ALMUSALLAM, I. A.; MOHAMED AHMED, I. A.; BABIKER, E. E.; AL-JUHAIMI, F. Y.; SALEH, A.; QASEM, A. A.; AL MAIMAN, S.; OSMAN, M. A.; GHAFOOR, K.; HAJJI, H. A.; AL-SHAWAKER, A. S. Effect of date palm (Phoenix dactylifera L.) spikelets extract on the physicochemical and microbial properties of set-type yogurt during cold storage. Lwt, v. 148, n. April, p. 111762, 2021. https://doi.org/10.1016/j.lwt.2021.111762 ANUYAHONG, T.; CHUSAK, C.; ADISAKWATTANA, S. Incorporation of anthocyanin-rich riceberry rice in yogurts: Effect on physicochemical properties, antioxidant activity and in vitro gastrointestinal digestion. Lwt, v. 129, n. May, p. 109571, 2020. https://doi.org/10.1016/j.lwt.2020.109571 AZEVEDO, P. O. de SOUZA de; ALIAKBARIAN, B.; CASAZZA, A. A.; LEBLANC, J. G.; PEREGO, P.; OLIVEIRA, R. P. de Souza. Production of fermented skim milk supplemented with different grape pomace extracts: Effect on viability and acidification performance of probiotic cultures. PharmaNutrition, v. 6, n. 2, p. 64 68, 2018. https://doi.org/10.1016/j.phanu.2018.03.001 AZZINI, E.; GIACOMETTI, J.; RUSSO, G. L. Antiobesity Effects of Anthocyanins in Preclinical and Clinical Studies. Oxidative Medicine and Cellular Longevity, v. 2017, n. ii, 2017. https://doi.org/10.1155/2017/2740364 BAGLIO, E. The Industry of Yoghurt: Formulations and Food Additives. In: Chemistry and Technology of Yoghurt Fermentation. SpringerBriefs in Molecular Science (). Springer, Cham.p. 33 57, 2014. https://doi.org/10.1007/978-3-319-07377- 4_3 BANGAR, S. P.; WHITESIDE, W. S.; SINGH, A.; ÖZOGUL, F.; GUPTA, A.; GAHLAWAT, S. K. Properties, preparation methods, and application of sour starches in the food. Trends in Food Science and Technology, v. 121, n. December 2021, p. 44 58, 2022. https://doi.org/10.1016/j.tifs.2022.01.029 CASAROTTI, S. N.; CARNEIRO, B. M.; PENNA, A. L. B. Evaluation of the effect of supplementing fermented milk with quinoa flour on probiotic activity. Journal of Dairy Science, v. 97, n. 10, p. 6027 6035, 2014. https://doi.org/10.3168/jds.2014-8197 CHEN, B.; ZHAO, X.; CAI, Y.; JING, X.; ZHAO, M.; ZHAO, Q.; VAN DER MEEREN, P. Incorporation of modified okara-derived insoluble soybean fiber into set-type yogurt: Structural architecture, rheological properties and moisture stability. Food Hydrocolloids, v. 137, n. December 2022, p. 108413, 2023. https://doi.org/10.1016/j.foodhyd.2022.108413 COTA-LÓPEZ, R.; VELAZQUEZ, G.; MÉNDEZ-MONTEALVO, G.; PÉREZ- RAMÍREZ, I. F.; MURÚA-PAGOLA, B.; ESPINOZA-MELLADO, R.; HERNÁNDEZ- GAMA, R. Effect of adding high concentrations of retrograded starch with different 140 amylose content on the physicochemical properties and sensory attributes of Greek-style yogurt. International Journal of Biological Macromolecules, v. 241, n. October 2022, 2023. https://doi.org/10.1016/j.ijbiomac.2023.124501 CUNHA JÚNIOR, P. C. da; OLIVEIRA, L. de S. de; GOUVÊA, L. de P.; ALCANTARA, M. de; ROSENTHAL, A.; FERREIRA, E. H. da R. Symbiotic drink based on brazil nuts (Bertholletia excelsa h.b.k): Production, characterization, probiotic viability and sensory acceptance. Ciencia Rural, v. 51, n. 2, p. 1 14, 2020. https://doi.org/10.1590/0103-8478cr20200361 DANTAS, D. L. da S. et al. Pilosocereus gounellei (xique-xique) flour: Improving the nutritional, bioactive, and technological properties of probiotic goat-milk yogurt. Lwt, v. 158, 2022. https://doi.org/10.1016/j.lwt.2022.113165 DIEZ-GUTIÉRREZ, L.; SAN VICENTE, L.; LUIS, L. J.; VILLARÁN, M. del C.; CHÁVARRI, M. Gamma-aminobutyric acid and probiotics: Multiple health benefits and their future in the global functional food and nutraceuticals market. Journal of Functional Foods, v. 64, n. August 2019, p. 103669, 2020. https://doi.org/10.1016/j.jff.2019.103669 DU, H.; YANG, H.; WANG, X.; ZHU, F.; TANG, D.; CHENG, J.; LIU, X. Effects of mulberry pomace on physicochemical and textural properties of stirred-type flavored yogurt. Journal of Dairy Science, v. 104, n. 12, p. 12403 12414, 2021. https://doi.org/10.3168/jds.2020-20037 ESPITIA, P. J. P.; BATISTA, R. A.; AZEREDO, H. M. C.; OTONI, C. G. Probiotics and their potential applications in active edible films and coatings. Food Research International, v. 90, p. 42 52, 2016. https://doi.org/10.1016/j.foodres.2016.10.026 GHASEMPOUR, Z.; JAVANMARD, N.; MOJADDAR LANGROODI, A.; ALIZADEH-SANI, M.; EHSANI, A.; MOGHADDAS KIA, E. Development of probiotic yogurt containing red beet extract and basil seed gum; techno-functional, microbial and sensorial characterization. Biocatalysis and Agricultural Biotechnology, v. 29, n. April, p. 101785, 2020. https://doi.org/10.1016/j.bcab.2020.101785 HE, J.; HAN, Y.; LIU, M.; WANG, Y.; YANG, Y.; YANG, X. Effect of 2 types of resistant starches on the quality of yogurt. Journal of Dairy Science, v. 102, n. 5, p. 3956 3964, 2019. https://doi.org/10.3168/jds.2018-15562 INDIRA, M.; VENKATESWARULU, T. C.; ABRAHAM PEELE, K.; NAZNEEN BOBBY, M.; KRUPANIDHI, S. Bioactive molecules of probiotic bacteria and their mechanism of action: a review. 3 Biotech, v. 9, n. 8, p. 1 11, 2019. https://doi.org/10.1007/s13205-019-1841-2 JAY, J. M. Intrinsic and Extrinsic Parameters of Foods That Affect Microbial Growth. Modern Food Microbiology, p. 38 62, 1998. https://doi.org/10.1007/978-94-011-6480- 1 _3 JASTER, H.; AREND, G. D.; REZZADORI, K.; CHAVES, V. C.; REGINATTO, F. H.; PETRUS, J. C. C. Enhancement of antioxidant activity and physicochemical properties of yogurt enriched with concentrated strawberry pulp obtained by block freeze concentration. Food Research International, v. 104, n. July 2017, p. 119 125, 2018. https://doi.org/10.1016/j.foodres.2017.10.006 141 JIA, S.; ZHAO, H.; TAO, H.; YU, B.; LIU, P.; CUI, B. Influence of corn resistant starches type III on the rheology, structure, and viable counts of set yogurt. International Journal of Biological Macromolecules, v. 203, n. 3501, p. 10 18, 2022. https://doi.org/10.1016/j.ijbiomac.2022.01.027 KERDUDO, A.; BURGER, P.; MERCK, F.; DINGAS, A.; ROLLAND, Y.; MICHEL, conservateur naturel. Comptes Rendus Chimie, v. 19, n. 9, p. 1077 1089, 2016. https://doi.org/10.1016/j.crci.2016.06.004 KOBAYASHI, M.; OKI, T.; MASUDA, M.; NAGAI, S.; FUKUI, K.; MATSUGANO, K.; SUDA, I. Hypotensive Effect of Anthocyanin-rich Extract from Purple-fleshed Sweet The Japanese Society for Food Science and Technology, v. 52, p. 41 44, 2005. https://doi.org/10.3136/nskkk.52.41 KÖRZENDÖRFER, A.; SCHÄFER, J.; HINRICHS, J.; NÖBEL, S. Power ultrasound as a tool to improve the processability of protein-enriched fermented milk gels for Greek yogurt manufacture. Journal of Dairy Science, v. 102, n. 9, p. 7826 7837, 2019. https://doi.org/10.3168/jds.2019-16541 LEE, J.; DURST, R. W.; WROLSTAD, R. E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. Journal of AOAC International, v. 88, n. 5, p. 1269 1278, 2005. https://doi.org/10.1093/jaoac/88.5.1269 MANTZOURANI, C.; BATSIKA, C. S.; KOKOTOU, M. G.; KOKOTOS, G. Free fatty acid profiling of Greek yogurt by liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis. Food Research International, v. 160, n. July, p. 111751, 2022. https://doi.org/10.1016/j.foodres.2022.111751 MATSUI, T.; EBUCHI, S.; KOBAYASHI, M.; FUKUI, K.; SUGITA, K.; TERAHARA, N.; MATSUMOTO, K. Anti-hyperglycemic effect of diacylated anthocyanin derived -glucosidase inhibitory action. Journal of Agricultural and Food Chemistry, v. 50, n. 25, p. 7244 7248, 2002. https://doi.org/10.1021/jf025913m MEENA, L.; NEOG, R.; YASHINI, M.; SUNIL, C. K. Pineapple pomace powder (freeze-dried): Effect on the texture and rheological properties of set-type yogurt. Food Chemistry Advances, v. 1, n. May, p. 100101, 2022. https://doi.org/10.1016/j.focha.2022.100101 MIYAZAKI, K.; MAKINO, K.; IWADATE, E.; DEGUCHI, Y.; ISHIKAWA, F. Anthocyanins from purple sweet potato Ipomoea batatas cultivar Ayamurasaki suppress the development of atherosclerotic lesions and both enhancements of oxidative stress and soluble vascular cell adhesion molecule-1 in apolipoprotein E-deficient mice. Journal of Agricultural and Food Chemistry, v. 56, n. 23, p. 11485 11492, 2008. https://doi.org/10.1021/jf801876n MOTA, M. J.; LOPES, R. P.; DELGADILLO, I.; SARAIVA, J. A. Probiotic yogurt production under high pressure and the possible use of pressure as an on/off switch to stop/start fermentation. Process Biochemistry, v. 50, n. 6, p. 906 911, 2015. https://doi.org/10.1016/j.procbio.2015.03.016 142 OLIVEIRA, H.; PEREZ-GREGÓRIO, R.; FREITAS, V. DE; MATEUS, N.; FERNANDES, I. Comparison of the in vitro gastrointestinal bioavailability of acylated and non-acylated anthocyanins: Purple-fleshed sweet potato vs red wine. Food Chemistry, v. 276, p. 410 418, 2019. https://doi.org/ 10.1016/j.foodchem.2018.09.159 OSORIO-ARIAS, J.; PÉREZ-MARTÍNEZ, A.; VEGA-CASTRO, O.; MARTÍNEZ- MONTEAGUDO, S. I. Rheological, texture, structural, and functional properties of Greek-style yogurt fortified with cheese whey-spent coffee ground powder. Lwt, v. 129, n. February, p. 109523, 2020. https://doi.org/10.1016/j.lwt.2020.109523 PINTO, K. R. D.; TULINI, F. L.; GUIMARÃES, J. das G. L.; MORAES, I. C. F.; DITCHFIELD, C.; LIMA, C. G. de; SILVA, V. L. dos S.; FAVARO-TRINDADE, C. S. Production and Evaluation of Yogurt Colored with Anthocyanin-Rich Pigment Prepared from Jabuticaba (Myrciaria cauliflora Mart.) Skin. Processes, v. 11, n. 2, 2023. https://doi.org/10.3390/pr11020526 POPOV- - Sensors, v. 8, n. 9, p. 5961 5974, 2008. https://doi.org/10.3390/s8095961 ROOBAB, U.; KHAN, A. W.; LORENZO, J. M.; ARSHAD, R. N.; CHEN, B. R.; ZENG, X. A.; BEKHIT, A. E. D.; SULEMAN, R.; AADIL, R. M. A systematic review of clean- label alternatives to synthetic additives in raw and processed meat with a special emphasis on high-pressure processing (2018 2021). Food Research International, v. 150, n. PA, p. 110792, 2021. https://doi.org/10.1016/j.foodres.2021.110792 SILVA, F. A.; QUEIROGA, R. de C. R. do E.; DE SOUZA, E. L.; VOSS, G. B.; BORGES, G. da S. C.; LIMA, M. dos S.; PINTADO, M. M. E.; VASCONCELOS, M. A. da S. Incorporation of phenolic-rich ingredients from integral valorization of Isabel grape improves the nutritional, functional and sensory characteristics of probiotic goat milk yogurt. Food Chemistry, v. 369, n. August 2021, 2022. https://doi.org/10.1016/j.foodchem.2021.130957 SUGATA, M.; LIN, C. Y.; SHIH, Y. C. Anti-Inflammatory and Anticancer Activities of Taiwanese Purple-Fleshed Sweet Potatoes (Ipomoea batatas L. Lam) Extracts. BioMed Research International, v. 2015, 2015. https://doi.org/10.1155/2015/768093 TANAKA, M.; ISHIGURO, K.; OKI, T.; OKUNO, S. Functional components in sweetpotato and their genetic improvement. Breeding Science, v. 67, n. 1, p. 52 61, 2017. https://doi.org/10.1270/jsbbs.16125 TERPOU, A.; PAPADAKI, A.; LAPPA, I. K.; KACHRIMANIDOU, V.; BOSNEA, L. A.; KOPSAHELIS, N. Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients, v. 11, n. 7, 2019. https://doi.org/10.3390/nu11071591 TSUKUI, A.; SUZUKI, A.; KOMAMAKI, K.; TERAHARA, N.; YAMAKAWA, O.; HAYASHI, K. Stability and Composition Ratio of Anthocyanin Pigments from Ipomoea batatas Poir. The Japanese Society for Food Science and Technology, v. 46, n. 3, p. 148 154, 1999. https://doi.org/10.3136/nskkk.46.148 WANG, L.; ZHAO, Y.; ZHOU, Q.; LUO, C. L.; DENG, A. P.; ZHANG, Z. C.; ZHANG, J. L. Characterization and hepatoprotective activity of anthocyanins from purple sweet 143 potato (Ipomoea batatas L. cultivar Eshu No. 8). Journal of Food and Drug Analysis, v. 25, n. 3, p. 607 618, 2017. https://doi.org/10.1016/j.jfda.2016.10.009 WANG, X.; KRISTO, E.; LAPOINTE, G. The effect of apple pomace on the texture, rheology and microstructure of set type yogurt. Food Hydrocolloids, v. 91, p. 83 91, 2019. https://doi.org/10.1016/J.FOODHYD.2019.01.004 WANG, X.; KRISTO, E.; LAPOINTE, G. Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks. Food Hydrocolloids, v. 100, n. July 2019, 2020. https://doi.org/10.1016/j.foodhyd.2019.105453 WU, T.; DENG, C.; LUO, S.; LIU, C.; HU, X. Effect of rice bran on properties of yogurt: Comparison between addition of bran before fermentation and after fermentation. Food Hydrocolloids, v. 135, n. August 2022, p. 108122, 2023. https://doi.org/10.1016/j.foodhyd.2022.108122 ZENDEBOODI, F.; KHORSHIDIAN, N.; MORTAZAVIAN, A. M.; DA CRUZ, A. G. Probiotic: conceptualization from a new approach. Current Opinion in | pt_BR |
| dc.subject.cnpq | Ciência e Tecnologia de Alimentos | pt_BR |
| Appears in Collections: | Doutorado em Ciência e Tecnologia de Alimentos | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 2023 - Paulo Cezar da Cunha Júnior.pdf | 6.32 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
