Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/22760Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Silva, Bruno Couto da | - |
| dc.date.accessioned | 2025-08-04T16:12:35Z | - |
| dc.date.available | 2025-08-04T16:12:35Z | - |
| dc.date.issued | 2018-02-22 | - |
| dc.identifier.citation | SILVA, Bruno Couto da. Efeitos da modificação térmica e da impregnação de nanopartículas na molhabilidade da superfície, composição química e deterioração da madeira de pinus. 2018. 110 f. Tese (Doutorado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, 2018. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/22760 | - |
| dc.description.abstract | O objetivo principal deste estudo foi avaliar os efeitos da modificação térmica e da impregnação com nanopartículas de óxido de zinco (nano-ZnO) na molhabilidade da superficie, composição química e deterioração da madeira de pinus. Os objetivos dos Capítulos I e II foram avaliar os efeitos da modificação térmica e da impregnação de nano-ZnO na molhabilidade da superfície da madeira de pinus por meio de uma abordagem química em que se analisou in situ os lenhos inicial (LI) e tardio (LT). O objetivo do Capítulo III foi avaliar os efeitos da modificação térmica e das nano-ZnO na deterioração em condições de campo de apodrecimento por cinco meses. Os testes foram realizados em amostras não tratadas e tratadas a 180oC, 200oC e 220oC. A molhabilidade foi avaliada pela análise do ângulo de contato com o analisador de formato da gota DSA 100 no modo estático nas regiões do LI e LT. O tratamento com nano-ZnO foi realizado em um cilindro de impregnação com uma solução aquosa contendo 1,5% de nanopartículas com ciclos de vácuo e pressão. Imagens de microscopia eletrônica de varredura da superfície das amostras foram obtidas. A superfície das madeiras foi analisada pela espectroscopia no infravermelho por transformada de Fourier (FTIR) com utilizando-se um microscópio. O pH da madeira foi determinado. A massa e as variáveis colorimétricas foram mensuradas antes e após à exposição no campo. As medições colorimétricas foram realizadas no espaço de cor CIE L*a*b*. A deterioração foi avaliada por um sistema de notas que relaciona o estado sanitário das amostras. O ângulo de contato diminuiu após a modificação térmica para ambos LI e LT, independente da temperatura. O LI apresentou maior molhabilidade que o LT. Houve uma interação significativa entre a temperatura e as nano-ZnO em ambos os lenhos. O tratamento com nano-ZnO diminui a molhabilidade da superfície da madeira não tratada nas regiões do LI e LT e da madeira tratada a 180oC na região do LI. Entretanto, o efeito da nano- ZnO na molhabilidade da superfície da madeira tratada entre 200 e 220°C foi nulo na região do LI enquanto na região do LT a molhabilidade aumentou. As análises de espectroscopia FTIR permitiram diferenciar os dois tipos de lenho pelo perfil típico dos espectros. As maiores modificações químicas ocorreram no LT, com redução dos grupos OH- , aumento da intensidade relativa da celulose e aparecimento de subprodutos de forma mais importante que no LI. O aumento da acidez na madeira modificada termicamente corroborou com os resultados encontrados na análise de espectroscopia. A modificação térmica e as nano-ZnO não atenuaram as alterações significativas de cor da madeira após exposição no campo. As nano-ZnO agregaram maior resistência à deterioração à madeira não modificada termicamente. A modificação térmica a 180 e 200oC aumentou a deterioração da madeira enquanto as nano-ZnO não agregaram resistência às madeiras modificadas à essas temperaturas. A madeira tratada a 220oC com ou sem nano-ZnO foi mais resistente à ação de xilófagos em relação à madeira natural. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | análise do formato da gota | pt_BR |
| dc.subject | ângulo de contato | pt_BR |
| dc.subject | colorimetria | pt_BR |
| dc.subject | espectroscopia no infravermelho | pt_BR |
| dc.subject | ensaio biológico | pt_BR |
| dc.subject | lenhos inicial/ tardio | pt_BR |
| dc.subject | nanopartículas de óxido de zinco | pt_BR |
| dc.subject | drop shape analysis | pt_BR |
| dc.subject | contact angle | pt_BR |
| dc.subject | colorimetry | pt_BR |
| dc.subject | wood deterioration | pt_BR |
| dc.subject | infrared spectroscopy | pt_BR |
| dc.subject | earlywood/latewood | pt_BR |
| dc.subject | zinc oxide nanoparticles | pt_BR |
| dc.title | Efeitos da modificação térmica e da impregnação de nanopartículas na molhabilidade da superfície, composição química e deterioração da madeira de pinus | pt_BR |
| dc.title.alternative | Effect of thermal treatment and nanoparticles impregnation on the surface wettability, chemical modification and deterioration of pine wood | en |
| dc.type | Tese | pt_BR |
| dc.description.abstractOther | The main objective of this study was to evaluate the effects of thermal modification and impregnation with zinc oxide nanoparticles (nano-ZnO) on the surface wettability, chemical composition, and deterioration of pine wood. The objectives of Chapters I and II were to evaluate the effects of thermal modification and nano-ZnO impregnation on the surface wettability of pine wood by means of a chemical approach in which earlywood (LI) and latewood (LT) lignin were analyzed in situ. The objective of Chapter III was to evaluate the effects of thermal modification and nano-ZnO on deterioration in field conditions for five months. The tests were performed on untreated and treated samples at 180°C, 200°C, and 220°C. Wettability was evaluated by contact angle analysis with the DSA 100 drop shape analyzer in static mode in the LI and LT regions. The nano-ZnO treatment was performed in an impregnation cylinder with an aqueous solution containing 1.5% nanoparticles with vacuum and pressure cycles. Scanning electron microscopy images of the surface of the samples were obtained. The surface of the wood was analyzed by Fourier-transform infrared spectroscopy (FTIR) using a microscope. The pH of the wood was determined. Mass and colorimetric variables were measured before and after field exposure. Colorimetric measurements were performed in the CIE L*a*b* color space. The deterioration was evaluated by a scoring system that relates the sanitary condition of the samples. The contact angle decreased after thermal modification for both LI and LT, independent of temperature. LI showed higher wettability than LT. There was a significant interaction between temperature and nano-ZnO in both linens. Treatment with nano-ZnO decreased the surface wettability of untreated wood in the LI and LT regions and of wood treated at 180°C in the LI region. However, the effect of nano-ZnO on the wettability of the treated wood surface between 200 and 220°C was null in the LI region while in the LT region the wettability increased. FTIR spectroscopy analyses allowed differentiating the two types of wood by the typical profile of the spectra. The major chemical modifications occurred in the LT, with reduction of OH- groups, increase of the relative intensity of cellulose and appearance of by-products in a more important way than in the LI. The increased acidity in the thermally modified wood corroborated with the results found in the spectroscopy analysis. Thermal modification and nano-ZnO did not attenuate the significant color changes in the wood after field exposure. The nano-ZnO added greater deterioration resistance to the non-thermally modified wood. Thermal modification at 180 and 200°C increased wood decay, whereas nano- ZnO did not add resistance to modified wood at these temperatures. The wood treated at 220oC with or without nano-ZnO was more resistant to the action of xylophages compared to natural wood. | en |
| dc.contributor.advisor1 | Garcia, Rosilei Aparecida | - |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/7750485701838003 | pt_BR |
| dc.contributor.advisor-co1 | Trevisan, Henrique | - |
| dc.contributor.advisor-co1ID | https://orcid.org/0000-0003-0155-231X | pt_BR |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/2760790628174618 | pt_BR |
| dc.contributor.referee1 | Trevisan, Henrique | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0003-0155-231X | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/2760790628174618 | pt_BR |
| dc.contributor.referee2 | Nascimento, Alexandre Miguel do | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0001-5347-5577 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/3579375199519821 | pt_BR |
| dc.contributor.referee3 | Lelis, Roberto Carlos Costa | - |
| dc.contributor.referee3ID | https://orcid.org/0000-0003-2923-3839 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/5175502780570226 | pt_BR |
| dc.contributor.referee4 | Dambroz, Graziela Baptista Vidaurre | - |
| dc.contributor.referee4ID | https://orcid.org/0000-0001-9285-7105 | pt_BR |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/2988548512574129 | pt_BR |
| dc.contributor.referee5 | Paes, Juarez Benigno | - |
| dc.contributor.referee5ID | https://orcid.org/0000-0003-4776-4246 | pt_BR |
| dc.contributor.referee5Lattes | http://lattes.cnpq.br/3454401627877927 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/2321106089476676 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Florestas | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Ciências Ambientais e Florestais | pt_BR |
| dc.relation.references | AFIFI A. I.; HINDERMANN, J. P.; CHORNET, E.; OVEREND, R. P., “The cleavage of the aryl-O-CH3 bond using anisole as a model compound,” Fuel, v. 68, n. 4, p. 498-504, 1989. AHAMED, M., JAVED AKHTAR, KUMAR, KHAN, M., AHMAD E ALROKAYAN. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. International Journal of Nanomedicine, p. 845 - 857, 2012. AKGÜL, M.; GUMUSKAYA, E.; KORKUT, S. Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludag fir [Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood Science Technology, v. 41, p. 281–289, 2007. AKYILDIZ, M. H.; ATES, S.; OZDEMIR, H. Technological and chemical properties of heat- treated Anatolian black pine wood. Journal of Biotechnology, v. 8, n. 11, p. 2565-2572, 2009. ALARFAJ, N.; EL-TOHAMY, M. Eco-friendly synthesis of gelatin-capped bimetallic Au-Ag nanoparticles for chemiluminescence detection of anticancer raloxifene hydrochloride. Luminescence, v. 31, n. 6, p. 1194-1200, 2016. ALÉN, R.; KOTILAINEN, R.; ZAMAN, A. Thermochemical behavior of Norway spruce (Picea abies) at 180-225 °C. Wood Sci. Technol., v. 36, n. 2, p. 163-171, 2002. ALLEGRETTI, O.; BRUNETTI, M.; CUCCUI, I.; FERRARI, S.; NOCETTI, M.; TERZIEV, N. Thermo-vacuum modification of spruce (picea abies karst.) and fir (Abies alba mill.) wood. BioResources, v. 7, n. 3, p. 3656–3669, 2012. ALWAN, R. M.; KADHIM, Q. A.; SAHAN, K. M.; ALI, R. A.; MAHDI, R. J.; KASSIM, N. A.; JASSIM, A. N. Synthesis of Zinc Oxide Nanoparticles via Sol – Gel Route and Their Characterization. Nanoscience and Nanotechnology, v. 5, n. 1, p. 1–6, 2015. AMERICAN ELEMENTS ®. Zinc Acetate, Basic | Disponível em: <https://www.americanelements.com/zinc-acetate-basic-12129-82-7>. Acesso em: 8/1/ 2017. ANFINOGENOVA, Y.; SHVEDOVA, M.; POPOV, S. Nanoparticles as agents targeting cholesterol crystallization in atherosclerosis. Medical Hypotheses, v. 102, p. 19-22, 2017. ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA DE MADEIRA PROCESSADA MECANICAMENTE (ABIMCI). Estudo setorial 2009: indústria de madeira processada mecanicamente: ano base 2008. Curitiba, 2009. 52p. ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA DE MADEIRA PROCESSADA MECANICAMENTE (ABIMCI). Indústria de madeira exportou volume maior, mas faturou menos. Disponível em: https://abimci.com.br/industria-de-madeira-exportou-volume-maior- mas-faturou-menos/. 10/01/2017 ATES, S.; AKYILDIZ, M. H.; OZDEMIR, H. Effects of heat treatment on Calabrian Pine (Pinus brutia Ten) wood. BioResources, v. 4, n. 3, p. 1032-1043, 2009. 80 ATES, M., ARSLAN, Z., DEMIR, V., DANIELS, J. E FARAH, I. O. Accumulation and toxicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of goldfish (Carassius auratus). Environmental Toxicology, v. 30, n. 1, p. 119-128, 2014. AUER, C. G. Doenças em Pinus no Brasil. Série Técnica IPEF, v. 13, n. 33, p. 67-74, 2000. AWOYEMI, L.; JONES, I. P. Anatomical explanations for the changes in properties of western red cedar (Thuja plicata) wood during heat treatment. Wood Sci. Technol., v. 45, p. 261-267, 2011. AYRES, M.; AYRES Jr, M.; AYRES, D. L.; SANTOS, A. A. A. BioEstat 5.0 – Aplicações Estatísticas nas Áreas das Ciências Biológicas e Médicas. Sociedade Civil Mamirauá, Tefé, 2007. 380p. AZONANO. 2006. AdNano zinc oxide properties, applications, manufacturing and product availability, supplier data by degussa. Disponível em https://www.azonano.com/article.aspx?ArticleID=1602 Acesso em 08/09/ 2017. AZONANO, 2013. Zinc Oxide (ZnO) Nanoparticles – Properties, Applications. .Disponível em: <https://www.azonano.com/article.aspx?ArticleID=3348>. Acesso em: 9/ 12/ 2017. BARTKOWIAK, M.; ZAKRZEWSKI, R. Thermal degradation of lignins isolated from wood. Journal of Thermal Analysis and Calorimetry, v. 77, n. 1, p. 295-304, 2004. BARUAH, S.; THANACHAYANONT, C.; DUTTA, J. Growth of ZnO nanowires on nonwoven polyethylene fibers. Science and Technology of Advanced Materials, v. 9, n. 2, p. 1-8, abr. 2008. BATISTA, D. C.; DE MUNIZ, G. I. B.; OLIVEIRA, J. T. S.; PAES, J. B.; NISGOSKI, S. Effect of the Brazilian thermal modification process on the chemical composition of Eucalyptus grandis juvenile wood – part 1: cell wall polymers and extractives contents. Maderas Ciencia y Tecnología, v.18, n.2, p. 273-284, 2016. BEAUMONT, M. W.; BUTLER, P. J.; TAYLOR, E. W. Exposure of brown trout Salmo trutta to a sublethal concentration of copper in soft acidic water: effects upon gas exchange and ammonia accumulation. Journal of Experimental Biology, v. 206, n. 1, p. 153-162, 2003. BEKHTA, P.; KRYSTOFIAK, T. The influence of short-term thermo-mechanical densification on the surface wettability of wood veneers. Maderas. Ciencia y tecnología, v. 18, n. 1, p. 79- 90, 2016 BENGTSSON, C.; JERMER, J.; BREM, F. Bending strength of heat-treated spruce and pine timber. In: International Research Group Wood Pre, 2002. BERTAUD, B.; HOLMBOM, B. Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Science and Technology, v. 38, n. 4, p. 245-256, 2004. 81 BEYTH, N.; HOURI-HADDAD, Y.; DOMB, A.; KHAN, W.; HAZAN, R. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials. Evidence-Based Complementary and Alternative Medicine, v. 2015, p. 1-16, 2015. BHUIYAN, M.; HIRAI, N.; SOBUE, N. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science, v. 46, n. 6, p. 431-436, 2000. BOONSTRA, M.; ACKER, J.; TJEERDSMA, B.; KEGEL, E. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of Forest Science, v. 64, n. 7, p. 679-690, 2007. BRAND, M. A.; ANZALDO, J.; MORESCHI, J. C. Novos produtos para o tratamento preservativo da madeira. “perspectivas da pesquisa e utilização” FLORESTA. v. 36, n. 1, 2006. BRAYNER, R.; FERRARI-ILIOU, R.; BRIVOIS, N. et al. Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium. Nano Letters, v. 6, n. 4, p. 866-870, 2006. BREBU, M.; VASILE, C. Thermal degradation of lignin – A review. Cellulose Chemistry and Technology, v. 44, n. 9, p. 353-363, 2010. BURLEY, J.; BARNES, J.D. Tropical Pine Ecosystems and Genetic Resources In: BURLEY, J. Encyclopedia of Forest Sciences. Oxford, Oxfordshire: Elsevier, 2004. p. 1728–1740 BUZEA, C.; PACHECO, I. I.; ROBBIE, K. Nanomateriais e nanopartículas: Fontes e toxicidade. Biointerphases, v. 2, n. 4, 2007 CADEMARTORI, P. H. G.; MISSIO, A. L.; MATTOS, B. D. E.; GATTO, D. A. Effect of thermal treatments on technological properties of wood from two Eucalyptus species. An. Acad. Bras. Cienc., v. 87, n. 1, p. 471-481, 2015. CALONEGO, F. W. Efeito da termorretificação nas propriedades físicas, mecânicas e na resistência a fungos deterioradores da madeira de Eucalyptus grandis Hill. Ex. Maiden. 2009. 149 f. Tese (Doutorado em Agronomia: Energia na Agricultura) – Universidade Estadual Paulista, Botucatu, 2009. CHANG, H.; TU, K.; WANG, X.; LIU, J. Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Advances, v. 5, n. 39, p. 30647-30653, 2015. CHAOUCH, M.; DUMARÇAY, S.; PÉTRISSANS, A.; PÉTRISSANS, M.; GÉRARDIN, P. Effect of heat treatment intensity on some conferred properties of different European softwood and hardwood species. Wood Science and Technology, v. 47, n. 4, p. 663-673, 2013. CHAU, C-F.; WU, S-H.; YEN, G-C. The development of regulations for food nanotechnology. Trends in Food Science & Technology, v. 18, n. 5, p. 269-280, 2007. CHEN, H. Chemical Composition and Structure of Natural Lignocellulose. In: CHEN, H. Biotechnology of lignocellulose. Springer Netherlands, 2014. p.25-71. 82 CHI, P.; SU, C.; WEI, D. Internal stress induced natural self-chemisorption of ZnO nanostructured films. Scientific Reports, v. 7, p. 43281, 2017. CHRISTIANSEN, A. W. How overdrying wood reduces its bonding to phenol-formaldehyde adhesives: A critical review of the literature. Part I. Chemical reactions. Wood Fiber Sci., v. 22, n. 4, p. 441-459, 1990. CIVARDI, C.; SCHWARZE, F.; WICK, P. Micronized copper wood preservatives: An efficiency and potential health risk assessment for copper-based nanoparticles. Environmental Pollution, v. 200, p. 126-132, 2015. CLAUSEN, C. A., YANG, V. W., ARANGO, R. A. & GREEN III, E. Feasibility of nanozinc oxide as a wood preservative. Proceedings... 105th Annual Meeting of the American Wood Protection Association. American Wood Protection Association, Birmingham, AL, p. 255-260, 2010 CLAUSEN, C. A.; GREEN III, F. Copper tolerance of brown-rot fungi: time course of oxalic acid production. International Biodeterioration and Biodegradation. V. 51, p.145-149, 2003. CLAUSEN, C. A.; KARTAL, S. N.; ARANGO, R. A.; GREEN III, F. The role of particle size of particulate nano-zinc oxide wood preservatives on termite mortality and leach resistance. Nanoscale Research Letters, v. 6, p. 427, 2011. CLAUSEN, C. A.; YANG, V.W. ARANGO, R. A. GREEN III, F. Feasibility of Nanozinc Oxide as a Wood Preservative. AMERICAN WOOD PROTECTION ASSOCIATION, p. 255-260, 2009 CLAUSEN, C.; GREEN III, F.; NAMI KARTAL, S. Weatherability and Leach Resistance of Wood Impregnated with Nano-Zinc Oxide. Nanoscale Research Letters, v. 5, n. 9, p. 1464- 1467, 2010. CLAUSEN, C.; KARTAL, S.; ARANGO, R.; GREEN, F. The role of particle size of particulate nano-zinc oxide wood preservatives on termite mortality and leach resistance. Nanoscale Research Letters, v. 6, n. 1, p. 427, 2011. COSTA, A. F. Utilização de interações entre produtos químicos preservativos no desenvolvimento de formulações para a prevenção de fungos manchadores e emboloradores na madeira. 1999. 103 f. Tese (Doutorado em Ciências Florestais) - Universidade Federal do Paraná, Curitiba, 1999. COSTA, A. F.; VALE, A. T.; GONZALEZ, J. C.; SOUZA, F. D. M. Durabilidade da madeira de pinus sem tratamento para uso externo. Journal of Wood Science, v. 12, n. 1, p. 07-14, 2005. DE MOURA, L. F.; BRITO, J. O.; DA SILVA, F. G. Effect of thermal treatment on the chemical characteristics of wood from Eucalyptus grandis W. Hill ex Maiden under different atmospheric conditions. Cerne, v. 18, n. 3, p. 449-455, 2012. 83 DAREZERESHKI, E.; ALIZADEH, M.; BAKHTIARI, F.; SCHAFFIE, M.; RANJBAR, M. A novel thermal decomposition method for the synthesis of ZnO nanoparticles from low concentration ZnSO4 solutions. Applied Clay Science, v. 54, p. 107-111, 2011. DENES, F. S.; CRUZ-BARBA, L. E.; MANOLACHE, S. Plasma treatment of wood. In: ROWELL, R. M. Handbook of wood chemistry and wood composites. Boca Raton, Florida: CRC Press. 2005. DING, T.; GU, L.; LI, T. Influence of steam pressure on physical and mechanical properties of heat-treated Mongolian pine lumber. European Journal of Wood and Wood Products, v. 69, p. 121–126, 2011. DLOCZIK, L.; ENGELHARDT, R.; ERNST, K.; LUX-STEINER, M.; KÖNENKAMP, R. Zinc sulfide columns by chemical conversion of zinc oxide. Sensors and Actuators B: Chemical, v. 84, n. 1, p. 33-36, 2002. DORAU, B.; ARANGO, R.; GREEN III, F.An investigation into the potential of ionic silver as a wood preservative. Proceedings of the 2nd Wood-Frame Housing Durability and Disaster Issues Conference. Forest Products Society. Las Vegas, NV, 133-145, 2004 DUTTA, S.; GANGULY, B. N. Characterization of ZnO nanoparticles grown in presence of folic acid template. Journal of Biotechnology, v. 10, n. 29, p. 1-10, 2012. EK, M.; GELLERSTEDT, G.; HENRIKSSON, G. Pulp and paper chemistry and technology Volume 1 Wood Chemistry and Wood Biotechnology. Berlin: Walter de Gruyter, 2009. 1200p. ERBIL, H. Y. The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review. Surface Science Reports, v. 69, p. 325–365, 2014. ESTEVES, B.; MARQUES, A. V.; DOMINGOS, I.; PEREIRA, H. Influence of steam heating on the properties of pine (pinus pinaster) and Eucalypt (eucalyptus globulus) wood. Wood Science and Technology, v. 41, n. 3, 2007. ESTEVES, B. M.; DOMINGOS, I. J.; PEREIRA, H. M. Pine wood modification by heat treatment in Air. Bioresources, v. 3, n.1, p- 142-154, 2008 ESTEVES, B.; MARQUES, A. V.; DOMINGOS, I.; PEREIRA, H. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas. Ciencia y tecnología, v. 15, n. 2, 2013. FABIYI, J. S.; OGUNLEYE, B. M. Mid-infrared spectroscopy and dynamic mechanical analysis of heat-treated obeche (Triplochiton scleroxylon) wood. Madera. Cienc. Tecnol., v. 17, n. 1, p. 5-16, 2014. FAIX, O. Fourier transform infrared spectroscopy. In: LIN, S. Y.; DENCE, C. W. Methods in lignin chemistry. Berlim: Spring-Verlag, 568p. 1992. FARJON, A. Pines: Drawings and descriptions of the genus. Leiden: E.J.Brill, 2005. 220p. 84 FATEHAH, M.; AZIZ, H.; STOLL, S. Stability of ZnO Nanoparticles in Solution. Influence of pH, Dissolution, Aggregation and Disaggregation Effects. Journal of Colloid Science and Biotechnology, v. 3, n. 1, p. 75-84, 2014. FENG, X.; LI, J. J.; WANG T. C.; CHEN, K.; LIU, G. J.; WONG, C. P. Preparation of Superhydrophobic ZnO Surface Derived from Wood Template. 2nd Annual International Conference on Advanced Material Engineering, p. 1155 – 1159, 2016 FENGEL, D., WEGENER, G. Wood, chemistry, ultrastructure, reactions. New York :Waster & Grugter, 1984. 613p. FENGEL, D.; LUDWIG, M. Possibilities and limits of FTIR spectroscopy characterization of the cellulose. Papier, v. 45, n. 2, p. 45-51, 1991. FRANKLIN, N. M.; ROGERS, N. J.; APTE, S. C.; BATLEY, G. E.; GADD, G. E.; CASEY, P. S. Comparative toxicity of nanoparticulate zno, bulk zno, and zncl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environmental Science & Technology, v. 41, n. 24, p. 8484–8490, 17 nov. 2007. FREEMAN, B. M. H.; MCINTYRE, C. R. A. Comprehensive review of copper-based wood preservatives with a focus on new micronized or dispersed copper systems. Forest Products Journal, v.58, n.11, p. 6–27, 2008 FU, Y.; YU, H.; SUN, Q.; LI, G.; LIU, Y. Testing of the superhydrophobicity of a zinc oxide nanorod array coating on wood surface prepared by hydrothermal treatment. Holzforschung, v. 66, n. 6, 2012. FUCZEK, D.; ZABIELSKA-MATEJUK, J. PERNAK, J. PRZYBYLSKA, W. Wettability of wood surfaces treated with ionic liquids. Drewno. Pr. Nauk. Donies. Komunik. v. 53, n. 184, p. 45 – 53, 2010 GAO, L.; ZHAN, X.; LU, Y.; LI, J.; SUN, Q. pH-dependent structure and wettability of TiO2- based wood surface. Materials Letters, v. 142, p. 217-220, 2015. GAO, Z., MA, M., ZHAI, X., ZHANG, M., ZANG, D. E WANG, C. Improvement of chemical stability and durability of superhydrophobic wood surface via a film of TiO2 coated CaCO3 micro-/nano-composite particles. RSC Advances, v. 5, n. 79, p. 63978-63984, 2015. GARCIA, R. A.; CARVALHO, A. M.; LATORRACA, J. V. F.; MATOS, J. L. M.; SANTOS, W. A.; SILVA, R. F. M. Nondestructive evaluation of heat-treated Eucalyptus grandis Hill ex Maiden wood using stress wave method. Wood Science and Technology, v. 46, p. 41-52, 2012. GEHRKE, I.; GEISER, A.; SOMBORN-SCHULZ, A. Innovations in nanotechnology for water treatment. Nanotechnology, Science and Applications, v. 8, p. 1-17, 2015. GÉRARDIN, P. New alternatives for wood preservation based on thermal and chemical modification of wood— a review. Annals of Forest Science, v. 73, n. 3, p. 559-570, 2015. 85 GRACE, J. K.; CAMPORA, C. E. Food location and discrimination by subterranean termites (Isoptera: Rhinotermitidae). In: Lee, C.-Y.; Robinson, W. H. INTERNATIONAL CONFERENCE ON URBAN PESTS. Proceedings... Malaysia: Perniagaan Ph’ng @ P & Y Design Network, 2005. p. 437-441. GREENWOOD, N. N.; EARNSHAW, A. The Chemistry of Elements (2a Edição). UK, Butterworth Heinemann, 1997. 1600p. GRIFFITT, R. J., WEIL, R., HYNDMAN, K. A., DENSLOW, N. D., POWERS, K., TAYLOR, D.; BARBER, D. S. Exposure to Copper Nanoparticles Causes Gill Injury and Acute Lethality in Zebrafish (Danio rerio). Environmental Science & Technology, v. 41, n. 23, p. 8178-8186, 2007. GULLER, B. Effects of heat treatment on density, dimensional stability and color of Pinus nigra wood. Afr. J. Biotechnol., v. 11, n. 9, p. 2204-2209, 2012. GUO, D.; XIE, G.; LUO, J. Mechanical properties of nanoparticles: basics and applications. Journal of Physics D: Applied Physics, v. 47, n. 1, p. 1-25, 2013. GUPTA, A. Zinc Sulphate Nanoparticles Less Price Fast Delivery. Disponível em: <https://www.nanoshel.com/product/zinc-sulphate-nanoparticles/>. Acesso em: 26 jan. 2018. HAJNOROUZI, A.; AFZALZADEH, R.; GHANATI, F. Ultrasonic irradiation effects on electrochemical synthesis of ZnO nanostructures. Ultrasonics Sonochemistry, v. 21, n. 4, p. 1435-1440, 2014. HAKKOU, M.; PÉTRISSANS, M.; EL BAKALI, I.; GÉRARDIN, P.; ZOULALIAN, A. Wettability changes and mass loss during heat treatment of wood. Holzforschung, v. 59, n. 1, p. 35-37, 2005. HAKKOU, M.; PÉTRISSANS, M.; ZOULALIAN, A.; GÉRARDIN, P. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer Degradation and Stability, v. 89, n. 1, p. 1-5, 2005. HAKKOU, M.; PÉTRISSANS, M.; GÉRARDIN, P.; ZOULALIAN, A. Investigation of the reasons for fungal durability of heat-treated beech wood. Polymer Degradation and Stability, v. 91, p. 393-397, 2006. HASANPOOR, M.; ALIOFKHAZRAEI, M.; DELAVARI, H. Microwave-assisted Synthesis of Zinc Oxide Nanoparticles. Procedia Materials Science, v. 11, p. 320-325, 2015. Hazardous Substance Fact Sheet for Copper. 2016. Disponível em: https://nj.gov/health/eoh/rtkweb/documents/fs/0528.pdf. HE, L.; LIU, Y.; MUSTAPHA, A.; LIN, M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, v. 166, n. 3, p. 207-215, 2011. 86 HENZ, G.P.; CARDOSO, F.B. Absorção de água e proliferação de fungos em madeira de Pinus usada como embalagem para hortaliças. Horticultura Brasileira, v.23, n.1, p. 138-142, 2005 HERNÁNDEZ, R. E.; COOL, J. Evaluation of three surfacing methods on paper birchwood in relation to water- and solvent-borne coating performance. Wood and Fiber Science, Madison, v. 40, n. 3, p. 459-469, 2008. HERRMANN, R.; GARCÍA-GARCÍA, F.; RELLER, A. Rapid degradation of zinc oxide nanoparticles by phosphate ions. Beilstein Journal of Nanotechnology, v. 5, p. 2007-2015, 2014. HIKITA, Y.; TOYODA, T.; AZUMA, M. Weathering testing of timber: discoloration. In: IMAMURA, Y. High performance utilization of wood for outdooor uses Kyoto: Press-Net, 2001. HILL, C. A. S. Wood modification: chemical, thermal and other processes. Chichester: John Wiley & Sons Ltd. 260 p, 2006. HIROTA, K., SUGIMOTO, M., KATO, M., TSUKAGOSHI, K., TANIGAWA, T. E SUGIMOTO, H. Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceramics International, v. 36, n. 2, p. 497-506, 2010. HOLT, D.; CULPAN, M. Scanning electron microscope studies of striations in ZnS. Journal of Materials Science, v. 5, n. 7, p. 546-556, 1970. HOMAN, W. J.; JORISSEN, A. J. M. Wood modification developments. Heron, v. 49, n. 4, p.361-385, 2004. HOU, S.; ZHANG, A.; SU, M. Nanomaterials for Biosensing Applications. Nanomaterials, v. 6, n. 4, p. 58, 2016. HOU, Y.; XU, Z.; SUN, S. Controlled Synthesis and Chemical Conversions of FeO Nanoparticles. Angewandte Chemie, v. 119, n. 33, p. 6445-6448, 2007. HUANG, X.; KOCAEFE, D.; KOCAEFE, Y.; BOLUK, Y.; KRAUSE, C. Structural analysis of heat-treated birch (Betule papyrifera) surface during artificial weathering. Applied Surface Science, v. 264, p. 117–127, 2013. HUANG, X.; WANG, X.; WANG, S.; YANG, J.; ZHONG, L.; PAN, J. UV and dark- triggered repetitive release and encapsulation of benzophenone-3 from biocompatible ZnO nanoparticles potential for skin protection. Nanoscale, v. 5, n. 12, p. 5596, 2013. HUBBE, M. A.; LUCIA, L. A. The “Love-hate” relationship present in Lignocellulosic Materials. BioResources, v. 2, n. 4, p. 534–535, 2007. IGNACIO, R. M.; KIM, C. S.; KIM, S.K. Immunotoxicity of metal oxide nanoparticle: Zinc oxide. Molecular & Cellular Toxicology, v. 10, n. 3, p. 237–244, 2014. 87 IVANOV, I.; GOSPODINOVA, D.; DINEFF, P.; VELEVA, L. Wood surface energy determined by sessile drop technique as quality parameter of plasma-chemical modified wood surfaces. International Scientific Journal "Machines. Technologies. Materials.", Ano VIII, n. 10, p. 50-53, 2014. INSTITUTO BRASILEIRO DO MEIO AMBIENTE E DOS RECURSOS NATURAIS RENOVÁVEIS. Florestas do Brasil em resumo 2013: atualizado. Brasília: SNIF, 2013. Available at: <https://snif.florestal.gov.br/images/pdf/publicacoes/florestas_do_brasil_em_resumo_2013_at ualizado.pdf>. INSTITUTO DE PESQUISAS TECNOLÓGICAS. Manual de preservação de madeiras. São Paulo: IPT, v. 1 e 2, 1986. 419p. JANKOVSKÝ, O.; SEDMIDUBSKÝ, D.; SOFER, Z.; LUXA, J.; BARTŮNĚK, V. Simple synthesis of Cr2O3 nanoparticles with a tunable particle size. Ceramics International, v. 41, n. 3, p. 4644-4650, 2015. JEONG, G.Y. Relationship between anatomical and mechanical properties of loblolly pine (Pinus taeda). Forest Products Journal, v. 63, n. 1-2, p. 47-53, 2013. JO, Y.; KIM, B.; JUNG, G. Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi. Plant Disease, v. 93, n. 10, p. 1037-1043, 2009. JONES, N.; RAY, B.; RANJIT, K. T.; MANNA, A. C. Antibacterial activity of zno nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters, v. 279, n. 1, p. 71–76, fev. 2008. KAMDEM, D. P.; PIZZI, A.; JERMANNAUD, A. Durability of heat-treated wood. Holz Roh Werst., v. 60, p. 1-6, 2002. KAPLAN, W. D.; CHATAIN, D.; WYNBLATT, P.; CARTER, W. C. A review of wetting versus adsorption, complexions, and related phenomena: the rosetta stone of wetting. J. Mater. Sci., v. 48, p. 5681-5717, 2013 KARLSSON, H.; CRONHOLM, P.; GUSTAFSSON, J.; MÖLLER, L. Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes. Chemical Research in Toxicology, v. 21, n. 9, p. 1726-1732, 2008. KARTAL, S. N.; GREEN III, F.; CLAUSEN, C.A. Do the unique properties of nanometals affect leachability or efficacy against fungi and termites? International Biodeterioration and Biodegradation, v. 63, n. 4, p.490–495, 2009 KELLEY, S. S.; JELLISON J.; GOODELL B. Use of NIR and pyrolysis MBMS coupled with multivariate analysis for detecting the chemical changes associated with brown-rot biodegradation of spruce wood. FEMS Microbiology Letters, v. 209, n. 1, p.107- 111, 2002 KHATTAK, T. M.; MAHMOOD, A. Estimation of lingin, holocellulose and alphacellulose content of earlywood and latewood among innerwood and outerwood of blue pine (Pinus wallichiana a.b. jacks.). Pakistan Journal of Botany. v.18, n.2, p.235—241, 1986. 88 KIRKBY, C.; GHASRODDASHTI, E. Targeting mitochondria in cancer cells using gold nanoparticle-enhanced radiotherapy: A Monte Carlo study. Medical Physics, v. 42, n. 2, p. 1119-1128, 2015. KOCAEFE, D.; PONCSAK, S.; DORÉ, G.; YOUNSI, R. Effect of heat treatment on the wettability of white ash and soft maple by water. Holz als Roh-und Werkstoff, v. 66, p. 355– 361, 2008. KOŁODZIEJCZAK-RADZIMSKA, A.; MARKIEWICZ, E.; JESIONOWSKI, T. Structural Characterisation of ZnO Particles Obtained by the Emulsion Precipitation Method. Journal of Nanomaterials, v. 2012, p. 1-9, 2012. KOŁODZIEJCZAK-RADZIMSKA, A.; JESIONOWSKI, T. Zinc Oxide—From Synthesis to Application: A Review. Materials, v. 7, n. 4, p. 2833-2881, 2014. KONICA MINOLTA SENSING Inc. Comunicação precisa da cor: Controle de qualidade da percepção à instrumentação. 1998. 59 p. KOOKANDEH, M. G.; TAGHIYARI, H. R.; SIAHPOSHT, H. Effects of heat treatment and impregnation with zinc-oxide nanoparticles on physical, mechanical, and biological properties of beech wood. Wood Sci. Technol., v. 48, n. 4, p. 727-736, 2014. KORKUT, S., KORKUT, D. S., KOCAEFE, D., ELUSTONDO, D., BAJRAKTARI, A. E ÇAKICIER, N. Effect of thermal modification on the properties of narrow-leaved ash and chestnut. Industrial Crops and Products, v. 35, n. 1, p. 287-294, 2012. KRONKA, F. J. N.; BERTOLANI, F.; PONCE, R. H. A cultura do Pinus no Brasil. Sociedade Brasileira de Silvicultura, 2005. 160 p. KRÜSS GmbH. Software for drop shape analysis DSA 1 v 1.92 for contact angle measurements systems. User manual v1.92-05. 2011. KUMAR, A.; GUPTA, A.; SHARMA, K.; NASIR, M. Use of aluminum oxide nanoparticles in wood composites to enhance the heat transfer during hot-pressing. European Journal of Wood and Wood Products, v. 71, n. 2, p. 193-198, 2013. KUMARI, M.; KHAN, S. S.; PAKRASHI, S.; MUKHERJEE, A.; CHANDRASEKARAN, N. Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of allium cepa. Journal of Hazardous Materials, v. 190, n. 1–3, p. 613–621, jun. 2011. KÜNNIGER, T.; HEEB, M.; ARNOLD, M. Antimicrobial efficacy of silver nanoparticles in transparent wood coatings. European Journal of Wood and Wood Products, v. 72, n. 2, p. 285-288, 2014. LARBA, R.; BOUKERCHE, I.; ALANE, N. et al. Citric acid as an alternative lixiviant for zinc oxide dissolution. Hydrometallurgy, v. 134-135, p. 117-123, 2013. LAUTRUP, B. Surface tension. In: LAUTRUP, B. Physics of Continuous Matter, Second Edition: Exotic and Everyday Phenomena in the Macroscopic World, 2 nd Edition. Hoboken: CRC Press, 2011. p. 69-94 89 LEBOW, S. Leaching of wood preservative components and their mobility in the environment—Summary of pertinent literature. Gen. Tech. Rep. FPL–GTR–93. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 1996. 36 p. LEE, M.; PANKRAS, S.; COOPER, P. Appearance, corrosion properties, and leach resistance of spruce and pine wood treated with Mea modified micronized copper preservative (MCu). Holzforschung, v. 68, n. 4, 2014. LELIS, R. C. C. Zur Bedeutung der Kerninhaltsstoffe obligatorisch verkernter Nadelbaumarten bei der Herstellung von feuchtbeständigen und biologisch resistenten Holzspanplatten, am Beispiel der Douglasie (Pseudotsuga menziesii Mirb. Franco). 1995. 256p. Tese (Doutorado em Ciência Florestal) – Universität Göttingen, Göttingen, 1995. LEPAGE, E.S. Método sugerido pela IUFRO para ensaios de campo com estacas de madeira. Preservação de Madeiras, v. 1, n. 4, p. 205-216, 1970. LEVAN, S. L. Thermal Degradation. In: SCHNIEWIND, A. P. Concise Encyclopedia of Wood & Wood-Based Materials. 1st edition. Elmsford, NY: Pergamon Press. 1989. p.271- 273. LI, M.; ZHU, L.; LIN, D. Toxicity of zno nanoparticles toescherichia coli: Mechanism and the influence of medium components. Environmental Science & Technology, v. 45, n. 5, p. 1977–1983, mar. 2011. LIMA, J. T. Pontos polêmicos acerca do forrageamento de cupins subterrâneos (Isoptera: Rhinotermitidae): consumo de alimentos similares, reutilização de iscas e tunelamento em solos não uniformes. 2010. 132 f. Tese (doutorado) - Universidade Estadual Paulista, Instituto de Biociências de Rio Claro, 2010. Disponível em: <http://hdl.handle.net/11449/106569>. LIONETTO, F.; DEL SOLE, R.; CANNOLETTA, D.; VASAPOLLO, G.; MAFFEZZOLI, A. Monitoring Wood degradation during weathering by cellulose crystallinity. Materials, v. 5, n. 10, p. 1910–1922, 19 out. 2012. LIU, J.; WANG, X. Effect of drying temperature and relative humidity on contraction stress in Wood. BioResources, v. 11, n. 3, 27 jun. 2016. LOPES, J. O.; GARCIA, R. A.; NASCIMENTO, A. M.; LATORRACA, J. V. F. Uniformização da cor da madeira jovem de teca pela termorretificação. Rev. Árvore, v. 38, n. 3, p. 561-568, 2014. LU, H.; WANG, J.; STOLLER, M. WANG, T.; BAO, Y.; HAO, H. An Overview of nanomaterials for water and wastewater treatment. Advances in Materials Science and Engineering, v. 2016, p. 1-10, 2016. LUOSTARINEN, K.; MÖTTÖNEN, V.; ASIKAINEN, A.; LUOSTARINEN, J. Birch (Betula pendula) Wood Discolouration during Drying. Effect of Environmental Factors and Wood Location in the Trunk. Holzforschung, v. 56, n. 4, p. 348-354, 2002. 90 LYKIDIS, C.; MANTANIS, G.; ADAMOPOULOS, S.; KALAFATA, K.; ARABATZIS, I. Effects of nano-sized zinc oxide and zinc borate impregnation on brown rot resistance of black pine (pinus nigraL.) wood. Wood Material Science and Engineering, v. 8, n. 4, p. 242–244, dez. 2013. LYKIDIS, C.; BAK, M.; MANTANIS, G.; NÉMETH, R. Biological resistance of pine wood treated with nano-sized zinc oxide and zinc borate against brown-rot fungi. European Journal of Wood and Wood Products, v. 74, n. 6, p. 909-911, 2016. LYKIDIS, C.; DE TROYA, T.; CONDE, M.; GALVÁN, J.; MANTANIS, G. Termite resistance of beech wood treated with zinc oxide and zinc borate nanocompounds. Wood Material Science and Engineering, v. 13, n. 1, p. 45-49, 2016. MACAGNANO, A. New Applications of Nanoheterogeneous Systems. In: THOMAS, S.; SHANKS R.; CHANDRASEKHARAKURUP, S. Nanostructured Polymer Blends. [s.l.] Elsevier Science, 2013. p. 449 – 488. MAGALHÃES, W. L. E. Controle de manchadores e apodrecedores da madeira de pínus. II Seminário de Atualidades em Proteção Florestal. Controle de Incêndios, Pragas, Doenças e Plantas Invasoras em Áreas Florestais, 06 a 09 de Junho de 2005 MANTANIS, G.; TERZI, E.; KARTAL, S. N.; PAPADOPOULOS, A. N. Evaluation of mold, decay and termite resistance of pine wood treated with zinc- and copper-based nanocompounds. International Biodeterioration & Biodegradation, v. 90, p. 140-144, 2014. MARIA FLORENCE, E. J. M.; GNANAHARAN, R.; SHARMA, J. K. Studies on growth and prevention of sapstain fungus Botryodiplodia theobromae in rubber wood and its effect on strength properties. Kerala: Kerala Forest Research Institute, 1996, 680 p. MARTON, J. M.; FELIPE, M. G. A.; SILVA, J. B. A. Avaliação de carvões ativos e das condições de adsorção no tratamento do hidrolisado hemicelulósico de bagaço de cana empregando planejamento de experimentos. Revista Analytica, n.3, p.45-53, 2003. MARZBANI, P.; AFROUZI, Y.; OMIDVAR, A. The effect of nano-zinc oxide on particleboard decay resistance. Maderas. Ciencia y tecnología, 2015. METSA-KORTELAINEN, S., ANTIKAINEN, T. & VIITANIEMI, P. The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170°C, 190°C, 210°C and 230°C. Holz als Roh- und Werkstoff, v.64, p. 192-197, 2006. MITSUI, K.; MURATA, A.; TOLVAJ, L. Changes in the properties of light-irradiated wood with heat treatment: Part 3: Monitoring by DRIFT spectroscopy. Holz Roh Werst., v. 62, n. 3, p. 164-168, 2004. MOHAMMADNIA AFROUZI, Y.; OMIDVAR, A.; MARZBANI, P. Effect of artificial weathering on the wood impregnated with nano-zinc oxide. World Applied Sciences Journal, v. 22, n. 9, p. 1200–1203, 2013. 91 NAIR, P.; CHUNG, I. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environmental Science and Pollution Research, v. 21, n. 22, p. 12709-12722, 2014. NÉMETH, R.; BAK, M.; MBOUYEM YIMMOU, B.; CSUPOR, K.; MOLNAR, S.; CSOKA, L. Nano-zinc as an agent against wood destroying fungi. In: Anais do 5o Simpósio Internacional sobre a Interação da Madeira com Várias Formas de Energia. Zvolen: Academia Internacional de Ciências da Madeira, Universidade Técnica de Zvolen, 2013. p. 59–63. NESAKUMAR, N.; RAYAPPAN, J. B. B.; JEYAPRAKASH, B. G.; KRISHNAN, U.M.; Influence oh pH on Structural Morphology of ZnO nanoparticle. Journal of Applied Sciences, v. 12, n16, p. 1758-1761, 2012. NIMITTRAKOOLCHAI, O.-U.; SUPOTHINA, S. Deposition of organic-based superhydrophobic films for anti-adhesion and self-cleaning applications. J. Eur. Ceram. Soc. v.28, p. 947–952, 2008. NUNES, C. S.; NASCIMENTO, A. M.; GARCIA, R. A.; LELIS, R. C. C. Qualidade de adesão de madeiras de Corymbia citriodora e Eucalyptus pellita tratadas termicamente. Sci. For., v. 44, n. 109, p. 41-56, 2016. NZOKOU, P.; KAMDEM, D. P. Influence of wood extractives on moisture sorption and wettability of red oak (Quercus rubra), black cherry (Prunus serotina), and red pine (Pinus resinosa). Wood and Fiber Science, v. 36, n. 4, p. 483–492, 2004 OBERHOFNEROVÁ, E.; PÁNEK, M.; GARCÍA-CIMARRAS, A. The effect of natural weathering on untreated wood surface. Maderas. Ciencia y tecnología, v. 19, n. 2, p. 173– 184, 2017. OBERHOFNEROVÁ, E; PANEK, M. Surface wetting of selected wood species by water during initial stages of weathering. Wood research, v. 61, n. 4, p. 545-552, 2016 ORTHON, C. R.; PARKINSON, D.Y.; EVANS, P.D.; OWEN, N.L. Fourier transform infrared studies of heterogeneity, photodegradation, and lignin/hemicellulose ratios within hardwoods and softwoods. Applied Spectroscopy. v.58, n.11, 1265-1271, 2004. OSORIO, F.; VALDÉS, G.; SKURTYS, O.; ANDRADE, R.; VILLALOBOS-CARVAJAL, R.; SILVA-WEISS, A.; SILVA-VERA, W.; GIMÉNEZ, B.; ZAMORANO, M.; LOPEZ, J. Surface Free Energy Utilization to Evaluate Wettability of Hydrocolloid Suspension on Different Vegetable Epicarps. Coatings, v. 8, n. 1, p. 16, 2017 PADMAVATHY, N.; VIJAYARAGHAVAN, R. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Science and Technology of Advanced Materials, v. 9, n. 3, p. 1-7, 2008. PAES, J. B.; SEGUNDINHO, P. G. de A.; EUFLOSINO, A. E. R.; OLIVEIRA, J. G. L. Resistance of thermally treated woods to Nasutitermes corniger in a food preference test. Madera y bosques, v. 21, n. 1, p. 157-161, 2015. 92 PAVIA, D. L.; LAMPMAN, G. M.; KRIZ, G. S.; VYVYAN, J. R. Introdução à espectroscopia – Tradução da 4a edição norte-americana. São Paulo: CENGAGE Learning, 716 p. 2010. PEREIRA, K. R. M. Análise físico-química e molhabilidade da superfície de madeiras amazônicas. 2017. 103f. Tese (Doutorado em Ciências Ambientais e Florestais) – Universidade Federal Rural do Rio de Janeiro, Seropédica, 2017. PESSOA, A. M. C.; BERTI FILHO, E.; BRITO, J. O. Avaliação da madeira termorretificada de Eucalyptus grandis, submetida ao ataque de cupim de madeira seca, Cryptotermes brevis. Scientia Forestalis., v.72, p.11-16, 2006. PETRIČ, M., OVEN, P. Determination of wettability of wood and its significance in wood science and technology: a critical review. Rev. Adhes. Adhes., v. 3, n. 2, p.121-187, 2015. PÉTRISSANS, M.; GÉRARDIN, P.; BAKALI, I. E.; SERRAJ, M. Wettability of Heat-Treated Wood. Holzforschung, v. 57, n. 3, p. 301-307, 2003. PINKOWSKI, G.; KRAUSS, A.; PIERNIK, M.; SZYMAŃSKI, W. Effect of thermal treatment on the surface roughness of Scots pine (Pinus sylvestris L.) wood after plane milling. BioRes, v. 11, n. 2, p. 5181-5189, 2016. PODGORSKI, L.; CHEVET, B.; ONIC, L.; MERLIN, A. Modification of wood wettability by plasma and corona treatments. Int. J. Adhes. Adhes., v. 20, n. 2, p. 103-111, 2000. POLISHCHUK, E. V.; CONCILLI, M.; IACOBACCI, S.; CHESI, G.; PASTORE, N.; PICCOLO, P.; PALADINO, S.; BALDANTONI, D.; VAN IJZENDOORN, S. C. D.; CHAN, J.; CHANG, C. J.; AMORESANO, A.; PANE, F.; PUCCI, P.; TARALLO, A.; PARENTI, G.; BRUNETTI-PIERRI, N.; SETTEMBRE, C.; BALLABIO, A.; POLISHCHUK, R. S. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Developmental Cell, v. 29, n. 6, p. 686–700, jun. 2014. POMOGAILO, A. D.; KESTELMAN, V. N. Nanoparticles in Materials Chemistry and in the Natural Sciences (Introduction). In: Metallopolymer Nanocomposites. Springer Series in Materials Science. v. 81. Springer, Berlim, Heidelberg. p. 3 – 24. 2005. POUBEL, D.; GARCIA, R.; LELIS, R. C. C.; RIEDL, B. Efeito de nanopartículas de ZnO na resistência da madeira de pinus tratada termicamente à radiação UV. Scientia Forestalis, v. 45, n. 113, p. 49-62, 2017. PRASAD, R.; BHATTACHARYYA, A.; NGUYEN, Q. D. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in Microbiology, v. 8, 2017. PUBCHEM. Zinc Oxide. Disponível em: https://pubchem.ncbi.nlm.nih.gov/compound/Zinc- Oxide. RAJ, S.; SUMOD, U.; JOSE, S.; SABITHA, M. Nanotechnology in cosmetics: Opportunities and challenges. Journal of Pharmacy and Bioallied Sciences, v. 4, n. 3, p. 186-192, 2012. 93 RAMIAH, N. V.; GORING, D. A. I. Some dilatometric measurements of the thermal decomposition of cellulose, hemicellulose and lignin. Cellulose Chemistry and Tehnology, v.1, n.3, p. 277-285, 1967 REDDY, K.; FERIS, K.; BELL, J. et al. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters, v. 90, n. 21, p. 213902-213905, 2007. RÉTFALVI, T.; HOFMANN, T.; ALBERT, L.; NIEMZ, P. The environmental chemical features of the waste water originated from the thermal treatment of wood. Wood Research, v. 54, n. 4, p. 13-22, 2009 REP, G.; POHLEVEN, F.; BUCAR, B. Characteristics of thermally modified wood in vacuum. Document No. IRG/WP 04–40287. The International Research Group on Wood Preservation, Ljubljana, 2004 ROJAS, M. G.; MORALES-RAMOS, J. A. Bait matrix for delivery of chitin synthesis inhibitors to the Formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, Lanham, v. 94, n. 2, p. 506-510, 2001. ROSZYK, E.; MOLIŃSKI, W.; KAMIŃSKI, M. Tensile Properties Along the Grains of Earlywood and Latewood of Scots Pine (Pinus sylvestris L.) in Dry and Wet State. BioResources, v. 11, n. 2, 2016. ROWELL R. M.; HAN, J. S.; BYRD, V. L. Fiber Webs. In: ROWELL, R. M. Handbook of wood chemistry and wood composites. Boca Raton, Florida: CRC Press. 2005. ROWELL, R. M.; PETTERSEN, R.; HAN, J. S..; ROWELL, J. S.; TSHABALADA, M. A. Cell Wall Chemistry. In: ROWELL, R. M. Handbook of wood chemistry and wood composites. Boca Raton, Florida: CRC Press. 2005. RUNDEL, P. W.; RICHARDSON, D. M. TEMPERATE ECOSYSTEMS| Pines. In: BURLEY, J. Encyclopedia of Forest Sciences. Oxford: Elsevier, 2004. p. 1430–1441. SALLA, J.; PANDEY, K. K.; SRINIVAS, K. Improvement of UV resistance of wood surfaces by using ZnO nanoparticles. Polymer Degradation and Stability, v. 97, n. 4, p. 592–596, 2012. SALMAN, S.; THÉVENON, M. F.; PÉTRISSANS, A.; DUMARÇAY, S.; CANDELIER, K.; GÉRARDIN, P. Improvement of the durability of heat-treated wood against termites. Maderas: Ciencia y Tecnología, v. 19, n. 3, p. 317-328, 2017. SANTONI, I.; PIZZO, B. Effect of surface conditions related to machining and air exposure on wettability of different Mediterranean wood species. International Journal of Adhesion and Adhesives, v. 31, n. 7, p. 743-753, 2011. SAVI, G.; BORTOLUZZI, A.; SCUSSEL, V. Antifungal properties of Zinc-compounds against toxigenic fungi and mycotoxin. International Journal of Food Science & Technology, v. 48, n. 9, p. 1834-1840, 2013. 94 SAWAI, J.; YOSHIKAWA, T. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. Journal of Applied Microbiology, v. 96, n. 4, p. 803-809, 2004. SCHMIDT, O. Wood and Tree Fungi. Biology, Damage, Protection and Use; Springer- Verlag: Berlin, Germany, 2006. 334p. SCHNEID, E.; CADEMARTORI, P. H. G.; GATTO, D. The effect of thermal treatment on physical and mechanical properties of Luehea divaricata hardwood. Maderas. Ciencia y tecnología, v. 16, n. 4, p. 413-422, 2014 SCHULTZ, R. Loblolly pine: the ecology and culture of loblolly pine (Pinus taeda L.L.). Washington, D.C.: U.S. Dept. of Agriculture, Forest Service, 1997. 713p. SCOTT, C.W. A summary of information on Pinus pinaster. Forestry Abstracts, v. 23, 1-18, 1962. SERNEK, M. Comparative analysis of inactivated wood surfaces. 2002. 179f . Thesis (Doctor in Wood Sciences and Forest Products) – Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, 2002. SEVERO, E. T.; CALONEGO, F. W.; SANSÍGOLO, C. A.; BOND, B. Changes in the chemical composition and decay resistance of thermally-modified Hevea brasiliensis wood. PLOS ONE, v. 11, n. 3, 17 mar. 2016. SHARMA, N.; JANDAIK, S.; KUMAR, S. Synergistic activity of doped zinc oxide nanoparticles with antibiotics: ciprofloxacin, ampicillin, fluconazole and amphotericin B against pathogenic microorganisms. Anais da Academia Brasileira de Ciências, v. 88, n. 3, p. 1689-1698, 2016. SHARMA, R. K.; AGARWAL, M.; BALANI, K. Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite. Materials Science and Engineering C, v. 62, p. 843–851, 2016. SHAW, G. R. The genus pinus. Cambridge Mass.: Printed at the Riverside Press, 1914. SHEN, Z.; CHEN, Z.; HOU, Z.; LI, T.; LU, X. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Frontiers of Environmental Science & Engineering, v. 9, n. 5, p. 912-918, 2015. SHI, J.; ABID, A.; KENNEDY, I.; HRISTOVA, K.; SILK, W. To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environmental Pollution, v. 159, n. 5, p. 1277-1282, 2011. SHI, S. Q.; GARDNER, D. J. Dynamic adhesive wettability of wood. Wood and Fiber Science, v. 33, n. 1, p. 58-68, 2001 SHIMIZU, J. Y.; SEBBENN A. M. Espécies de Pinus na silvicultura brasileira. In: SHIMIZU J. Y. Pínus na silvicultura brasileira. Colombo: EMBRAPA. p.17-47. 2008 95 SIVRIKAYA, H.; CAN, A.; TROYA, T.; CONDE, M. Comparative biological resistance of differently thermal modified wood species against decay fungi, Reticulitermes grassei and Hylotrues bajulus. Maderas Cienc. Tecnol., v. 17, n. 3, p. 559-570, 2015. SOLOMON, F. Impacts of Copper on Aquatic Ecosystems and Human Health. Mining.com, Vancouver, B.C.: University of British Columbia, Norman B. Keevil Institute of Mining Engineering, January 2009. SOLTANI, M.; NAJAFI, A.; YOUSEFIAN, S.; NAJI, H. R.; BAKAR, E. S. Water repellent effect and dimension stability of beech wood impregnated with nano-Zinc oxide. BioResources, v. 8, n. 4, p. 6280-6287. 2013. SONG, L., CONNOLLY, M., FERNÁNDEZ-CRUZ, M. L., VIJVER, M. G., FERNÁNDEZ, M., CONDE, E., DE SNOO, G. R., PEIJNENBURG, W. J. AND NAVAS, J. M. Species- specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology, v. 8, n. 4, p. 383-393, 2013. SPENCE, A. R.; HOPKINS, G. R.; NEUMAN-LEE, L. A.; SMITH, G. D. S.; BRODIE JR., E. D.; FRENCH, S. S. Detrimental Effects of Zinc Oxide Nanoparticles on Amphibian Life Stages. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, v. 325, n. 7, p. 415-424, 2016. SRIVASTAVA, O.; SECCO, E. Studies on metal hydroxy compounds. II. Infrared spectra of zinc derivatives ε-Zn(OH)2, β-ZnOHCl, ZnOHF, Zn5(OH)8Cl2, and Zn5(OH)8Cl2·H2O. Canadian Journal of Chemistry, v. 45, n. 6, p. 585-588, 1967. STAMM, A. J. Thermal Degradation of Wood and Cellulose Forest Products Laboratory, Forest Service, Lr. S. Department of Agriculture, Madison, Wis. Ind. Eng. Chemical, v.48, n.3, p.413–417, 1956. STAMM, A. J. Wood and cellulose science. New York: The Ronald Press Company, 1964. 549 p. SUBEDI, D. P.; MADHUP, D. K.; SHARMA, A.; JOSHI U. M. HUCZKO, A. Study of the wettability of zno nanofilms. International Nano Letters. v.1, n.2, p. 117-122, 2011 SUNDQVIST, B.; KARLSSON, O.; WESTERMARK, U. Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its realtion to colour, strength and hardness. Wood Science and Technology, v. 40, p. 549-561, 2006. SURINI, T., CHARRIER, F., MALVESTIO, J., CHARRIER, B., MOUBARIK, A., CASTÉRA, P. AND GRELIER, S. Physical properties and termite durability of maritime pine Pinus pinaster Ait., heat-treated under vacuum pressure. Wood Science and Technology, v. 46, n. 1-3, p. 487-501, 2012. SYOFUNA, A.; BANANA, A.; NAKABONGE, G. Efficiency of natural wood extractives as wood preservatives against termite attack. Maderas. Ciencia y tecnología, v. 14, n. 2, p. 155- 163, 2012. 96 TAMURA, T.; TURNLUND, J. Effect of long-term, high-copper intake on the concentrations of plasma homocysteine and B vitamins in young men. Nutrition, v. 20, n. 9, p. 757-759, 2004. TANAKA, H. Silicon carbide powder and sintered materials. Journal of the Ceramic Society of Japan, v. 119, n. 3, p. 218-233 2011 TERZI, E.; KARTAL, S.; YILGÖR, N.; RAUTKARI, L.; YOSHIMURA, T. Role of various nanoparticles in prevention of fungal decay, mold growth and termite attack in wood, and their effect on weathering properties and water repellency. International Biodeterioration & Biodegradation, v. 107, p. 77-87, 2016. THAKUR, V.; THAKUR, M. Functional biopolymers. Cham: Springer International Publishing, 2018. 379p TINTI, A., TUGNOLI, V., BONORA, S. E FRANCIOSO, O. Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: a review. Journal of Central European Agriculture, v. 16, n. 1, p. 1-22, 2015. TJEERDSMA, B. F.; BOONSTRA, M.; PIZZI, A.; TEKELY, P.; MILITZ, H. Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Als Roh- Und Werkstoff, vol. 56, no. 3, p. 149–153, 1998. TJEERDSMA, B. F.; MILITZ, H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh- und Werkstoff, v. 63, p. 102–111, 2005. TREVISAN, H.; LATORRACA, J. V. F., SANTOS, A. L. P. S., TEIXEIRA, J. G.; CARVALHO, A. G. Analysis of rigidity loss and deterioration from exposure in a decay test field of thermorectificated Eucalyptus grandis wood. Maderas: Ciencia y tecnología. Concepción, v. 16, n. 2, p. 217-226, 2014. TRIPATHI, S.; PANT, H.; KASHYAP, A. K. Decay resistance against Basidiomycetes fungi of hart-treated Pinus roxburghii and Mangifera indica wood. J. Trop. For. Sci., v. 26, n. 2, p. 203-207, 2014. TSHABALALA, M. A. Surface characterization. In ROWELL, R. M. (Ed.) Handbook of wood chemistry and wood composites. Boca Raton, Florida: CRC Press, 2005. TUFT, L.; ETTELSON, L. Canker sores from allergy to weak organic acids (citric and acetic). Journal of Allergy, v. 27, n. 6, p. 536-543, 1956. U.S. Food and Drug Administration (FDA) GRAS Notice. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=182.8991 UNSAL, O.; CANDAN, Z.; KORKUT, S. Wettability and roughness characteristics of modified wood boards using a hot press. Ind. Crops Prod., v. 34, n. 3, p. 1455-1457, 2011. VENKATESAN, R.; RAJESWARI, N. ZnO/PBAT nanocomposite films: Investigation on the mechanical and biological activity for food packaging. Polymers for Advanced Technologies, v. 28, n. 1, p. 20-27, 2016. 97 VIDAL, J. M.; EVANGELISTA, W. V.; SILVA, J. C.; JANKOWSKY, I. P. Preservação de madeiras no Brasil: histórico, cenário atual e tendências. Ciência Florestal, v.25, n.1, p. 257- 271, 2015 WAHAB, RAZAK; MUSTAFA, T, M.; SUDIN, M.; RASAT, S. M. R. MOHAMED, A.; YUSUF, N.A. A. N. Analysis on Thermal Degradation and Chemical Contents of Bamboo Gigantochloa brang. Research Journal of Pharmaceutical, Biological and Chemical Sciences, v. 5, n. 5, p. 500 – 506, 2014 WÅLINDER M. Wetting phenomena on wood: factors influencing measurements of wood wettability [thesis]. Stockholm: Royal Institute of Technology; 2000. 70 p (INSERIDO) WANG, J.; WANG, Z.; HUANG, B.; MA, Y.; LIU, Y.; QIN, X.; ZHANG, X.; DAI, Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of zno. ACS Applied Materials & Interfaces, v. 4, n. 8, p. 4024–4030, 2012. WANG, L.; HU, C.; SHAO, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, v. 12, p. 1227-1249, 2017. WANG, Z.; ZHANG, H.; ZHANG, L.; YUAN, J.; YAN, S.; WANG, C. Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction. Nanotechnology, v. 14, p. 11- 15, 2003. WAXMAN, M. Agrochemical and pesticide handbook. Boca Raton, Fla.: Lewis Publishers, 1998. 616p. WEICHELT, F.; BEYER, M.; EMMLER, RICO.; FLYUNT, R.; BEYER, E.; BUCHMEISER, M. Zinc Oxide Based Coatings for the UV-Protection of Wood for Outdoor Applications. Macromolecular Symposia, v.301, p. 23–30, 2011. WEILAND, J. J.; GUYONNET, R.; GIBERT, R. Analyse de la pyrolyse ménagée du bois par un couplage TG-DSC-IRTF. Journal of Thermal Analysis, v. 51, p. 265–274, 1998. WEILAND, J. J.; GUYONNET, R. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz Roh Werkst., v. 61, n. 3, p. 216- 220, 2003. WELZBACHER, R. C.; BRISCHKE, C.; OTTO RAPP, A. Influence of treatment temperature and duration on selected biological, mechanical, physical and optical properties of thermally modified timber. Wood Material Science and Engineering, v. 2, n. 2, p. 66-76, 2007. WERNER, K.; POMMER, L.; BROSTRÖM, M. Thermal decomposition of hemicelluloses. Journal of Analytical and Applied Pyrolysis, p. 1-8, 2014. WU, A. H. F.; CHO, K. L.; LIAW, I. I.; MORAN, G.; KIRBY, N.; LAMB, R. N. Hierarchical surfaces: an in situ investigation into nano and micro scale wettability. Faraday Discussions, v. 146, p. 223-232, 2010 98 XIE, N., FENG, D., LI, H., GONG, C. E ZHEN, L. Shape-controlled synthesis of zinc phosphate nanostructures by an aqueous solution route at room temperature. Materials Letters, v. 82, p. 26-28, 2012. XU, L.; HU, Y.; PELLIGRA, C.; CHEN, C.; JIN, L.; HUANG, H.; SITHAMBARAM, S.; AINDOW, M.; JOESTEN, R.; SUIB, S. L. ZnO with Different Morphologies Synthesized by Solvothermal Methods for Enhanced Photocatalytic Activity. Chemistry of Materials, v. 21, n. 13, p. 2875-2885, 2009. YANG, F.; KANG, D.; KIM, Y. Improved interface of ZnO/CH3NH3PbI3 by a dynamic spin- coating process for efficient perovskite solar cells. RSC Advances, v. 7, n. 31, p. 19030-19038, 2017. YANG, H.; YAN, R.; CHEN, H.; LEE, D.; H. E ZHENG, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, v. 86, n. 12-13, p. 1781-1788, 2007. YOKOYAMA, T. MASUDA, H.; SUZUKI, M.; EHARA, K,; NOGI, K.; FUJI, M.; FUKUI, T.; SUZUKI, H.; TATAMI, J.; HAYASHI, K.; TODA, K.; Basic Properties And Measuring Methods Of Nanoparticles. In: HOSOKAWA, M.; NOGI, K.; NAITO, M.; YOKOYAMA, T.; Nanoparticle Technology Handbook. Amsterdam: Elsevier, 2008. p. 3 - 48 YOSHIDA, T. Leaching of Zinc Oxide in Acidic Solution. Materials Transactions, v. 44, n. 12, p. 2489-2493, 2003. YUAN Y., LEE T.R. Contact Angle and Wetting Properties. In: BRACCO G., HOLST B. Surface Science Techniques. Springer Series in Surface Sciences, v. 51. Springer: Berlin, Heidelberg, 2013. p. 3-34. ZABEL, R.; MORRELL, J. Wood Microbiology. Decay and its prevention. Oxford: Elsevier Science, 1992. 476p. | pt_BR |
| dc.subject.cnpq | Recursos Florestais e Engenharia Florestal | pt_BR |
| Appears in Collections: | Doutorado em Ciências Ambientais e Florestais | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 2018 - Bruno Couto da Silva.pdf | 2.78 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
