Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/22761Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Oliveira, Gabriella Francisco Pereira Borges de | - |
| dc.date.accessioned | 2025-08-04T16:47:12Z | - |
| dc.date.available | 2025-08-04T16:47:12Z | - |
| dc.date.issued | 2023-04-28 | - |
| dc.identifier.citation | OLIVEIRA, Gabriella Francisco Pereira Borges de. Influência da calagem com Lithothamnium calcareum na mobilidade e persistência dos herbicidas atrazina e S-metolacloro no solo. 2023. 57 f. Tese (Doutorado em Agronomia – Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2023. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/22761 | - |
| dc.description.abstract | A mobilidade e a persistência dos herbicidas no solo podem ser influenciadas por diversos fatores, entre eles, a calagem do solo, a qual consiste na correção da acidez do solo, elevando o pH do solo. Geralmente, utiliza-se calcário de origem mineral, mas as algas marinhas, como o Lithothamnium calcareum, vêm demonstrando resultados satisfatórios como corretivo do solo. O objetivo da pesquisa foi avaliar a influência da calagem do solo utilizando L. calcareum e calcário dolomítico na mobilidade e na persistência dos herbicidas atrazina e S- metolacloro no solo. Foram realizados experimentos distintos para atrazina e S-metolacloro, aplicando-se as doses de 2.400 g ia ha-1 e 1.680 g ia ha-1, respectivamente. Os experimentos de mobilidade foram desenvolvidos em delineamento inteiramente casualizado com quatro repetições. Os tratamentos foram arranjados em parcelas subdivididas, sendo as parcelas correspondentes às fontes de cálcio e as subparcelas correspondentes às profundidades das colunas de solo. Após a aplicação dos herbicidas no topo das colunas de PVC contendo solo, houve simulação de 60 mm de chuva. As colunas foram abertas e as amostras de solo foram removidas a cada 10 cm de profundidade, para extração e quantificação dos herbicidas no solo por cromatografia líquida de ultra eficiência (UHPLC). Os experimentos de persistência foram desenvolvidos em esquema fatorial 3x10+12 com quatro repetições, no qual o fator A correspondeu às fontes de cálcio e o fator B aos tempos de coleta do solo, variando entre 1 e 150 dias após a aplicação (DAA) do herbicida, também houve adição de 12 testemunhas. Após a aplicação dos herbicidas nos vasos contendo solo, eles permaneceram em área externa à casa de vegetação, sendo retiradas as amostras nos tempos de coleta previstos para posterior extração e quantificação por UHPLC e realização do bioensaio, utilizando pepino e sorgo como indicadores da presença de atrazina e S-metolacloro no solo, respectivamente. Para o atrazina, a maior concentração de herbicida foi obtida entre 0 e 20 cm no tratamento sem calagem do solo, entre 30 e 40 cm no tratamento com calagem utilizando calcário dolomítico e entre 10 e 20 cm no tratamento com calagem utilizando L. calcareum. Para o S-metolacloro, a maior concentração do herbicida foi obtida entre 20 e 30 cm no tratamento sem calagem do solo, entre 10 e 20 cm no tratamento com calagem utilizando calcário dolomítico e entre 0 e 10 cm no tratamento com calagem utilizando L. calcareum. Para o atrazina, os tempos de meia-vida corresponderam a 8,3 dias para o solo sem calagem e 7,9 dias para o solo com calagem. Para o S-metolacloro, os tempos de meia-vida corresponderam a 12,1 dias para o solo sem calagem, 13,5 e 11,6 dias para o solo com calagem utilizando calcário dolomítico e L. calcareum, respectivamente. As plantas de pepino foram controladas até os 90 DAA do atrazina para todos os tratamentos. As plantas de sorgo foram controladas até 15 DAA do S- metolacloro para o solo sem calagem e até 30 DAA para o solo com calagem. Portanto, para o solo utilizado na presente pesquisa, a calagem do solo utilizando L. calcareum reduziu a mobilidade das moléculas em comparação à calagem do solo utilizando calcário dolomítico. Além disso, a calagem do solo não alterou significativamente o tempo de meia-vida dos herbicidas. No entanto, o bioensaio demonstrou que a calagem do solo influenciou no aumento da persistência do S-metolacloro no solo. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | Algas | pt_BR |
| dc.subject | Triazina | pt_BR |
| dc.subject | Cloroacetanilida | pt_BR |
| dc.subject | Espécies bioindicadoras | pt_BR |
| dc.subject | UHPLC | pt_BR |
| dc.subject | Seaweed | pt_BR |
| dc.subject | Triazine | pt_BR |
| dc.subject | Chloroacetanilide | pt_BR |
| dc.subject | Bioindicator species | pt_BR |
| dc.title | Influência da calagem com Lithothamnium calcareum na mobilidade e persistência dos herbicidas atrazina e S- metolacloro no solo | pt_BR |
| dc.title.alternative | lnfluence of liming with Lithothamnium calcareum on mobility and persistence of atrazine and S-metolachlor herbicides in soil | en |
| dc.type | Tese | pt_BR |
| dc.description.abstractOther | The mobility and persistence of herbicides in soil can be influenced by several factors, including soil liming, which consists of correcting soil acidity, increasing soil pH. Generally, limestone is used, but seaweed, such as Lithothamnium calcareum, has demonstrated satisfactory results as a soil improver. The objective of this research was to evaluate the influence of soil liming using L. calcareum and dolomitic limestone on mobility and persistence of atrazine and S-metolachlor in soil. Different experiments were carried out for atrazine and S-metolachlor, applying doses of 2,400 g ai ha-1 and 1,680 g ai ha-1, respectively. The mobility experiments were carried out in a completely randomized design with four replications. The treatments were arranged in subdivided plots, with the plots corresponding to calcium sources and the subplots corresponding to the depths of the soil columns. After applying the herbicides on top of PVC columns containing soil, there was a simulation of 60 mm of rain. The columns were opened and soil samples were removed every 10 cm in depth, for extraction and quantification of herbicides in soil by ultra-performance liquid chromatography (UHPLC). The persistence experiments were developed in a 3x10+12 factorial scheme with four replications, in which factor A corresponded to calcium sources and factor B to soil collection times, varying between 1 and 150 days after application (DAA) of the herbicide, 12 untreated plots were also added. After applying the herbicides to the pots containing soil, they remained in an area outside the greenhouse, with samples being taken at the expected collection times for subsequent extraction and quantification by UHPLC and carrying out the bioassay, using cucumber and sorghum as indicators of the presence of atrazine and S-metolachlor in soil, respectively. For atrazine, the highest herbicide concentration was obtained between 0 and 20 cm in without liming treatment, between 30 and 40 cm in liming using dolomitic limestone treatment and between 10 and 20 cm in liming using L. calcareum treatment. For S-metolachlor, the highest concentration of the herbicide was obtained between 20 and 30 cm in without liming treatment, between 10 and 20 cm in liming using dolomitic limestone treatment and between 0 and 10 cm in liming using L. calcareum treatment. For atrazine, half-life times corresponded to 8.3 days for soil without liming and 7.9 days for soil with liming. For S-metolachlor, the half-life times corresponded to 12.1 days for soil without liming, 13.5 and 11.6 days for soil with liming using dolomitic limestone and L. calcareum, respectively. Cucumber plants were controlled up to 90 DAA of atrazine for all treatments. Sorghum plants were controlled up to 15 DAA of S-metolachlor for the unlimed soil and up to 30 DAA for the limed soil. Therefore, for the soil used in the present research, soil liming using L. calcareum reduced herbicides mobility compared to soil liming using dolomitic limestone. Furthermore, soil liming did not significantly alter herbicides half-life. However, bioassay demonstrated | en |
| dc.contributor.advisor1 | Zonta, Everaldo | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0001-8106-0504 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/3943601345963141 | pt_BR |
| dc.contributor.advisor-co1 | Pinho, Camila Ferreira de | - |
| dc.contributor.advisor-co1ID | https://orcid.org/0000-0003-2861-2212 | pt_BR |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/3934515090201644 | pt_BR |
| dc.contributor.referee1 | Pinho, Camila Ferreira de | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0003-2861-2212 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/3934515090201644 | pt_BR |
| dc.contributor.referee2 | Nascentes, Alexandre Lioi | - |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/1808261154114079 | pt_BR |
| dc.contributor.referee3 | Hüther, Cristina Moll | - |
| dc.contributor.referee3ID | https://orcid.org/0000-0003-0655-5966 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/5164391381813344 | pt_BR |
| dc.contributor.referee4 | Silva, Daniel Valadão | - |
| dc.contributor.referee4ID | https://orcid.org/0000-0003-0644-2849 | pt_BR |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/2100406454919685 | pt_BR |
| dc.contributor.referee5 | Lima, Erica Souto Abreu | - |
| dc.contributor.referee5ID | https://orcid.org/0000-0003-4140-3634 | pt_BR |
| dc.contributor.referee5Lattes | http://lattes.cnpq.br/6111184982796209 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/5571540040139288 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Agronomia | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Agronomia - Ciência do Solo | pt_BR |
| dc.relation.references | ABRACAL – Associação Brasileira dos Produtores de Calcário Agrícola. Estatísticas. Calcário Agrícola – Brasil – 2022. Disponível em: http://abracal.com.br/site/estatísticas. Acesso em: 29/09/2023. AGROFIT AGROFIT. Sistema de Agrotóxicos Fitossanitários. Disponível em: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Acesso em: 20/06/2022. AGROLINK. Bula Dual Gold. Disponível em: https://www.agrolink.com.br/agrolinkfito/produto/dual-gold_8774.html. Acesso: 15/11/2022. AGROLINK. Bula Nortox 500 SC. Disponível em: https://www.agrolink.com.br/agrolinkfito/produto/atrazina-nortox-500-sc_2934.html. Acesso em: 15/11/2022. AHMAD, M.; LEE, S. S.; RAJAPAKSHA, A. U.; VITHANGE, M.; ZHANG, M.; CHO, J. S.; LEE, S. E.; OK, Y. S. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, v. 99, p.19-33, 2014. ALLETTO, L.; BENOIT, P.; BOLOGNÉSI, B.; COUFFIGNAL, M.; BERGHEAUD, V.; DUMÉNY, V.; LONGUEVAL, C.; BARRIUSO, E. Soil & Tillage Research, v. 128, p. 97- 103, 2013. ALLETTO, L.; COQUET, Y.; BENOIT, P.; HEDDADJ, D.; BARRIUSO, E. Tillage management effects on pesticide fate in soils. A review. Agronomy for Sustainable Development, v. 30, n. 2, p. 367-400, 2010. ALMEIDA, A.E.S.; SOUZA, G.R.; CORRÊA, F.V.; SILVA, J.R.M.; OLIVEIRA, L.F.C.; FEIRE, E.R.C.G. Iron removal by fixed-bed adsorption with thermochemically treated Lithothamnium calcareum algae. Environmental Technology & Innovation, v.24, p.1-12, 2021. ANDLEEB, S.; JIANG, Z.; REHMAN, K.; OLAJIDE, E. K.; YING, ZHANG. Journal of Northeast Agricultural University, v.23, n.2, p.12-19, 2016. ARELLANO, C.A.P.; GONZÁLEZ, A.J.; MARTÍNEZ, S.S.; SALGADO-TRÁNSITO, I.; FRANCO, C.P. Enhanced mineralization of atrazine by means of photodegradation processes using solar energy at pilot plant scale. Journal of Photochemistry and Photobiology A: Chemistry, v.272, p.21-27, 2013. ARMSTRONG, D. E; CHESTERS, G. Adsorption catalyzed chemical hydrolysis of atrazine. Environmental Science & Technology, v.9, p.683-689, 1968. ATA, A.; NALCACI, O.O.; OVEZ, B. Macro algae Gracilaria verrucosa as a biosorbent: A study of sorption mechanisms. Algal Research, v.1, p.194-204, 2012. BARAN, N; GOURCY, L. Sorption and mineralization of S-metolachlor and its ionic metabolites in soils and vadose zone solids: Consequences on groundwater quality in an alluvial aquifer (Ain Plain, France). Journal of Contaminant Hydrology, v.154, p.20-28, 2013. 46 BARRIUSO, E.; CALVET, E. Soil type and herbicide adsorption. International Journal of Environmental Chemistry, v.46, p.117-128, 1992. BEDMAR, F.; DANIEL, P.E.; COSTA, J.L.; GIMENEZ, D. Sorption of acetochlor, S- metolachlor and atrazine in surface and subsurface soil horizons of Argentina. Environmental Toxicology and Chemistry, v.30, pp. 1990-1996, 2011. BEDMAR, F.; GIMENEZ, D.; COSTA, J.L.; DANIEL, P.E. Persistence of acetochlor, atrazine, and S-metolachlor in surface and subsurface horizons of 2 typic argiudolls under no- tillage. Environmental Toxicology Chemistry, v.36, n.11, p.3065-3073, 2017. BEESLEY, L.; MORENO-JIMÉNEZ, E.; GOMEZ-EYLES, J.L.; HARRIS, E.; ROBINSON, B.; SIZMUR, T. A review of biochars potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, v.159, p.3269-3282, 2011. BLASIOLI, S.; BRASCHI, I.; GESSA, C.E. The Fate of Herbicides in Soil. Herbicides and Environment. 2011. BOUCHARD, D. C.; LAVY, T. L.; MARX, D. B. Fate of metribuzin, metolachlor, and fluometuron in soil. Weed Science, v. 30, p. 629-632, 1982. BRIGHENTI, A.M.; MORAES, V.J.; OLIVEIRA JR., R.S.; GAZZIERO, D.I.P.; VOLL, E.; GOMES, J.A. Persistência e fitotoxicidade do herbicida atrazine aplicado na cultura do milho sobre a cultura do girassol em sucesso. Planta Daninha, v.20, n.2, p-291-297, 2002. BRINDLEY, G.W.; BROWN, G., 1980. Crystal structures of clay minerals and their X- ray identification. Mineralogical Society of Great Britain and Ireland, London. BUENO, M.R.; ALVES, G.S.; PAULA, A.D.M.; CUNHA, J.P.A.R. Volume de calda e adjuvantes no controle de plantas daninhas com glyphosate. Planta Daninha, v.31, n.3, p.705-713, 2013. CABRERA, A.; COX, L.; SPOKAS, L.; HERMOSIN, M.C.; CORNEJO, J.; KOSKINEN, W.C. Influence of biochar amendments on the sorption-desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil. Science of the Total Environment, v.470/471, p.438-443, 2014. CALETTI, R.P.K. Remoção de fósforo presente em lixiviado de aterro sanitário por granulados bioclásticos. Dissertação mestrado, PGEAAmb, 2017. CAÑERO, A.I.; COX, L.; HERMOSÍN, M.C.; CORNEJO, J. Effect of soil amendment with an organic residue on s-metolachlor fate. In: International Conference Recycling Agricultural, Municipal and Industrial Residues in Agriculture Network, 14, Lisboa, 2010. Abstract. FAO: European System of Cooperative Research Networks in Agriculture, Roma, 2010. CAPRIEL, P.; HAISCH, A.; KHAN, S.U. Distribution and nature of bound (nonextractable) residues of atrazine in a mineral soil nine years after the herbicide application. Journal of Agricultural and Food Chemistry, v.33, p.567-569, 1985. 47 CARLOS, A.C.; SAKOMURA, N.K.; PINHEIRO, S.R.F.; TOLEDANO, F.M.M.; GIACOMETTI, R.; SILVA JÚNIOR, J.W. Uso da alga Lithothamnium calcareum como fonte alternativa de cálcio nas rações de frangos de corte. Ciência e Agrotecnologia, v.35, p.833-839, 2011. CASSIGNEUL, A.; BENOIT, P.; NOBILE, C.; BERGHEAUD, V.; DUMENY, V.; ETIÉVANT, V.; MAYLIN, A.; JUSTES, E.; ALLETTO, L. Behaviour of S-metolachlor and its oxanilic and ethanesulfonic acids metabolites under fresh vs. partially decomposed cover crop mulches: A laboratory study. Science of the Total Environment, v.631, p.1515-1524, 2018. CAVALCANTI, V. Plataforma continental: a última fronteira da mineração brasileira. Brasília: DPNM, 2011. 104p.: il. CESSNA, A. J. Nonbiological degradation of triazine herbicides: photolysis and hydrolysis. The Triazine Herbicides, v.23, p.329-353, 2008. CHAGAS, P. S. F.; SOUZA, M. F.; FREITAS, C. D. M.; MESQUITA, H. C.; SILVA, T. S.; SANTOS, J. B.; PASSOS, A. B. R. J.; MEDEIROS, R. C. A.; SILVA, D. V. Increases in pH, Ca2+ and Mg2+ alter the retention of diuron in different soils. Catena, v.188, p.1-9, 2020. CHEN, Z.; CHEN, Y.; VYMAZAL, J.; KULE, L.; KOZELUH, M. Dynamics of chlroacetanilide herbicides in various types of mesocosm wetlands. Science of the Total Environment, v. 577, p. 386-394, 2017. CHHOKAR, R. S.; SHARMA, R.K.; SHARMA, I. Weed management strategies in wheat – A review. Journal of Wheat Research, v. 4, n. 2, p. 1-21, 2012. CHOWDHURY, I. F.; ROHAN, M.; STODART, B. J.; CHEN, C.; WU, H.; DORAN, G. S. Persistence of atrazine and trifluralin in a clay loam soil undergoing different temperature and moisture conditions. Environmental Pollution, v.276, 116687, 2021. CLAUSEN, L.; FABRICIUS, I.; MADSEN, L. Adsorption of pesticides onto quartz, calcite, kaolinite, and α-alumina. Journal of Environmental Quality, v.30, p.846-857, 2001. CLAY, S. A.; KOSKINEN, W.C. Adsorption and desorption of atrazine, hydroxyatrazine and s-glutathione atrazine on two soils. Weed Science, v.38, p.262-266, 1990. CLAY, S. A.; MALO, D. D. The Influence of biochar production on herbicide sorption characteristics. In: Hasaneen, M. N. (ed.). Herbicides - properties, synthesis and control of weeds. Rijeka, Croatia: In Tech, 2012. p.59-74. COELHO, A. M. Nutrição e adubação do milho. Brasília, DF: Embrapa/CNPMS, 2006. CORREIA, F.V.; MACRAE, A.; GUILHERME, L.R.G.; LANGENBACH, T. Atrazine sorption and fate in a Ultisol from humid tropical Brazil. Chemosphere, v.67, n.5, p.847-854, 2007. 48 CRISANTO, T.; SÁNCHEZ-CAMAZANO, M.; ARIENZO, M.; SÁNCHEZ-MARTÍN, M.J. Adsorption and mobility of metolachlor in surface horizons of soils with low organic matter content. Science of the Total Environment, v.166, p.69-76, 1995. CURRAN, W.S. Persistence of herbicides in soil. Agronomy Facts 36. Published by Penn State College of Agricultural Sciences research and extension programs, 2001. CURRAN, W.S. Persistence of herbicides in soil. Crops & Soils, v.49, n.5, p.16-21, 2016. DALLA NORA, D.; AMADO, T.J.C.; BORTOLOTTO, R.P.; FERREIRA, A.O.; KELLER, A.C.; KUNZ J. Alterações químicas do solo e produtividade do milho com aplicação de gesso combinado com calcário. Magistra, v.26, p.1-10, 2014. DAO, T.; LAVY, T. Atrazine adsorption on soil as influenced by temperature, moisture content and electrolyte concentration. Weed Science, v.26, n.3, p.303-308, 1978. DELLA VECHIA, J.F.; PERES, L.R.S.; CASTRO, P.P.; CRUZ, C. Determinação de plantas indicadoras de resíduos de bentazona, atrazina e clomazona no solo. Ciência e Cultura, v.17, e211707, 2021. DELMONTE, A.A.; BEDMAR, F.; MANTECÓN, J.D.; ECHEVERRIA, H.; BARASSP, C. Persistence of the biocide activity of atrazine in soils of the southeast of Buenos Aires province. Planta Daninha, v.14, n.2, p.110-117, 1996. DIAS, G.T.M. Granulados bioclásticos – Algas calcárias. Brazilian Journal of Geophysics, v.18, n.3, p.307-318, 2001. DING, G.; NOVAK, J.M.; HERBERT, S.; XING, B. Long-term tillage effects on soil metolachlor sorption and desorption behavior. Chemosphere, v.48, p.897-904, 2002. DORETTO, K.M.; PERUCHI, L.M.; RATH, S. Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in brazilian soils. Science of the Total Environment, v.476, p.406-414, 2014. DOS SANTOS, H.G.; JACOMINE, P.K.T.; DOS ANJOS, L.H.C.; DE OLIVEIRA, V.A.; LUMBRERAS, J.F.; COELHO, M.R., ALMEIDA, J.A.; ARAUJO FILHO, J.C.; OLIVEIRA, J. B.; CUNHA, T. J. F. Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa, 2018. DU, Y.; LIAN, F.; ZHU, L. Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells. Environmental Pollution, v.159, p.1763-1768, 2011. ESPER NETO, M.; ZAMPAR, E.J.O.; CORDIOLI, V.R.; CASSIM, B.M.A.R.; DIAS, G.A.R.; INOUE, T.T.; BATISTA, M.A. Biogenic and commom lime characterization in granular and powder forms and their application in sowing furrows for soybean crops. Communications in Soil Science and Plant Analysis, v.51, p.1382-1390, 2020. FERRI, M.V.W.; VIDAL, R.A. Persistência do herbicida Acetochlor em função de sistemas de preparo e cobertura com palha. Ciência Rural, v.33, n.3, p.399-404, 2003. 49 FONTECHA-CÁMARA, M.A.; LÓPEZ-RAMÓN, M.V.; ALVAREZ-MERINO, M.A.; MORENO-CASTILLO, C. Effect of surface chemistry, solution pH and ionic strength on the removal of herbicides diuron and amitrole from water by an activated carbon fiber. Langmuir, v.23, n.3, p.1242-1247, 2007. FRANS, R.; CROWLEY, H. Experimental design and techniques for measuring and analyzing plant responses to weed control practices. In: SOUTHERN WEED SCIENCE SOCIETY. Research methods in weed science. 3.ed. Clemson: p.29-45, 1986. GALON, L.; GABIATTI, R.L.; AGAZZI, L.R.; WEIRICH, S.N.; RADÜNZ, A.L.; BRANDLER, D.; BRUNETTO, L.; SILVA, A.M.L.; ASPIAZÚ, I.; PERIN, G.F. Competição entre híbridos de milho com plantas daninhas. South American Sciences, v.2, n.1, p.1-26, 2021. GIORI, F.G.; TORNISIELO, V. L.; REGITANO, J. B. The Role of Sugarcane Residues in the Sorption and Leaching of Herbicides in Two Tropical Soils. Water, Air, & Soil Pollution, v.225, n.4, p.1935-1943, 2014. GLUHAR, S.; KAURIN, A.; GRUBAR, T.; PROSEN, H.; LESTAN, D. Dissipation of mecoprop-P, isoproturon, bentazon and S-metolachlor in heavy metal contaminated acidic and calcareous soil before and after EDTA-based remediation. Chemosphere, v.237, 124513, 2019. GOULDING, K.W.T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manage, v.32, n.3, p.390-399, 2016. GRAFTON, M.C.E.; YULE, I.J.; DAVIES, C.E.; STEWART, R.B.; JONES, J.R. Resolving the agricultural crushed limestone flow problem from fixed-wing aircraft. American Society of Agricultural and Biological Engineers, v.54, n.3, p.769-775, 2011. GREY, T.L.; WALKER, R.H.; WEHTJE, G.R.H.; HANCOCK, H.G. Sulfentrazone adsorption and mobility as affected by soil and pH. Weed Science, v.45, p.733-738, 1997. GUO, X.; HAN, W.; ZHANG, G.; YANG, Y.; WEI, Z.; HE, Q.; WU, Q. Effect of inorganic and organic amendments on maize biomass, heavy metals uptake and their availability in calcareous and acidic washed soil. Environmental Technology & Innovation, v.19, p.1-9, 2020. HAFLE, O.M.; SANTOS, V.A.; RAMOS, J.D.; CRUZ, M.C.M.; MELO, P.C. Produção de mudas de mamoeiro utilizando bokashi e Lithothamnium. Revista Brasileira de Fruticultura, v.31, n.1, p.245-251, 2009. HELYAR, K.R.; PORTER, W.M. Soil acidification, its measurement and the processes involved. In: ROBSON, A.D. (ed.), Soil Acidity and Plant Growth. Academic Press, Sydney, 1989, p.61-101. HILTBOLD, A.E.; BUCHANAN, G.A. Influence of soil pH on persistence of atrazine in the field. Weed Science, v.25, n.6, p.515-520, 1977. 50 HOLLAND, J.E.; BENNETT , A.E.; NEWTON, A.C.; WHITE , P.J.; MCKENZIE, B.M.; GEORGE , T.S.; PAKEMAN, R.J.; BAILEY, J.S.; FORNARA, D.A.; HAYES, R.C. Liming impacts on soils, crops and biodiversity in the UK: A review. Science of the Total Environment, v.610-611, p.316-332, 2018. HOUOT, S.; TOPP, E.; YASSIR, A.; SOULAS, G. Dependence of accelerated degradation of atrazine on soil pH in French and Canadian soils. Soil Biology & Biochemistry, v.32, p.615- 625, 2000. INMET. Tabela de dados das estações meteorológicas. Disponível em: https://portal.inmet.gov.br/. Acesso em: 11/12/2021. JABLONOWSKI, N.D.; KÖPPCHEN, S.; HOFMANN, D.; SCHÄFFER, A.; BURAUEL, P. Persistence of 14C-labeled atrazine and its residues in a field lysimeter soil after 22 years. Environmental Pollution, v.157, p.2126-2131, 2009. JAIKAEW, P.; BOULANGE, J.; THUYET, D.Q.; MALHAT, F.; ISHIHARA, S.; WATANABE, H. Potential impacts of seasonal variation on atrazine and metolachlor persistence in andisol soil. Environmental Monitoring and Assessment, v.187, n.760, p.1- 10, 2015. KACZYŃSKI, P. Clean-up and matrix effect in LC-MS/MS analysis of food of plant origin for high polar herbicides. Food chemistry, v.230, p.524-531, 2017. KALKHORAN, S.S.; PANNELL, D.J.; THAMO, T.; WHITE, B.; POLYAKOV, M. Soil acidity, lime application, nitrogen fertility and greenhouse gas emissions: Optimizing their joint economic management. Agricultural Systems, v.176, p.1-10, 2019. KASOZI, G.N.; NKEDI-KIZZA, P.; AGYIN-BIRIKORANG, S.; ZIMMERMAN, A.R. Characterization of adsorption and degradation of diuron in carbonatic and noncarbonatic soils. Journal of Agricultural and Food Chemistry, v.58, p.1055-1061, 2010. KAUFMAN, D.D.; KEARNEY, P.C. Microbial degradation of s-triazine herbicides. Residue Reviews, v.32, p.235-265, 1970. KAUR, P.; MAKKAR, A.; KAUR, P.; SHILPA. Temperature dependent adsorption– desorption behaviour of pendimethalin in Punjab soils. Bulletin of Environmental Contamination and Toxicology, v.100, n.1, p.167–175, 2017. KELLS, J.J.; RIECK, C.E.; BLEVINS, R.L.; MUIR, W.M. Atrazine dissipation as affected by surface pH and tillage. Weed Science, v.28, n.1, p.101-104, 1980. KHAN, S.U.; BEHKI, R.M. Effects of Pseudomonas species on the release of bound 14C residues from soil treated with 14C atrazine. Journal of Agricultural and Food Chemistry, v.38, p.2090-2093, 1990. KHAN, N.W.; KHAN, N.; KHAN, I.A. Integration of nitrogen fertilizer and herbicides for efficient weed management in maize crop. Sarhad Journal of Agriculture, v.28, n.3, p.457- 463, 2012. 51 KLEIN, C.; DUTROW, B. Manual of mineral Science. 23. ed. Bookman, p.716, 2008. KLEIN, C.; SCHNEIDER, R.J.; MEYER, M.T.; AGA, D.S. Enantiomeric separation of metolachlor and its metabolites using LC–MS and CZE. Chemosphere, v.62, p.1591-1599, 2006. KOOKANA, R.; HOLZ, G.; BARNES, C.; BUBB, K.; FREMLIN, R.; BOARDMAN, B. Impact of climatic and soil conditions on environmental fate of atrazine used under plantation forestry in Australia. Journal of Environmental Management, v.91, p. 2649-2656, 2010. KOVAIOS, I.D; PARASKEVA, C.A.; KOUTSOUKOS, P.G.; PAYATAKES, A.C. Adsorption of atrazine on soils: Model study. Journal of Colloid and Interface Science, v.299, p.88-94, 2006. LAABS, V.; AMELUNG, W.; FENT, G.; ZECH, W.; KUBIAK, R. Fate of 14C-labeled soybean and corn pesticides in tropical soils of Brazil under laboratory conditions. Journal of Agricultural and Food Chemistry, v.50, 4619e4627, 2002. LIMA, J.M.; AQUINO, R.F.; MAGALHÃES, C.A.S.; GONÇALVES, R.H.; NÓBREGA, J.C.A.; MELLO, C.R. Lime and phosphate effects on atrazine sorption, leaching and runoff in soil. Ciência e Agrotecnologia, 44:e022919, 2020. LIU, Z.J.; CLAY, S.A.; CLAY, D.E.; HARPER, S.S. Ammonia fertilizer influences atrazine adsorption-desorption characteristics. Journal of Agricultural and Food Chemistry, v.43, n.3, p.815-819, 1995. LIU, J.; ZHOU, J.H.; GUO, Q.N.; MA, L.Y.; YANG, H. Physiochemical assessment of environmental behaviors of herbicide atrazine in soils associated with its degradation and bioavailability to weeds. Chemosphere, v.262, 127830, 2021. LOISEAU, L.; BARRIUSO, E.; Characterization of the atrazine’s bound (nonextractable) residues using fractionation techniques for soil organic matter. Environmental Science and Technology, v.36, p.683-689, 2002. LONG, Y.H.; LI, R.T.; WU, X.M. Degradation of S-metolachlor in soil as affected by environmental factors. Journal of Soil Science and Plant Nutrition, v.14, n.1, p.189-198, 2014. LORENZI, H. Manual de identificação e controle de plantas daninhas: plantio direto e convencional. 7. ed. Nova Odessa, 2014, 382p. MANCUSO, M.A.C.; NEGRISOLI, E.; PERIM, L. Efeito residual de herbicidas no solo (carryover). Revista Brasileira de Herbicidas, v. 10, n. 2, p. 151-164, 2011. MARCHESAN, E.D.; DEDORDI, G.; TREZZI, M.M.; VIDAL, R.A.; DICK, D.P. Seleção de espécies bioindicadoras para uso em bioensaios de lixiviação e persistência de atrazina no solo. Pesticidas: Revista de Ecotoxicologia e Meio Ambiente, v.21, p.47-51, 2011. MARCHI, G.; MARCHI, E.C.S.; GUIMARÃES, T.G. Herbicidas: mecanismos de ação e uso. Embrapa Cerrado, Planaltina, 2008. 52 MARTIN, S.M.; KOOKANA, R.S.; ZWIETEN, L.V.; KRULL, E. Marked changes in herbicide sorption-desorption upon ageing of biochars in soil. Journal of Hazardous Materials, v.231/232, p.70-78, 2012. MARTIN-NETO, L.; CRUVINEL, P.E.; MATTOSO, L.H.C.; COLNAGO, L.A.; FLOCCHINI; SPOSITO, G. Espectroscopias de infravermelho, ultravioleta-visível e pixe: alguns resultados disponíveis. In: CRESTANA, S.; CRUVINEL, P.E.; MASCARENHAS, S.; BISCEGLI, C.I.; MARTIN NETO, L.; COLNAGO, L.A. (ed.). Instrumentação agropecuária: contribuições no limiar do novo século. Brasília: EMBRAPA-SPI, 1996, p.51-90. MARTIN-NETO, L.; TRAGHETTA, D.G.; VAZ, C.M.P.; CRESTANA, S.; SPOSITO, G. Interaction mechanisms of atrazine and hydroxyatrazine with humic substances. Journal of Environmental Quality, v.30, p.520-525, 2001. MATOS, A.K.A.; CARBONARI, C.A.; GOMES, L.G.C.; VELINI, E.D. Dynamics of preemergent herbicides in production systems with straw. Revista Brasileira de Herbicidas, v.15, n.1, p.97–106, 2016. MELO, T.S.; MAKINO P.A.; CECCON G. Weed diversity in corn with different plant arrangement patterns grown alone and intercropped with palisade grass. Planta Daninha, v37:e019195957, 2019. MELO, P.C.; NETO, A.E.F. Avaliação do Lithothamnium como corretivo da acidez do solo e fonte de nutrientes para o feijoeiro. Ciência e Agrotecnologia, v.27, n.3, p.508-519, 2003. MENDES, K.F.; DIAS, R.C.; REIS, M.R. Carryover e persistência de herbicidas em solos. In: Sociedade Brasileira da Ciência das Plantas Daninhas, 2017, Londrina/PR. Boletim do Comitê de Qualidade Ambiental, v.1, p.1-11, 2017. MENDES, K.F.; DIAS JÚNIOR, A.F.; TAKESHITA, V.; JUSTINIANO RÉGO, A.P.; TORNISIELO, V.L. Effect of biochar amendments on the sorption and desorption herbicides in agricultural soil. In: Advanced Sorption Process Applications. IntechOpen, 2019, p. 1-17. MESAROVIĆ, J.; SRDIĆ, J.; MLADENOVIĆ-DRINIĆ, S.; DRAGIČEVIĆ, V.; SIMIĆ, M.; BRANKOV, M.; MILOJKOVIĆ-OPSENICA, D. Evaluation of the nutritional profile of sweet maize after herbicide and foliar fertilizer application. Journal of Cereal Science, v.87, p.132-137, 2019. MOLLAMOHAMMADA, S.; HASSAN, A.A.; DAHAB, M. Immobilized algae-based treatment of herbicide-contaminated groundwater. Water Environment Research, v.93, n.2, p.263-273, 2020. MOORE, G.A. Soil guide: a handbook for understanding and managing agricultural soils. Bulletin n.4343. Department of Primary Industries and Regional Development, Australia. Disponível em: https://researchlibrary.agric.wa.gov.au/bulletins/2/. Acesso em: 15/11/2022. MOREIRA, F.M.S.; SIQUEIRA, J.O. Microbiologia e bioquímica do solo. 2.ed. Lavras: UFLA, 2006. 729p. 53 MOREIRA, R.A.; RAMOS, J.D.; MARQUES, V.B.; ARAÚJO, N.C.; MELO, P.C. Crescimento de pitaia vermelha com adubação orgânica e granulado bioclástico. Ciência Rural, v.41, n.5, p.785-788, 2011. MUDHO, A.; GARG, V.K. Sorption, transport and transformation of atrazine in soils, minerals and composts: A review. Pedosphere, v.21, n.1, p.11-25, 2011. NASCIMENTO, F.S.; FREIRE, G.S.; MIOLA, B. Geochemistry of marine sediments of Brazilian northeastern continental shelf. Brazilian Journal of Oceanography, v.58, p.1-11, 2010. NAVARRO, S.; VELA, N.; GIMÉNEZ, M.J.; NAVARRO G. Persistence of four s-triazine herbicides in river, sea and groundwater samples exposed to sunlight and darkness under laboratory conditions. Science of the Total Environment, v.329, n.1-3, p.87-97, 2004. NOGUEIRA, M.F.M. Estudo do efeito da adição de material granulado bioclástico (Lithothamnium calcareum) aplicado na remoção de carga orgânica e poluentes no tratamento de efluentes em biorreator aeróbio. Dissertação mestrado, PPGEQ, 2019. ODERO, D.C.; FERNANDEZ, J.V.; HAVRANEK, N. Weed control and radish (Raphanus sativus) response to S-metolachlor on organic soils. HortScience, v.51, n.1, p-79-83, 2016. OLIVEIRA JR., R.S.; REGITANO, J.B. Dinâmica de pesticidas no solo. In: MELO, V. F.; ALLEONI, L.R.F. Química e mineralogia do solo, Viçosa, MG: Sociedade Brasileira de Ciência do Solo, p.187–248, 2009. OLIVEIRA, M.F.; BRIGHENTI, A.M. Comportamento de herbicidas no ambiente. In: OLIVEIRA JÚNIOR, R.S.; CONSTANTIN, J.; INOUE, M.H. Biologia e manejo de plantas daninhas. Curitiba: Omnipax, Cap.11, p.263-304. 2011. OREN, A.; CHEFETZ, B. Sorption-desorption behavior of polycyclic aromatic hydrocarbons in upstream and downstream river sediments. Chemosphere, v.61, p.19-29, 2005. OTERO, R.; ESQUIVEL, D.; ULIBARRI, M.A.; ROMERO-SALGUERO, F.J.; VOORT, P.V.D.; FERNÁNDEZ, J.M. Mesoporous phenolic resin and mesoporous carbono for the removal of S-metolachlor and bentazon herbicides. Chemical Engineering Journal, v.251, p.92-101, 2014. PAUL, E. A.; CLARK, F. E. Soil microbiology and biochemistry. 2. ed. San Diego: Academic, 1996. 340 p. PAULA, R.T.; ABREU, A.B.G.; QUEIROZ, M.E.L.R.; NEVES, A.A.; SILVA, A.A. Leaching and persistence of ametryn and atrazine in red-yellow latosol. Journal of Environmental Science and Health, Part B, v.0, n.0, p.1-6, 2015. PEÑA, D.; ALBARRÁN A.; GÓMEZ, S.; FERNÁNDEZ-RODRÍGUEZ, D.; RATO- NUNES, J.M.; LÓPEZ-PIÑEIRO, A. Effects of olive mil wastes with different degrees of maturity on behavior of S-metolachlor in three soils. Geoderma, v.348, p.86-96, 2019. 54 PIGNATELLO, J.J.; FERRANDINO, F.J.; HUANG, L.Q. Elution of aged and freshly added herbicides from a soil. Environmental Science and Technology, v.27, p.1563-1571, 1993. PLIMMER, J.R. Dissipation of pesticides in the environment. In: SCHNOOR, J.L. (ed.). Fate of pesticides and chemicals in the environment. John Wiley & Sons, New York, p.79-90, 1992. PRATA, F.; LAVORENTI, A.; VANDERBORGHT, J.; BURAUEL, P.; VEREECKEN, H. Miscible displacement, sorption and desorption of atrazine in a Brazilian oxisol. Vadose Zone Journal, v.2, p.728-738, 2003. PRIETO, M.; CUBILLAS, P.; FERNÁNDEZ-GONZALEZ, A. Uptake of dissolved Cd by biogenic and abiogenic aragonite: a comparison with sorption onto calcite. Geochimica et Cosmochimica Acta, v.67, n.20, p.3859-3869, 2003. PROCÓPIO, S.O.; PIRES, F.R.; WERLANG, R.C.; SILVA, A.A.; QUEIROZ, M.E.L.R.; NEVES, A.A.; MENDONÇA, E.S.; SANTOS, J.B.; EGREJA FILHO, F.B. Sorção do herbicida atrazine em complexos organominerais. Planta Daninha, v.19, n.3, p.391-400, 2001. PROSEN, H.; ZUPANČIČ-KRALJ, L. Evaluation of photolysis and hydrolysis of atrazine and its first degradation products in the presence of humic acids. Environmental Pollution, v.133, n.3, p.517-529, 2005. PUSSEMIER, L.; GOUX, S.; VANDERHEYDEN, V.; DEBONGNIE, P.; TRESINIE, I.; FOUCART, G.Rapid dissipation of atrazine in soils taken from various maize fields. Weed Research, v.37, p.171-179, 1997. QUAGGIO, J.A. Acidez e calagem em solos tropicais. Campinas: Instituto Agronômico, 2000. 111p. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 2018. URL: https://www.R-project.org/. RIBANI, M.; BOTTOLI, C.B.G.; COLLINS, C.H.; JARDIM, I.C.S.F.; MELO, L.F.C. Validação em métodos cromatográficos e eletroforéticos. Química Nova, v.27, n.5, p.771– 780, 2004. RODRIGUES, L.D.S.; TEIXEIRA, O.; FILHO, D.C.A.; BRONDANI, I.L.; MACHADO, D.S.; PEREIRA, L.B.; ADAMS, S.M.; WEISE, M.S. Milho tolerante ao glifosato: interação entre herbicidas pós-emergentes e época de controle das plantas daninhas. Revista Brasileira de Milho e Sorgo, v.18, n.2, p. 168-177, 2019. RODRIGUES, M.D.; MENDES, K.F.; FURTADO, I.F.; SOUZA, W.M. Detecção de resíduo biodisponível de S-metolachlor no solo pelo método de bioensaio. Weed Control Journal, v.20, e202100723, 2021. SAFAEI KHORRAM, M.; ZHANG, Q.; LIN, D.; ZHENG, Y.; FANG, H.; YU, Y. Biochar: a review of its impact on pesticide behavior in soil environments and its potential applications. Journal of Environmental Sciences, v.44, p.269-279, 2016. 55 SARMAH, A.K.; MÜLLER, K.; AHMAD, R. Fate and behaviour of pesticides in the agroecosystem—a review with a New Zealand perspective. Australian Journal of Soil Research, v.42, n.2, p.125–154, 2004. SCHUHMANN, A.; KLAMMLER, G.; WEISS, S.; GANS, O., FANK, J.; HABERHAUER, G.; GERZABEK, M.H. Degradation and leaching of bentazone, terbuthylazine and S- metolachlor and some of their metabolites: A long-term lysimeter experiment. Plant, Soil and Environment, v.65, n.5, p-273-281, 2019. SCHAUMANN, G. Soil organic matter beyond molecular structure part II: amorphous nature and physical aging. Journal of Plant Nutrition and Soil Science, v.169, p.157-167, 2006. SELIM, H.M.; NAQUIN, B.J. Retention of metribuzin by sugarcane residue. Soil Science, v.176, n.10, p.520–526, 2011. SENSEMAN, S.A. (Ed.). Herbicide handbook. Lawrence: Weed Science Society of America, 2007. 458 p. SHANER, D.L.; BRUNK, G.; BELLES, D.; WESTRA, P.; NISSEN, S. Soil dissipation and biological activity of metolachlor and S-metolachlor in five soils. Pest Management Science, v.62, p.617-623, 2006. SI, Y.; TAKAGI, K.; IWASAKI, A.; ZHOU, D. Adsorption, desorption and dissipation of metolachlor in surface and subsurface soils. Pest Management Science, v.65, p.956-962, 2009. SILVA, A.A.; VIVIAN, R.; OLIVEIRA Jr., R.S. Herbicidas: comportamento no solo. In: SILVA, A.A.; SILVA, J.F. (Ed.) Tópicos em manejo de plantas daninhas. Viçosa, MG: Universidade Federal de Viçosa, p.189–248, 2013. SILVA, L.F.V; PINTO, A.A.; MENDONÇA, J.C.F.; PRADO, J.R.; MELO, E.I.; PAULA, G.H.; JUNIOR, P.J.S. Efeito do biochar de resíduo do fruto do cafeeiro na sorção de atrazina no solo. Magistra, v.31, p.543-553, 2020. SINGH, N. Organic manure and urea effect on metolachlor transport through packed soil column. Journal of Environmental Quality, v.32, p.1743-1749, 2003. SMITH, C.N.; PARRISH, R.S.; A field study to evaluate leaching of aldicarb, metolachlor and bromide in a sandy loam soil. Journal of Environmental Quality, v.22, n.3, p.562-577, 1993. SPOSITO, G.; MARTÍN-NETO, L.; YANG, A. Atrazine complexation by soil humic acids. Journal of Environmental Quality, v.25, p.1203-1209, 1996. STAFANATO, B.J. Aplicação de misturas granuladas NK e NS em cultivar de arroz (Oryza sativa). Dissertação mestrado, PPGA-CS, 2009. STARA, A.; KUBEC, J.; ZUSKOVA, E.; BURIC,M., FAGGIO C.; KOUBA, A.; VELISEK, J. Effects of S-metolachlor and its degradation product metolachlor OA on marbled crayfish (Procambarus virginalis). Chemosphere, v.224, p.616-625, 2019. 56 STIPIČEVIĆ, S.; GALZINA, N.; UDIKOVIĆ-KOLIĆ, N.; JURINA, T.; MENDAŠ, G.; DVORŠĆAK, M.; PETRIĆ, I.; BARIĆ, K.; DREVENKAR, V. Distribution of terbuthylazine and atrazine residues in crop-cultivated soil: The effect of herbicide application rate on herbicide persistence. Geoderma, v.259, p.300-309, 2015. SULPIS, O; AGRAWAL, P.; WOLTHERS, M.; MUNHOVEN, G.; WALKER, M.; MIDDELBURG, J.J. Aragonite dissolution protects calcite at the seafloor. Nature Communications, v.13, n.1104, 2022. TORABI, E.; WIEGERT, C.; GUYOT, B.; VUILLEUMIER, S.; IMFELD, G. Dissipation of S-metolachlor and butachlor in agricultural soils and responses of bacterial communities: insights from compound-specific isotope and biomolecular analyses. Journal of Environmental Sciences, v.92, p.163-175, 2020. TRAGHETTA, D.G.; VAZ, C.M.P.; MACHADO, S.A.S.; VIEIRA, E.M.; MARTÍN-NETO, L. Mecanismos de sorção da atrazina em solos: Estudos espectroscópicos e polarográficos. Comunicado técnico. São Carlos, n.14, p.1-7, 1996. USEPA. United States Environmental Protection Agency. Acid extraction of sediments, sludges, and soils. EPA method 3050. 14p. 2008. VAN, H.T.; NGUYEN, L.H.; NGUYEN, V.D.; NGUYEN, X.H.; NGUYEN, T.H.; NGUYEN, T.V.; VIGNESWARAN, S.; RINKLEBE, J.; TRAN, H.N. Characteristics and mechanisms of cadmium adsorption onto biogenic aragonite shells-derived biosorbent: Batch and column studies. Journal of Environmental Management, v.241, p.535-548, 2019. VASCONCELOS, Y. Use of limestone algae as fertilizer on cane plantations may increase productivity by as much as 50%. Disponível em: https://revistapesquisa.fapesp.br/fertilizante-marinho/. Acesso em: 15/11/2022. VENEU, D.M.; SCHNEIDER, C.L.; MONTE, M.B.M.; CUNHA, O.G.C.; YOKOYAMA, L. Cadmium removal by bioclastic granules (Lithothamnium calcareum): batch and fixed-bed column systems sorption studies. Environmental Technology, v.39, n.13, p.1670-1681, 2017. VENEU, D.M.; YOKOYAMA, L.; CUNHA, O.G.C.; SCHNEIDER, C.L.; MONTE, M.B.M. Nickel sorption using bioclastic granules as a sorbent material: equilibrium, kinetic and characterization studies. Journal of Materials Research and Technology, v.8, n.1, p.840- 852, 2019. VITTI, G.C.; MIRA, A.B. Fertilizing for high yield and quality. Maize. Bulletin n.23, International Potash Institute, 2020, 66 p. VRYZAS, Z. Pesticide fate in soil-sediment-water environment in relation to contamination preventing actions. Current Opinion in Environmental Science & Health, v.4, p.5-9, 2018. VRYZAS, Z.; PAPADAKIS, E.N.; PAPADOPOULOU-MOURKIDOU, E. Leaching of Br-, metolachlor, alachlor, atrazine, deethylatrazine and deisopropylatrazine in clayey vadoze zone: A field scale experiment in north-east Greece. Water Research, v.46, p.1979-1989, 2012. 57 VRYZAS, Z.; PAPADOPOULOU-MOURKIDOU, E.; SOULIOS, G.; PRODROMOU, K. Kinetics and adsorption of metolachlor and atrazine and the conversion products (deethylatrazine, deisopropylatrazine and hydroxyatrazine) in the soil profile of a river basin. European Journal of Soil Science, v.58, p.1186-1199, 2007. WANG, H.Z.; ZUO, H.G.; DING, Y.J.; MIAO, S. S.; JIANG, C.; YANG, H. Biotic and abiotic degradation of pesticide Dufulin in soils. Environmental Science and Pollution Research, v.21, p.4331-4342, 2014. WEBER, W.J.; HUANG, W.; YU, H. Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments. 2. Effects of soil organic matter heterogeneity. Journal of Contaminant Hydrology, v.31, p.149-165, 1998. WESTRA, E.P.; SHANER, D.L.; WESTRA, P.H.; CHAPMAN, P.L. Dissipation and leaching of pyroxasulfone and S-metolachlor. Weed Technology, v.28, n.1, p-72-81, 2014. WOLEJKO, E.; KACZYNSKI, P.; LOZOWICKA, B.; WYDRO, U.; BORUSIEWICZ, A.; HRYNKO, I.; KONECKI, R.; SNARSKA, K.; DEC, D.; MALINOWSKI, P. Dissipation of S-metolachlor in plant and soil and effect on enzymatic activities. Environmental Monitoring and Assessment, v.189, n.355, p.1-16 2017. WU, S.; ZHANG, Y.; TAN, Q.; SUN, X.; WEI, W.; HU, C. Biochar is superior to lime in improving acidic soil properties and fruit quality of Satsuma mandarin. Science of the Total Environment, v.714, p.1-11, 2020. YAN, X.; GU, T.; YI, Z.; HUANG, J.; LIU, X.; ZHANG, J.; XU, X.; XIN, Z.; HONG, Q.; HE, J.; SPAIN, J.C.; LI, S.; JIANG, J. Comparative genomic analysis of isoproturon mineralizing sphingomonads reveals the isoproturon catabolic mechanism. Environmental Microbiology, v.18, 4888e4906, 2016. YUE, L.; GE, C.; FENG, D.; YU, H.; DENG, H.; FU, B. Adsorption-desorption behavior of atrazine on agricultural soils in Chine. Journal of Environmental Sciences, v.57, p.180-189, 2017. YUN, M.A.; WEI-PING, L.I.U.; YUE-ZHONG, W.E.N. Enantioselective degradation of Rac- metolachlor and S-metolachlor in soil. Pedosphere, v.16, p.489-494, 2006. ZANDONÁ, R.R.; BEUTLER, A.N.; BURG, G.M.; BARRETO, C.F.; SCHMIDT, M.R. Gesso e calcário aumentam a produtividade e amenizam o efeito do déficit hídrico em milho e soja. Pesquisa Agropecuária Tropical, v.45, n.2, p.128-137, 2015. ZEMOLIM, C.R.; AVILA, L.A.; CASSOL, G.V.; MASSEY, J.H.; CAMARGO, E.R. Environmental fate of S-metolachlor – a review. Planta Daninha, v.32, n.3, p.655-664, 2014. ZIMDAHL, R. L. Herbicide formulation. Fundamentals of Weed Science. 5ed. Academic Press, p.501-509, 2018. | pt_BR |
| dc.subject.cnpq | Agronomia | pt_BR |
| Appears in Collections: | Doutorado em Agronomia - Ciência do Solo | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 2023 - Gabriella Francisco Pereira Borges de Oliveira.pdf | 2.48 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
