Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/22989Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Straliotto, Rosangela | - |
| dc.date.accessioned | 2025-08-14T16:00:38Z | - |
| dc.date.available | 2025-08-14T16:00:38Z | - |
| dc.date.issued | 1999-10-20 | - |
| dc.identifier.citation | STRALIOTTO, Rosângela. Diversidade fenotípica e genotípica do rizóbio que nodula o feijoeiro em solos tropicais brasileiros. 1999. 183 f. Dissertação (Mestrado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 1999. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/22989 | - |
| dc.description.abstract | O feijoeiro se constitui numa importante cultura de subsistência e principal fonte de proteínas na dieta de populações pobres, especialmente na América Latina e África. Sua associação com as bactérias do grupo dos rizóbios é uma importante alternativa para o fornecimento de nitrogênio à planta, perfeitamente adaptado ao sistema produtivo de subsistência, predominante nesta cultura. No entanto, a tecnologia de inoculação com o rizóbio, em feijoeiro, continua com baixo índice de adoção junto aos agricultores, devido, principalmente, a inconsistência dos resultados obtidos em condições de campo. Recentemente percebeu-se que as estirpes de rizóbio que vinham tradicionalmente sendo recomendadas como inoculante para o feijoeiro eram inadequadas às condições tropicais. A tolerância a temperaturas elevadas tem sido um dos fatores levantados como limitantes a fixação biológica de nitrogênio nesta simbiose, afetando tanto a planta hospedeira quanto a bactéria. Os estudos da diversidade e taxonomia bacteriana, especialmente aplicados aos simbiontes do feijoeiro apresentaram uma grande evolução nos últimos anos, especialmente devidos às novas metodologias moleculares de avaliação e caracterização. Novas espécies de rizóbio foram descritas e caracterizadas como resultado de diversos levantamentos. Atualmente, o rizóbio que nodula o feijoeiro pertence às espécies: R. leguminosarum bv. phaseoli, R. tropici, R. etli, R. gallicum e R. giardinii. Neste estudo, foi feito um levantamento da diversidade do rizóbio presente em solos com longo histórico de cultivo do feijoeiro, dos Estados da Bahia e Espírito Santo. O rizóbio foi recuperado do solo utilizando o feijoeiro (Phaseolus vulgaris) e a leucena (Leucaena leucocephala) como plantas-isca, uma vez que esta é eficiente na recuperação 2 de estirpes de R. tropici, consideradas mais adaptadas às condições tropicais. O rizóbio foi recuperado do solo sob duas temperaturas de crescimento das plantas-isca: temperatura ambiente e temperatura elevada (38o C durante 5 horas por dia). O tratamento de temperatura elevada visou exercer uma pressão de seleção para recuperação de rizóbio tolerante a este estresse. Os isolados recuperados dos nódulos foram avaliados quanto a infectividade, crescimento em meio LB, em meio YMA a temperatura de 39o C, e em diferentes fontes de carbono (xilose, sacarose, celobiose, frutose, lactato de sódio, glicerol e lactose). As características fenotípicas avaliadas nos testes de utilização de carboidratos foram analisadas por taxonomia numérica obtendo-se o agrupamento dos isolados em relação à estirpes padrão de rizóbio pertencentes a diferentes gêneros e espécies. Isolados representativos de cada agrupamento fenotípico obtido nesta análise preliminar de diversidade foram analisados genotipicamente por ARDRA (Análise de Restrição do DNA Ribossomal Amplificado por PCR). Na última etapa do trabalho, isolados eficientes pertencentes a cada um dos grupos de rizóbio representativos identificados na população em estudo, foram avaliados quanto à tolerância a um período de choque térmico aplicado durante três dias às raízes noduladas de feijoeiro cv. Carioca 80. Foram identificados, nesta população, três grupos distintos de rizóbio nodulando o feijoeiro, a saber: R. tropici IIA, Sinorhizobium sp. e estirpes do tipo I (R. leguminosarum bv. phaseoli/R. etli). Dentro da população recuperada de leucena, houve predomínio dos isolados de R. tropici IIA, quando a planta foi crescida a temperatura ambiente, e de Sinorhizobium sp., quando a planta foi crescida a temperatura elevada. Isolados de Sinorhizobium sp. somente foram recuperados de feijoeiro quando a planta foi crescida a temperatura elevada, sugerindo uma maior tolerância desta espécie ao estresse térmico, pelo menos no processo de infecção das raízes. Houve predomínio das estirpes do tipo I dentro da população recuperada de feijoeiro, nas duas temperaturas de crescimento das plantas. Em condições de temperatura elevada foram recuperados isolados de Sinorhizobium sp e de R. tropici IIA. Estas duas espécies não foram encontradas na população de feijoeiro crescido a temperatura ambiente. Cerca de 89% dos isolados de R. tropici e 75% dos isolados de Sinorhizobium sp foram considerados eficientes a muito eficientes, em simbiose com o feijoeiro, em comparação com a estirpe BR855. Por outro lado, dentre os isolados do tipo I, predominantes nos grupo de isolados de nódulos de feijoeiro crescido a temperatura ambiente, apenas 38% foram enquadrados nos grupos de 3 maior eficiência. Foi grande a perda de infectividade dentro dos grupo de estirpes do tipo I, atingindo 18% dos isolados. Na etapa final do trabalho, foi avaliada a tolerância ao choque térmico dentro de cada um dos agrupamentos genotípicos. Isolados pertencentes aos principais agrupamentos mostraram tolerância a este estresse. Houve diferenças entre as estirpes para os parâmetros de nodulação, atividade da nitrogenase, acúmulo de matéria seca da parte aérea e produção de vagens. Não houve correlação entre o crescimento in vitro a temperaturas elevadas e a tolerância ao choque térmico, bem como entre a temperatura de crescimento da planta-isca de onde o isolado foi obtido e a maior eficiência sob este estresse. | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | Feijoeiro (Phaseolus vulgaris) | pt_BR |
| dc.subject | Rizóbio | pt_BR |
| dc.subject | Fixação biológica de nitrogênio | pt_BR |
| dc.subject | Common bean (Phaseolus vulgaris) | pt_BR |
| dc.subject | Rhizobium | pt_BR |
| dc.subject | Biological nitrogen fixation | pt_BR |
| dc.title | Diversidade fenotípica e genotípica do rizóbio que nodula o feijoeiro em solos tropicais brasileiros | pt_BR |
| dc.title.alternative | Phenotypic and genotypic diversity of rhizobia that nodulate common bean in brazilian tropical soils | en |
| dc.type | Tese | pt_BR |
| dc.description.abstractOther | Beans (Phaseolus vulgaris L.) are an essencial part of the daily food of the population in Latin America because of their importance as a source of proteins. The use of biological nitrogen fixation in this culture, however, is not always profitable, and the rhizobia-common beans symbiosis has been considered inefficient due to many biotic and abiotic factors, such as low efficiency and sensitivity to high temperature and soil acidity of indigenous rhizobia. This study aimed to evaluate the rhizobial phenotypic and genotypic diversity in tropical soils under traditional bean cultivation and submitted to very hot temperature during the summer, from the States of Bahia and Espírito Santo. Isolates were recovered using common beans and leucaena (Leucaena leucocephala) as trap hosts under low (maximum of 28o C) and high temperature regimes (38o C 5h/day). Leucaena is a high temperature tolerant plant in symbiosis and nodulates with a group of rhizobial species that also nodulates common bean. Morphophysiological characterization of the 605 isolates obtained was performed based on the utilization of 8 different carbon source and the data was analysed through numerical cluster analysis. Growth on yeast mannitol agar (YMA) medium at 39o C and on Luria broth (LB) medium was correlated for isolates from both trap hosts and most of the leucaena isolates were able to grow at 39o C. High temperatures influenced the diverstity of isolates recovered using both trap hosts, which were phenotypically more diverse at 38o C 5 than at ambient temperature. Common beans isolates were significantly more diverse at both temperatures of recovery compared to the isolates obtained from leucaena. Representative isolates from each phenotypic group obtained trhough the cluster analysis were genotypically analysed by ARDRA (Amplified Ribossomal DNA Restriction Analysis) using 8 different restriction enzymes. Three main different rhizobial groups were identified among the bean population: Rhizobium tropici IIA, Sinorhizobium sp and Type I strains (R. leguminosarum/R. etli group). Among leucaena isolates recovered under low temperature regime R. tropici IIA predominates, but at high temperature of plant growth Sinorhizobium sp. isolates occupied the majority of the nodules. Sinorhizobium sp isolates were recovered from beans only under high temperature of plant growth, which suggests a higher temperature tolerance of this group of isolates, at least at the infection process level. Among the bean population, Type I strains predominates at both temperature of plant growth, but at high temperature, besides Sinorhizobium sp isolates, strains of R. tropici IIA were also recovered. These two species were not recovered from beans under low plant growth temperature. There was some correlation between the phenotypic and genotypic cluster analysis, but Sinorhizobium sp. isolates were phenotypically difficult to distinguish from Type I strains. The symbiotic efficiency of these groups of isolates was evaluated on beans grown at ambient temperature. The majority of R. tropici IIA strains (89%) and Sinorhizobium sp (75%) strains were considered very efficient when compared to an efficient reference strain of R. tropici IIB. Among Type I strains, only 38% of the isolates belonged to the more efficient groups, and many of these isolates (18%) showed loss of infectivity after long periods of storage. At last, the most efficient isolates belonging to the main groups of each population (bean and leucaena grown at low and high temperature regimes) were evatuated for the tolerance to a heat stress in symbiosis with beans, at flowering stage. Isolates showed differences on nodulation parameters, nitrogenase activity, shoot dry matter and shoot nitrogen accumulation after the heat shock treatment (three days at 38o C 5h/day). Some isolates were more efficient in nitrogen translocation to the pods after the heat stress. There was no relation between the tolerance to this stress condition and the ability of the different groups of rhizobia to grow at high temperature in vitro, as well as between the temperature of the trap-host growth from wich the isolate was recovered and efficiency under heat shock treatment. | en |
| dc.contributor.advisor1 | Rumjanek, Norma Gouvêa | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0002-2174-1137 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/7961822026608333 | pt_BR |
| dc.contributor.referee1 | Berbara, Ricardo Luiz Louro | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0002-3649-9443 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/8529910145308595 | pt_BR |
| dc.contributor.referee2 | Souza, Edna Riemke de | - |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/5316584564463776 | pt_BR |
| dc.contributor.referee3 | Teixeira, Marcelo Grandi | - |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/8625415202207024 | pt_BR |
| dc.contributor.referee4 | Baldani, José Ivo | - |
| dc.contributor.referee4ID | https://orcid.org/0000-0002-5363-7123 | pt_BR |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/8391182235603982 | pt_BR |
| dc.contributor.referee5 | Rumjanek, Norma Gouvêa | - |
| dc.contributor.referee5ID | https://orcid.org/0000-0002-2174-1137 | pt_BR |
| dc.contributor.referee5Lattes | http://lattes.cnpq.br/7961822026608333 | pt_BR |
| dc.creator.ID | https://orcid.org/0000-0001-6804-2408 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/0250677650480495 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Agronomia | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Agronomia - Ciência do Solo | pt_BR |
| dc.relation.references | AMARAL, E.S.; BALDANI, J.I. Environmental stresses affecting the survival and stability of plasmids of common bean rhizobia strains in soil. Anais da Academia Brasileira de Ciências, Rio de Janeiro, v.71, p.545-552, 1999. AMARGER, N.; BOURS, M.; REVOY, F.; ALLARD, M.R.; LAGUERRE, G. Rhizobium tropici nodulates field-grown Phaseolus vulgaris in France. Plant and Soil, Dordrecht, v.161, p.147-156, 1994. AMARGER, N.; MACHERET, V.; LAGUERRE, G. Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. International Journal of Systematic Bacteriology, Baltimore, v.47, p.996-1006, 1997. ANDRADE, D.S.; MURPHY, P.J.; GILLER, K.E. Diversity and abundance of populations of bean-nodulating rhizobia as a function of liming and cropping history in acidic Brazilian soils. In: INTERNATIONAL CONGRESS ON NITROGEN FIXATION, 12., 1999, Foz do Iguaçu. Anais...Foz do Iguaçu: UFPR, 1999. p.86. ANDRIOLO, J.; PEREIRA, P.A.A.; HENSON, R.A. Variabilidade entre linhas de formas silvestres de Phaseolus vulgaris quanto à características relacionadas com a fixação biológica de N2. Pesquisa Agropecuária brasileira, Brasília, v.29, p.831- 837, 1994. ANDRIOLO, J. Potencial de fixação biológica de N2 entre feijões selvagens e cultivados (Phaseolus vulgaris L.). Goiânia: UFG, 1990. 120p. Tese de Mestrado. ANYANGO, B.; WILSON, K.J.; BEYNON, J.L.; GILLER, K.E. Diversity of rhizobia nodulating Phaseolus vulgaris L. in two Kenyan soils with contrasting pHs. Applied and Environmental Microbiology, Washington, v.61, p.4016-4021, 1995. 142 ARAÚJO, J.L.S. Avaliação da síntese de proteínas de choque térmico (heat shock proteins) no feijoeiro (Phaseolus vulgaris L.) submetido a altas temperaturas. Rio de Janeiro: UFRRJ. 115p. 1997. Tese de Mestrado. ATTEWELL, J.; BLISS, F.A. Host plant characteristics of common bean line selected using indirect measures of N2 fixation. In: EVANS, H.J.; BOTTOMLEY, P.J.; NEWTON, W.E., eds. Nitrogen fixation research progress. Dordrecht: Martinus Nijhoff, 1985. p.3-9. BAL, A.K.; SHANTHARAM, S.; WONG, P.P. Nodulation of pole bean (Phaseolus vulgaris L.) by Rhizobium species of two cross-inoculation groups. Applied and Environmental Microbiology, Washington, v.44, p.965-971, 1982. BARRERA, L.L.; TRUJILLO, M.E.; GOODFELLOW, M.; GARCÍA, F.J.; HERNÁNDEZ- LUCAS, I.; DÁVILA, G.; van BERKUM, P.; MARTÍNEZ-ROMERO, E. Biodiversity of bradyrhizobia nodulating Lupinus spp. International Journal of Systematic Bacteriology, Washington, v.47, p.1086-1091, 1997. BATZLI, J. McC.; GRAVES, W.R.; van BERKUM, P. Diversity among rhizobia effective with Robinia pseudoacacia L. Applied and Environmental Microbiology, Washington, v.58, p.2137-2143, 1992. BLISS, F.A. Breeding common bean for improved biological nitrogen fixation. Plant and Soil, Dordrecht, v.152, p.71-79, 1993. BLISS, F.A. Breeding for enhanced nitrogen fixation potential of common bean (Phaseolus vulgaris L.). In: LUDDEN, P.W.; HARRIS, J.E., eds. Nitrogen fixation and CO2 metabolism. Elsevier:Amsterdam, 1985. p.303-310. BLISS, F.A.; PEREIRA, P.A.A.; ARAÚJO, R.S.; HENSON, R.A.; KINIECK, K.A.; McFERSON, J.R.; TEIXEIRA, M.G.; SILVA, C.C.da. Registration of five high nitrogen fixing common bean germplasm lines. Crop Science, Madison, v.29, p.240-241, 1989. BODDEY, R.M.; PEREIRA, J.A.R.; HUNGRIA, M.; THOMAS, R.J.; NEVES, M.C.P. Methods for the study of nitrogen assimilation and transport in grain legumes. MIRCEN Journal of Applied and Microbiolkogy Biotechnology, Oxford, v.3, p.3-32, 1987. BORTHAKUR, D.; DOWNIE, J.A.; JOHNSTON, Q.W.B.; LAMB, J.W. psi, a plasmid-linked Rhizobium phaseoli gene that inhibits exopolysaccharide production and which is required fpr symbiotic nitrogen fixation. Molecular and General Genetics, Berlin, v.2000, p.278-282, 1985. 143 BROM, S.; MARTÍNEZ, E.; DÁVILA, G.; PALACIOS, R. Narrow- and broad-host-range symbiotic plasmids of Rhizobium spp. strains that nodulate Phaseolus vulgaris. Applied and Environmental Microbiology, Washington, v.54, p.1280-1283, 1988. BROMFIELD, E.S.; BARRAN, L.R. Promiscuous nodulation of Phaseolus vulgaris, Macroptilium atropurpureum and Leucaena leucocephala by indigenous R. meliloti. Canadian Journal of Microbiology, Ottawa, v.36, p.369-372, 1990. BULL, A.T.; GOODFELLOW, M.; SLATER, J.H. Biodiversity as a source of innovation in biotechnology. Annual Review of Micobiology, Palo Alto, v.46, p.219-252, 1992. CHEN, W.X.; YAN, G.H.; LI, J.L. Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. International Journal of Systematic Bacteriology, Washington, v.38, p.392-397, 1988. CIAT (Centro Internacional de Agricultura Tropical). Research constraints provisionally identified by CIAT. In: WORKSHOP ON ADVANCED Phaseolus BEAN RESEARCH NETWORK, 1990. 30p. COLWELL, R.R. Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. Journal of Bacteriology, Washington, v.104, p.410-433, 1970. CROW, V.L.; JARVIS, B.D.W.; GREENWOOD, R.M. Deoxyribonucleic acid homologies among acid-producing strains of Rhizobium. International Journal of Systematic Bacteriology, Washington, v.31, p.152-172, 1981. CUNHA, C. de O.; FRANCO, A.A. Efeito de altas temperaturas na nodulação e crescimento de 10 leguminosas arbóreas. Anais da Academia Brasileira de Ciências, Rio de Janeiro, v.60, p.380, 1988. CUNNINGHAM, S.D.; MUNNS, D.A. The correlation between extracellular polysaccharide production and acid tolerance in Rhizobium. Soil Science Society of America Journal, Madison, v.48, p.1273-1276, 1984. DAGUTAT, H.; STEIN, P.L. Taxonomy and distribution of rhizobia indigenous to South African soils. In: TIKONOVICH, I.A.; PROVOPOROV, N.A.; ROMANOV, V.I.; NEWTON, W.E., eds. Nitrogen fixation: fundamentals and applications. Dordrecht: Kluwer, 1995. p.683. DAVIES, E.O.; JOHNSTON, A.W.B. Analysis of three nodD genes in Rhizobium leguminosarum bv. phaseoli; nodD is preceded by nolE, a gene whose product is 144 secreted fom the cytoplasm. Molecular Microbiology, Oxford, v.4, p.921-932, 1990. DE BRUIJN, F.J. Use of repetitive (Repetitive Extragenic Palindromic and Enterobacterial Repetitive Intergeneric Consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Applied and Environmental Microbiology, Washington, v.58, p.2180-2187, 1992. DE LAJUDIE, P.; WILLEMS, A.; POT, B.; DEWETTINCK, D.; MAESTROJUAN, G.; NEYRA, M.; COLLINS, M.D.; DREYFUS, B.; KERSTERS, K.; GILLIS, M. Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov.. International Journal of Systematic Bacteriology, Washington, v.44, p.715-733, 1994. DE OLIVEIRA, L.A.; GRAHAM, P.H. Evaluation of strain competitiveness in Rhizobium leguminosarum bv. phaseoli using a nod+ fix- natural mutant. Archives in Microbiology, London, v.153, p.305-310, 1990. DEMEZAS, D.H.; REARDON, T.B.; WATSON, J.M.; GIBSON, A.H. Genetic diversity among Rhizobium leguminosarum bv. trifolii strains revealed by allozyme and restriction fragment lengh polymorphism analyses. Applied and Environmental Microbiology, Washington, v.57, p.3489-3495, 1991. DENNY, T.P.; GILMOUR, M.N.; SELANDER, R.K. Genetic diversity and relationships of two pathovars of Pseudomonas syringae. Journal of General Microbiology, London, v.134, p.1949-1960, 1988. DÖBEREINER, J.; BALDANI, V.L.D.; BALDANI, J.I. Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Brasília: EMBRAPA– SPI: Itaguaí, RJ: EMBRAPA-CNPAB, 1995. 60p. 145 DREYFUS, B.L.; GARCIA, J.L.; GILLIS, M. Charactherisation of Azorhizobium caulinodans gen. nov. s. nov., a stem nodulting nitrogen fixing bacterium isolated from Sesbania rostrata. International Journal of Systematic Bacteriology, Washington, v.38, p.89-98, 1988. DYKES, G.A.; BRITZ, T.J.; HOLY, A. von. Numerical taxonomy and identification of lactic bacteria from spoiled, vacuum-packaged vienna sausages. Journal of Applied Bacteriology, London, v.76, p.246-252, 1994. EARDLY, B.D. Restriction fragment lengh polymorphism in a 16S rRNA gene segment in Rhizobium isolated from 38 species of Trifolium. In: PALACIOS, R.; MORA, W.E., eds. New horizons in nitrogen fixation. Dordrecht: Kuwer, 1993. p.610. EARDLY, B.D.; HANNAWAY, B.; BOTTOMLEY, P.J. Characterization of rhizobia from ineffective alfalfa nodules; ability to nodulate bean plants (Phaseolus vulgaris (L.) Savi.). Applied and Environmental Microbiology, Washington, v.50, p.1422- 1427, 1985. EARDLY, B.D.; MATERON, L.A.; SMITH, N.H.; JOHNSON, D.A.; RUMBAUGH, M.D.; SELANDER, R.K. Genetic structure of natural populations of the nitrogen-fixing bacterium Rhizobium meliloti. Applied and Environmental Microbiology, Washington, v.56, p.187-194, 1990. EARDLY, B.D.; WANG, F.-S.; WHITTAM, T.S.; SELANDER, R.K. Species limits in Rhizobium populations that nodulate the common bean (Phaseolus vulgaris). Applied and Environmental Microbiology, v.61, p.507-512, 1995. EARDLY, B.D.; WANG, T.S.; van BERKUM, P. Corresponding 16S rRNA gene segments in Rhizobiaceae and Aeromonas yield discordant phylogenies. Plant and Soil, Dordrecht, v.186, p.69-72, 1996. EARDLY, B.D.; YOUNG, J.P.W.; SELANDER, R.K. Phylogenetic position of Rhizobium sp. or 191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16S rRNA and nifH genes. Applied and Environmental Microbiology, Washington, v.58, p.1809-1815, 1992. EVANS, R.J.; BANDEMER, S.L. Nutritive value of legume seed protein. Journal of Agricultural and Food Chemistry, Washington, v.15, p.439-443, 1967. FELICE, A.E.; ALSHINAWI, C. Polymerase chain reaction in molecular biotechnology; appropriate technology for developing countries. World Journal of Microbiology and Biotechnology, Oxford, v.12, p.467-471, 1996. 146 FERREIRA, M.E.; GRATTAPAGLIA, D. Introdução ao uso de marcadores RAPD e RFLP em análise genética. Brasília: EMBRAPA-CENARGEN, 1995. 220p. (EMBRAPA-CENARGEN. Documentos, 20). FISCHER, H.M.; BABST, M.; KASPAR, T.; ACUNA, G.; ARIGONI, F.; HENNECKE, H. One member of a groESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO Journal, Oxford, v.12, p.2901-2912, 1993. FLORES, M.; GONZÁLES, V.; BROM, S.; MARTÍNEZ, E.; PIÑERO, D.; ROMERO, D.; DÁVILA, G.; PALACIOS, R. Reiterated DNA sequences in Rhizobium and Agrobacterium spp. Journal of Bacteriology, Washington, v.169, p.5782-5788, 1987. FLORES, M.; GONZÁLES, V.; PARDO, M.A.; LEIJA, A.; MARTÍNEZ, E.; ROMERO, D.; PIÑERO, D.; DAVILA, G.; PALACIOS, R. Genomic instability in Rhizobium phaseoli. Journal of Bacteriology, Washington, v.170, p.1191-1196, 1988. FOX, G.E.; WISOTZKEY, J.D.; JURTSHUK JR., P. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. International Journal of Systematic Bacteriology, Washington, v.42, p.166-170, 1992. FRANCO, M.C. Análise da divergência genética em cultivares de feijão (Phaseolus vulgaris L.): resistência a bacterioses, nodulação e capacidade combinatória. Viçosa: Universidade Federal de Viçosa, 1998. 91p. Tese de Doutorado. FRANCO, M.C. Capacidade de nodulação de feijões (Phaseolus vulgaris L.) silvestres e domesticados. Viçosa: Universidade Federal de Viçosa, 1993. 60p. Tese de Mestrado. FRED, E.B.; BALDWIN, I.L.; McCOY, W. Root nodule bacteria and leguminous plants. Madison: University of Wisconsin Press, 1932. 343p. FUHRMANN, J. Symbiotic effectiveness of indigenous soybean bradyrhizobia as related to serological, morphological, rhizobitoxine, and hydrogenase phenotypes. Applied and Environmental Microbiology, Washington, v.56, p.224-229, 1990. GENIAUX, E.; FLORES, M.; PALACIOS, R.; MARTÍNEZ, E. Presence of megaplasmids in Rhizobium tropici and further evidence of differences between the two Rhizobium tropici subtypes. International Journal of Systematic Bacteriology, Washington, v.45, p.392-394, 1995. 147 GENIAUX, E.; LAGUERRE, G.; AMARGER, N. Comparison of geographically distant populations of Rhizobium isolated from root nodules of Phaseolus vulgaris. Molecular Ecology, Oxford, v.2, p.295-302, 1993. GEORGE, T.; SINGLETON, P.W. Nitrogen assimilation traits and dinitrogen fixation in soybean and common bean. Agronomy Journal, Madison, v.84, p.1020-1028, 1992. GIL-SERRANO, A.; SÁNCHEZ DEL JUNCO, A.; TEJERO-MATEO, P.; MEGIAS, M.; CAVIEDES, M.A. Structure of the extracellular polysaccharide secreted by Rhizobium leguminosarum var. phaseoli CIAT 899. Carbohydrate Research, Amsterdam, v.204, p.103-107, 1990. GIRARD, M.L.; FLORES, M.; BROM.; ROMERO, D.; PALÁCIOS, R.; DÁVILA, G. Structural complexity of the symbiotic plasmid of Rhizobium leguminosarum biovar phaseoli. Journal of Bacteriology, Washington, v.173, p. 2411-2419, 1991. GITONGA, N.M.; WIDDOWSON, D.; KEYA, S.O. Interaction of Phaseolus vulgaris with termotolerant isolates of Rhizobium leguminosarum biovar phaseoli from Kenyan soils. MIRCEN Journal, Oxford, v.5, p.493-504, 1989. GOODACRE, R.; HARTMANN, A.; BERINGER, J.E.; BERKELEY, R.C.W. The use of pyrolysis mass espectrometry in the charactherization of Rhizobium meliloti. Letters in Applied Microbiology, Oxford, v.13, p.157-160, 1991. GOODFELLOW, M.; FERGUSON, E.V.; SANGLIER, J.-J. Numerical classification and identification of Streptomyces species – a review. Gene, Amsterdam, v.115, p.225- 233, 1992. GRAHAM, P.H. Some problems of nodulation and symbiotic fixation in Phaseolus vulgaris.: a review. Field Crops Research, Amsterdam, v.4, p.93-112, 1981. GRAHAM, P.H.; PARKER, C.A. Diagnostic features in the characterization of the root nodule bacteria of legumes. Plant and Soil, Dordrecht, v.20, p.383-396, 1964. GRAHAM, P.H. Influence of temperature on growth and nitrogen fixation in cultivars of Phaseolus vulgaris L. inoculated with Rhizobium. Journal of Agricultural Science, Edinburgh, v.93, p.365-370, 1979. GRAHAM, P.H. Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L., a review. Field Crops Research, Amsterdam, v.4, p.93-112, 1981. GRAHAM, P.H. Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Canadian Journal of Microbiology, Ottawa, v.38, p.485- 492, 1992. 148 GRAHAM, P.H. The application of computer techniques to the taxonomy of the root nodule bacteria of legumes. Journal of General and Microbiology, London, v.35, p.511- 517, 1964. GRAHAM, P.H.; DRAEGER, K.J.; FERREY, M.L.; CONROY, M.J.; HAMMER, B.E.; MARTÍNEZ, E.; AARONS, S.R.; QUINTO, C. Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Canadian Journal of Microbiology, Ottawa, v.40, p. 198-207, 1994. GRAHAM, P.H.; DRAEGER, K.J.; FERRY, M.L. Occurrence and characterization of acid- pH tolerance in strains of Rhizobium and Bradyrhizobium. Canadian Journal of Microbiology, Ottawa, v.38, p.475-484, 1992. GRAHAM, P.H.; PARKER, C.A. Diagnostic features in the characterization of the root nodule bacteria of legumes. Plant and Soil, Dordrecht, v.20, p.383-396, 1964. GRAHAM, P.H.; ROSAS, J.C. Nodule development and nitrogen fixation in cultivars of Phaseolus vulgaris L. as influenced by planting density. Journal of Agricultural Science, Edinburgh, v.90, p.19-29, 1978. GRAHAM, P.H.; SADOWSKI, M.J.; KEYSER, H.H.; BARNET, Y.M.; BRADLEY, R.S.; COOPER, J.E.; De LEY, D.J.; JARVIS, B.D.W.; ROSLYCKY, E.B.; STRIJDOM, B.W.; YOUNG, J.P.W. Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. International Journal of Systematic Bacteriology, Washington, v.41, p.582-587, 1991. GRAHAM, P.H.; VITERI, S.E.; MACKIE, F.; VARGAS, A.A.T.; PALACIOS, A. Variation in acid soil tolerance among strains of Rhizobium phaseoli. Field Crops Research, Amsterdam, v.5, p.121-128, 1982. HARDARSON, G.; BLISS, F.A.; CIGALES-RIVERO, M.R.; HENSON, R.A.; KIPE-NOLT, J.A.; LONGERI, L.; MANRIQUE, A.; PEÑA-CABIALES, J.J.; PEREIRA, P.A.A.; SANABRIA, C.A.; TSAI, S.M. Genotypic variation in biological nitrogen fixation by common bean. Plant and Soil, Dordrecht, v.152, p.59-70, 1993. HARRISON, S.P.; MYTTON, L.R.; SKOT, L.; DYE, M.; CRESSWELL, A. Characterization of Rhizobium isolates by amplifications of DNA polymorphisms using random primers. Canadian Journal of Microbiology, Ottawa, v.38, p.1009-1015, 1992. HARTMANN, A.; CATROUX, G.; AMARGER, N. Bradyrhizobium japonicum strain identification by RFLP analysis using repeated sequence RS-alpha. Letters in Apllied Microbiology, Oxford, v.15, p.15-19, 1992. 149 HARTMANN, A.; GOMEZ, M.; GIRAUD, J.J.; REVELLIN, C. Repeated sequence RSα is diagnostic for Bradyrhizobium japonicum and Bradyrhizobium elkanii. Biology and Fertility of Soils, Berlim, v.23, p.15-19, 1996. HAUKKA, K. Genetic diversity and phylogeny of rhizobia isolated from tropical tree legumes. Helsinki: Department of Apllied Chemistry and Microbiology, 1997. 74p. HAUKKA, K.; LIDSTRÖM, K. Pulsed-field electrophoresis for genotypic comparison of Rhizobium bacteria that nodulate leguminous trees. FEMS Microbiology Letters, Amsterdam, v.119, p.215-220, 1994. HAUKKA, K.; LIDSTRÖM, K.; YOUNG, P.W. Three pylogenetic groups of nodA and nif H genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Applied and Enviromental Microbiology, Washington, v.64, p.419-426, 1998. HAUKKA, K.; LINDSTRÖM, K.; YOUNG, J.P.W. Diversity of partial 16S rRNA sequences among and within strains of african rhizobia isolated from Acacia and Prosopis. Systematic and Applied Microbiology, Stuttgart, v.19, p.352-359, 1996. HENSON, R.A.; BLISS, F.A. Effects of N fertilizer application timing on common bean production. Fertilizer Research, The Netherlands, v.29, p.133-138, 1991. HERNANDEZ-ARMENTA, R.; WIEN, H.C.; EAGLESHAM, A.R.J. Maximum temperature for nitrogen fixation in common bean. Crop Science, Madison, v.29, p.1260-1265, 1989. HERNANDEZ-LUCAS, I.; SEGOVIA, L.; MARTÍNEZ-ROMERO, E.; PUEPPLE, S.G. Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L. Applied and Environmental Microbiology, Washington,v.61, p.2775-2779, 1995. HERRERA, M.A.; BEDMAR, E.J.; OLIVARES, J. Host specificity of Rhizobium strains isolated from nitrogen-fixing trees and nitrogenase activities of strain GRH2 in symbiosis with Prosopis chilensis. Plant Science, Calcutta, v.42, p.177-182, 1985. HERRIDGE, D.F.; DANSO, S.K.A. Enhancing crop legume N2 fixation through selection and breeding. Plant and Soil, Dordrecht, v.174, p.51-82, 1995. HUNGRIA, M. Efeito das temperaturas elevadas na exsudação de indutores dos genes nod em feijoeiro e soja. In: HUNGRIA, M.; BALOTA, E.L.; COLOZZI-FILHO, A.; ANDRADE, D.S., eds. Microbiologia do Solo: desafios para o século XXI. Londrina: IAPAR/EMBRAPA-CNPSo, 1995. p.368-373. 150 HUNGRIA, M.; ANDRADE, D.S.; COLOZZI-FILHO, A.; BALOTA, E.L.; SANTOS, J.C.F. Ecologia microbiana em solos sob cultivo na Região Sul do Brasil. In: HUNGRIA, M.; BALOTA, E.L.; COLOZZI-FILHO, A.; ANDRADE, D.S., eds. Microbiologia do Solo: desafios para o século XXI. Londrina: IAPAR/EMBRAPA-CNPSo, 1995. p. 234-270. HUNGRIA, M.; FRANCO, A.A. Effects of high temperatures on nodulation and N2 fixation in Phaseolus vulgaris L. Plant and Soil, Dordrecht, v.149, p.95-102, 1993. HUNGRIA, M.; FRANCO, A.A.; SPRENT, J.I. New sources of high temperature tolerant rhizobia for Phaseolus vulgaris L. Plant and Soil, Dordrecht, v.149, p.103-109, 1993. HUNGRIA, M.; HARDY, R.W.F.; EAGLESHAM, A.R.J. Nitrogen fixation and assimilation in common bean (Phaseolus vulgaris L.) grown at high temperature. In: NORTH AMERICAN SYMBIOTIC NITROGEN FIXATION CONFERENCE, 12., 1989, Ames. Proceedings... Ames: Iowa State University, 1989. p.106. HUNGRIA, M.; JOHNSTON, A.W.B.; PHILLIPS, D.A. Effects of flavonoids released naturally from bean (Phaseolus vulgaris L.) on nodD-regulated gene transcription in Rhizobium leguminosarum bv. phaseoli. Molecular Plant Microbe Interactions, Saint Paul, v.5, p.199-203. 1992. HUNGRIA, M.; JOSEPH, C.M.; PHILLIPS, D.A. Anthocyanidins and flavonols, major nod gene inducers from seeds of a black-seeded common bean (Phaseolus vulgaris L.). Plant Physiology, Rockville, v.97, p.751-758, 1991a. HUNGRIA, M.; JOSEPH, C.M.; PHILLIPS, D.A. Rhizobium nod gene inducers exsuded naturally from roots of common bean (Phaseolus vulgaris L.). Plant Physiology, Rockville, v.97, p.759-764, 1991b. HUNGRIA, M.; THOMAS, R.J.; DÖBEREINER, J. Efeito do sombreamento na fixação biológica do nitrogênio em feijoeiro. Pesquisa Agropecuária brasileira, Brasília, v.20, p.1143-1156, 1985. HUNGRIA, M.; VARGAS, M.A.T.; ARAÚJO, R.S. Fixação biológica do nitrogênio em feijoeiro. In: VARGAS, M.A.T.; HUNGRIA, M., eds. Biologia dos Solos dos Cerrados. Planaltina: EMBRAPA-CPAC, 1997. p.188-294. IBGE (Fundação Instituto Brasileiro de Geografia e Estatística). Levantamento Sistemático da Produção Agrícola. Rio de Janeiro, v.7, n.5, 1995. INNIS, M.A.; GELFAND, D.H.; SNINSKY, J.J. PCR protocols – a guide to methods and applications. San Diego: Academic, 1990. 482p. 151 JARVIS, B.D.W. Genetic diversity of Rhizobium strains which nodulate Leucaena leucocephala. Current Microbiology, Bangalore, v.8, p.153-158, 1983. JARVIS, B.D.W.; DICK, A.G.; GREENWOOD, R.M. Deoxyribonucleic acid homology among strains of Rhizobium trifolii and related species. International Journal of Systematic Bacteriology, Washington, v.30, p.42-52, 1980. JARVIS, B.D.W.; DOWNER, J.L.; YOUNG, J.P.W. Phylogeny of fast-growing soybean- nodulating rhizobia supports synonymy of Sinorhizobium & Bradyrhizobium and assignment to Rhizobium fredii. International Journal of Systematic Bacteriology, Washington, v.42, p.93-96, 1992. JARVIS, B.D.W.; TIGHE, S.W. Rapid identification of Rhizobium based on cellular fatty acid analysis. Plant and Soil, Dordrecht, v.161, p.31-41, 1994. JENSEN, M.A.; WEBSTER, J.A.; STRAUS, N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribossomal DNA spacer polymorphism. Applied and Environmental Microbiology, Washington, v.59, p.945-952, 1993. JORDAN, D.C. Family III Rhizobiaceae. CONN. 1938. In: KRIEG, N.R.; HOLT, J.G., eds. Bergey’s Manual of Systematic Bacteriology. Baltimore: Williams and Wilkins, 1984. p.234-256. JOSEPHSON, K.L.; PEPPER, I.L. Competitiveness and effectiveness of strains of Rhizobium phaseoli isolated from the Sonoran Desert. Soil Biology and Biochemistry, Oxford, v.16, p.651-655, 1984. JUDD, A.K.; SHNEIDER, M.; SADOWSKY, M.J. & de BRUIJN, F.J. Use of repetitive sequences and the polymerase chain reaction tecnique to classify genetically related Bradyrhizobium japonicum serocluster 123 strains. Applied Environmental Microbiology, Washington, v.59, p.1702-1708, 1993. KARANJA, N.K.; WOOD, M. Selecting Rhizobium phaseoli strains for use with beans (Phaseolus vulgaris, L.) in Kenya: infectiveness and tolerance toacidity and aluminium. Plant and Soil, Dordrecht, v.112, p.7-13, 1988a. KARANJA, N.K.; WOOD, M. Selecting Rhizobium phaseoli strains for use with beans (Phaseolus vulgaris L.) in Kenya: tolerance of high soil temperatures and antibiotic resistance. Plant and Soil, Dordrecht, v.112, p.15-22, 1988b. KAY, H.E.; COUTINHO, H.L.C.; FATTORI, M.; MANFIO, G.P.; GOODACRE, R.; NUTI, M.P.; BASSAGLIA, M.; BERINGER, J.E. The identification of Bradyrhizobium japonicum strains isolated from italian soils. Microbiology, New York, v.140, p. 2333-2339, 1994. 152 KIPE-NOLT, J.A.; GILLER, K.E. A field evaluation using the 15N isotope dilution method of lines of Phaseolus vulgaris L. bred for increased nitrogen fixation. Plant and Soil, Dordrecht, v.152, p.107-114, 1993. KIPE-NOLT, J.A.; MONTEALEGRE, C.; TOHME, J. Restriction of nodulation by the broad host range Rhizobium tropici strain CIAT 899 in wild accessions of Phaseolus vulgaris L. New Phytologist, Oxford, v.120, p.489-494, 1992. KIPE-NOLT, J.A.; VARGAS, H.; GILLER, K.E. Nitrogen fixation in breeding lines of Phaseolus vulgaris L. Plant and Soil, Dordrecht, v.152, p.103-106, 1993. KIRCHHOF, G.; SCHLOTER, M.; AßMUS, B.; HARTMANN, A. Molecular microbial ecology approaches applied to diazotrophs associated with non-legumes. Soil Biology and Biochemistry, Oxford, v.29, p.853-862, 1996. KISHINEVSKY, B.D.; SEM, D.; WEAVER, R.W. Effect of high root temperature on Bradyrhizobium-peanut symbiosis. Plant and Soil, Dordrecht, v.143, p.275-282, 1992. KLUSON, R.A.; KENWORTH, W.J.; WEBER, D.F. Soil temperature effects on competitiveness and growth of Rhizobium japonicum and Rhizobium induced chlorosis of soybean. Plant and Soil, Dordrecht, v.95, p.201-210, 1986. KONDOROSI, A.E.; VINCZE, E.; JOHNSTON, A.W.B.; BERINGER, J.E. A comparison of three Rhizobium linkage maps. Molecular and General Genetics, New York, v.178, p.403-408, 1980. KRISHNAN, H.B.; PUEPPKE, S.G. nodC, a Rhizobium fredii gene involved in cultivar- specific nodulation of soybean, shares homology with a heat shock gene. Molecular Microbiology, Oxford, v.5, p.737-745, 1991. KUYKENDALL, L.D.; ELKAN, G.H. Rhizobium japonicum derivatives differing in nitrogen- fixing efficiency and carbohydrate utilization. Applied and Environmental Microbiology, Washington, v.32, p.511-519, 1976. LA FAVRE, A.K.; EAGLESHAM, A.R.J. The effects of high soil temperatures and starter nitrogen on the growth and nodulation of soybean. Crop Science, Madison, v.27, p.742-745, 1987. LA FAVRE, A.K.; EAGLESHAM, A.R.J. The effects of high temperatures on soybean nodulation and growth eith different strains of bradyrhizobia. Canadian Journal of Microbiology, Ottawa, v.32, p.22-27, 1986. 153 LAGUERRE, G.; ALLARD, M.R.; REVOY, F.; AMARGER, N. Rapid identification of Rhizobia by restriction fragment lengh polymorphism analysis of PCR-amplified 16S rRNA genes. Applied and Environmental Microbiology, Washington, v.60, p.56-63, 1994. LAGUERRE, G.; BARDIN, M.; AMARGER, N. Isolation from soil of symbiotic and nonsymbiotic Rhizobium leguminosarum by DNA hybridization. Canadian Journal of Microbiology, Ottawa, v.39, p.1142-1149, 1993a. LAGUERRE, G.; FERNANDEZ, M.P.; EDEL, V.; NORMAND, P.; AMARGER, N. Genomic heterogeneity among French Rhizobium strains isolated from Phaseolus vulgaris. International Journal of Systematic Bacteriology, Washington, v.43, p.761-767, 1993b. LAGUERRE, G.; GENIAUX, E.; MAZURIER, S.I.; RODRIGUEZ-CASARTELLI, R.; AMARGER, N. Conformity and diversity among field isolates of R. leguminosarum bv. viciae, bv. trifolii, and bv. phaseoli revealed by DNA hybridization using cromosome and plasmid probes. Canadian Journal of Microbiology, Ottawa, v.39, p.412-419, 1993c. LAGUERRE, G.; MAVINGUI, P.; ALLARD, M.R.; CHARNAY, M.P.; LOUVRIER, P.; MAZURIER, S.I.; RIGOTTIER-GOIS, L.; AMARGER, N. Typing of rhizobia by PCR DNA fingerprinting and PCR restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Applied and Environmental Microbiology, Washington, v.62, p.2029-2036, 1996. LAGUERRE, G.; van BERKUM, P.; AMARGER, N.; PRÉVOST, D. Genetic diversity of rhizobial symbionts isolated from legume species within the genera Astragalus, Oxytropis, and Onobrychis. Applied and Environmental Microbiology, Washington, v.63, p.4748-4758, 1997. LAMB, J.W.; HOMBRECHER, G.; JOHNSTON, A.W.B.; BERINGER, J.E. Plasmid determined nodulation and nitrogen fixation abilities in Rhizobium phaseoli. Molecular and General Genetics, New York, v.186, p.449-452, 1982. LANGE, R.T. Nodule bacteria associated with the indigenous Leguminosae of south- western Australia. Journal of General Microbiology, London, v.26, p.351-359, 1961. 154 LEAL, S.C.M. Detection and characterization of Metarhizium anisoplae using molecular markers. England: University of Nottingham, 1996. Tese de Doutorado. LEUNG, K.; BOTTOMLEY, P.J. Growth and nodulation characteristics of subclover (Trifolium subterraneum L.) and Rhizobium leguminosarum bv. trifolii at different water potentials. Soil and Biology Biochemistry, v.26, p.805-812, 1994. LEUNG, K.; STRAIN, S.R.; BRUJIN, F.J.; BOTTOMLEY, P.J. Genotypic and phenotypic comparisons of chromosomal types within na indigenous soil population of Rhizobium leguminosarum bv. trifolii. Applied and Environmental Microbiology, Washington, v.60, p.416-426, 1994. LIE, T.A. Environmental physioly og the legume-Rhizobium symbiosis. In: BROUGHTON, W.J., ed. Nitrogen Fixation. Oxford: Clarenton, 1981. V.1. p.104-134. LINDSTRÖM, K.; van BERKUM, P.; GILLIS, M.; MARTÍNEZ-ROMERO, E.; NOVIKOVA, N.; JARVIS, B.D.W. Report from the roundtable on Rhizobium taxonomy. In: TIKONOVICH, I.A.; PROVOPOROV, N.A.; ROMANOV, V.I.; NEWTON, W.E., eds. Nitrogen fixation: fundamentals and applications. Dordrecht: Kluwer, 1995. p.807- 810. LINDSTRÖM, K.; LAGUERRE, G.; NORMAND, P.; RASMUSSEN, U.; HEULIN. T.; JARVIS, B.D.W.; P. de LAJUDIE; MARTÍNEZ-ROMERO, E.; CHEN, W.-X. Taxonomy and phylogeny of diazotrophs. In: ELMERICH, C.; KONDOROSI, A.; NEWTON, W.E., eds. Biological nitrogen fixation for the 21st century. Dordrecht: Kluwer, 1998. p.559-570. LINTON, D.; DEWHIRST, F.E.; CLEWLEY, J.P.; OWEN, R.J.; BURNENS, A.P.; STANLEY, J. Two types of 16S rRNA gene are found in Campylobacter helveticus: analysis, applications and characterization of the intervening sequence found in some strains. Microbiology, New York, v.140, p.847-855, 1994. LIPSKI, A.; KLATTE, S.; BENDINGER, B.; ALTENDORF, K. Differentiation of gram- negative, nonfermentative bacteria isolated from biofilters on the basis of fatty acid composition, quinone system, and physiological reaction profiles. Applied and Environmental Microbiology, Washington, v.58, p.2053-2065, 1992. LUCAS, I.H.;L SEGOVIA, L.; MARTINEZ-ROMERO, E.; PUEPPKE, S.G. Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L. Applied and Environmental Microbiology, Washington, v.61, p.2775-2779, 1995. 155 LUDWIG, W.; KIRCHHOF, G.; KLUGBAUER, N.; WEIZENEGGER, M.; BETZEL, D.; EHRMANN, M.; HERTEL, C.; JILG, S.; TATZEL, R.; ZITZELSBERGER, H.; LIEBL, S.; HOCKBERGER, M.; SHAH, J.; LANE, D.; WALLNÖFER, P.R.; SCHEIFER, K.H. Complete 23S ribossomal RNA sequences of gram-positive bacteria with a low DNA G+C content. Systematic and Applied Microbiology, Stuttgart, v.15, p.487-501,1992. LUDWIG, W.; SCHLEIFER, K.H. Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiology Reviews, Amsterdam, v.15, p.155-173, 1994. MAGUE, T.H.; BURRIS, R.H. Reduction of acetylene and nitrogen by field grown soybenas. New Phytologist, London, v.71, p.275-286, 1972. MARIOT, E.J. Ecofisiologia do feijoeiro. In: FUNDAÇÃO INSTITUTO AGRONÔMICO DO PARANÁ. O feijão no Paraná. Londrina: IAPAR, 1989. p.25-41. (IAPAR. Circular, 63). MARTÍNEZ, E.; FLORES, M.; BROM, S.; ROMERO, D.; DÁVILA, G.; PALACIOS, R. Rhizobium phaseoli: a molecular genetics view. Plant and Soil, Dordrecht, v.108, p.179-184, 1988. MARTÍNEZ, E.; PALACIOS, R.; SÁNCHEZ, F. Nitrogen-fixing nodules induced by Agrobacterium tumefaciens, harboring Rhizobium phaseoli plasmids. Journal of Bacteriology, Washington, v.169, p.2828-2834, 1987. MARTÍNEZ, E.; PARDO, M.A.; PALACIOS, R.; CEVALLOS, M.A. Reiteration of nitrogen fixation gene sequences and specificity of Rhizobium in nodulation and nitrogen fixation in Phaseolus vulgaris. Journal of General and Microbiology, London, v.131, p.1779-1786, 1985. MARTÍNEZ, E.; ROMERO, D.; PALACIOS, R. The Rhizobium genome. CRC Critical Reviews in Plant Sciences, Boca Raton, v.9, p.59-93, 1990. MARTINEZ-ROMERO, E. Recent developments in Rhizobium taxonomy. Plant and Soil, Dordrecht, v.161, p.11-20, 1994. MARTÍNEZ-ROMERO, E.; CABALLERO-MELLADO, J. Rhizobium phylogenies and bacterial genetic diversity. CRC Critical Reviews in Plant Sciences, Boca Raton, v.15, p.113-140, 1996. 156 MARTÍNEZ-ROMERO, E.; SEGOVIA, E.; MERCANTE, F.M.; FRANCO, A.A.; GRAHAM, P.H.; PARDO, M.A. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. International Journal of Systematic Bacteriology, Washington, v.41, p.417-426, 1991. MARTÍNEZ-ROMERO, E.; SEGOVIA, L.; MERCANTE, F.M.; FRANCO, A.A.; GRAHAM, P.; PARDO, M.A. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. International Journal of Systematic Bacteriology, Washington, v.41, p.417-426, 1991. MARTINS, L.M.V.; NEVES, M.C.P.; RUMJNEK, N.G. Growth characteristics and symbiotic efficiency of rhizobia isolated from cowpea nodules of the north-east region of Brazil. Soil Biology and Biochemistry, Oxford, v.29, p.1005-1010, 1997. McKAY, I.A.; DJORDJEVIC, M.A. Production and excretion of Nod metabolites by Rhizobium leguminosarum bv. trifolii are disrupted by the same environmental factors that reduce nodulation in the field. Applied and Environmental Microbiology, Washington, v.59, p.3385-3392, 1993. MEANS, U.M.; JOHNSON, H.W.; DATE, R.A. Quick serological method of classifying strains of Rhizobium japonicum in nodules. Journal of Bacteriology, Washington, v.87, p.547-553, 1964. MERCANTE, F.M. Uso de Leucaena leucocephala na obtenção de Rhizobium tolerante a temperatura elevada para inoculação do feijoeiro. Itaguaí: UFRRJ, 1993. 149p. Tese de Mestrado. MERCANTE, F.M. Diversidade genética de rizóbio que nodula o feijoeiro e roca de sinais moleculares na simbiose com plantas hospedeiras. Seropédica: UFRRJ, 1997. 198p. Tese de Doutorado. MERCANTE, F.M.; CUNHA, C.O.; STRALIOTTO, R.; RIBEIRO-JÚNIOR, W.Q.; VANDERLEYDEN, J.; FRANCO, A.A. Leucaena leucocephala as a trap-host for Rhizobium tropici strains from the brazilian “Cerrado” region. Revista de Microbiologia, São Paulo, v.29, p.49-58, 1998. MHAMDI, R.; AOUANI, M.E.; JEBARA,M.; BHRIR, R.; MARS, M. Diversity of rhizobia nodulating bean in Tunisia. In: INTERNATIONAL CONGRESS ON NITROGEN FIXATION, 12., 1999, Foz do Iguaçu. Anais... Foz do Iguaçu: UFPR, 1999. p.119. MICHIELS, J.; VERRETH, C.; VANDERLEYDEN, J. Effects of temperature stress on bean-nodulating Rhizobium strains. Applied and Environmental Microbiology, Washington, v 60, p.1206-1212, 1994. 157 MINASAWA, K.; ISAWA, T.; NAKATSUKA, Y.; ICHIKAWA, N. New Bradyrhizobium japonicum strains that posses high copy numbers of the repeated sequence RSalfa. Applied and Environmental Microbiology, Washington, v.65, p.1845- 1851, 1998. MOAWAD, H.; BOHLOOL, B.B. Characterization of rhizobia from Leucaena. World Journal of Microbiology and Biotechnology, Oxford, v.8, p.387-392, 1992. MONTEALEGRE, C.; KIPE-NOLT, J. Ability of selected accessions of Phaseolus vulgaris L. to restrict nodulation by particular rhizobia. Archives of Microbiology, New York, v.162, p.352-356, 1994. MOREIRA, F.; GILLIS, M.; POT, B.; KERSTERS, K.; FRANCO, A.A. Characterization of rhizobia isolated from different divergence groups of tropical Leguminosae by comparative polyacrilamide gel electrophoresis of their total proteins. Systematic and Applied Microbiology, Stuttgart, v.16, p.135-146, 1993. MULLIS, K.B. The unusual origin of the polymerase chain reaction. Scientific American, New York, n.4, p.56-65, 1990. MULLIS, K.B.; FALOONA, F.A. Specific synthesis of DNA in vitro via a polymerase chain reaction. Methods in Enzymology, San Diego, v.155, p.355-350, 1987. MUNÉVAR, F.; WOLLUM II, A.G. Effect of high root temperature and Rhizobium strain on nodulation, nitrogen fixation and growth of soybeans. Soil Science Society of America Journal, Madison, v.45, p.1113-1120, 1981. MUNNS, D.N.; FOGLE, V.W.; HALLOCK, B.G. Alfalfa root nodule distribution and inhibition of nitrogen fixation by heat. Agronomy Journal, Madison, v.69, p.377- 380, 1977. MURPHY, P.J.; WILSON, K.J.; ANYANGO, B.; GILLER, K.E. Rhizobium tropici, R. leguminosarum and Sinorhizobium fredii are all Phaseolus-nodulating rhizobia indigenous to Keyan soils. In: CONGRÈS INTERNATIONAL DE FIXATION DE l’AZOTE, 11., 1997, Paris. Résumés... Paris: Instituit Pasteur, INRA, CNRS, CEA, ORSTOM, CIRAD, 1997. Abstarct 01-11. MURRAY, R.G.E.; BRENNER, D.J.; COLWELL, R.R.; De VOS, P.; COODFELLOW, M.; GRIMONT, P.A.D.; PFENING, N.; STACKEBRANDT, E.; ZAVARSIN, G.A. Report of the as hoc comittee on approaches to taxonomy within the Proteobacteria. International Journal of Systematic Bacteriology, Washington, v.40, p.213-215, 1990. 158 NIEMANN, S.; PÜHLER, A.; TICHY, H.-T.; SIMON, R.; SELBITSCHKA, W. Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. Journal of Applied Microbiology, Danvers, v.82, p.477-484, 1997. NODARI, R.O.; TSAI, S.M.; GILBERTSON, R.L.; GEPTS, P. Towards an integrated linkage map of common bean. 2. Development of an RFLP-based linkage map. Theorethical and Applied Genetics, New York, v.85, p.513-520, 1993a. NODARI, R.O.; TSAI, S.M.; GILBERTSON, R.L.; GEPTS, P. Towards na integrated linkage map pf common bean. III. Mapping genetic factors controlling host-bacteria interactions. Genetics, Maryland, v.134, p.341-350, 1993b. NORRIS, D.O.; T’MANNETJE, L. The symbiotic specialization of African Trifolium spp in relation to their taxonomy and their agronomic use. East African Agricultural and Forestry Journal, Nairobi, v. 29, p. 214-235, 1964. NOUR, S.M.; CLEYET-MAREL, J.-C.; BECK, D.; EFFOSSE, A.; FERNANDEZ, M.P. Genotypic and phenotypic diversity of Rhizobium isolated from chickpea (Cicer arietinum L.). Canadian Journal of Microbiology, Ottawa, v.40, p.345-354, 1994. OGAWA, J.; LONG, S. The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Genes and Development, New York, v.9, p.714-729, 1995. OLIVEIRA, L.A.; GRAHAM, P.H. Evaluation of strain competitiveness in Rhizobium leguminosarum bv. phaseoli using a nod+ fix- mutant. Archives of Microbiology, Berlin, v.153, p.305-310, 1990. OLSEN, G.J.; WOESE, C.R.; OVERBEEK, R. The winds of (evolutionary) change: breathing new life into microbiology. Journal of Bacteriology, Washington, v.176, p.1-6, 1994. PACOVSKY, R.S.; BAYNE, H.G.; BETHLENFALVAY, G.J. Symbiotic interactions between strains of Rhizobium phaseoli and cultivars of Phaseolus vulgaris L. Crop Science, Madison, v.24, p.101-105, 1984. PAFFETTI, D.; SCOTTI, C.; GNOCCHI,S.; FANCELLI, S.; BAZZICALUPO, M. Genetic diversity of na italian Rhizobium meliloti population from different Medicago sativa varieties. Applied and Environmental Microbiology, Washington, v.62, p.2279- 2285, 1996. PANKHURST, C.E.; SPRENT, J.I. Effects of temperature and oxygen tension on the nitrogenase and respiratory activities of turgid and water-stressed soybeans and 159 French bean root nodules. Journal of Experimental Botany, London, v.27, p.1-9, 1976. PARK, S.J.; BUTTERY, B.R. Inheritance of nitrate tolerant supernodulation in SEM- induced mutants in common beans (Phaseolus vulgaris L.). Journal of Heredity, Washington, v.80, p.486-488, 1989. PEREIRA, E.G.; LACERDA, A.M.; LIMA, A.S.; MOREIRA, F.M.S.; CARVALHO, D.; SIQUEIRA, J.O. Genotypic, phenotypic and sumbiotic diversity amongst rhizobia isolates from Phaseolus vulgaris L. growing in the amazon region. In: INTERNATIONAL CONGRESS ON NITROGEN FIXATION, 12., 1999, Foz do Iguaçu. Anais... Foz do Iguaçu: UFPR, 1999. p.199. PEREIRA, P.A.A.; BURRIS, R.H.; BLISS, F.A. 15N-determined dinitrogen fixation potential of genetically diverse bean lines (Phaseolus vulgaris L.). Plant and Soil, Dordrecht, v.120, p.171-179, 1989. PEREIRA, P.A.A.; MIRANDA, B.D.; ATTEWELL, J.R.; KMIECIK, K. A.; BLISS, F.A.. Selection for increased nodule number in common bean (Phaseolus vulgaris L.). Plant and Soil, Dordrecht, v.148, p.203-209, 1993. PIHA, M.I.; MUNNS, D.N. Nitrogen fixation potential of beans (Phaseolus vulgaris L.) compared with other grain legumes under controlled conditions. Plant and Soil, Dordrecht, v.98, p.169-182, 1987a. PIHA, M.I.; MUNNS, D.N. Sensitivity of the common bean (Phaseolus vulgaris) symbiosis to high soil temperature. Plant and Soil, Dordrecht, v.98, p.183-194, 1987b. PIÑERO, D.; MARTÍNEZ, E.; SELANDER, R.K. Genetic diversity and relationships among isolates of Rhizobium leguminosarum biovar phaseoli. Applied and Environmental Microbiology, Washington, v.54, p.2825-2832, 1988. PRAKASH, R.K.; ATHERLY, A.G. Plasmids of Rhizobium and their role in symbiotic nitrogen fixation. International Review of Cytology, New York, v.104, p.1-24, 1986. PRIETO, M.; GARCÍA-ARMESTO, M.R.; GARCÍA-LÓPEZ, M.L.; OTERO, A.; MORENO, B. Numerical taxonomy of gram-negative, nonmotile, nonfermentative bacteria isolated during chilled storage of lamb carcasses. Applied and Environmental Microbiology, Washington, v.58, p.2245-2249, 1992. PUGASHETTI, B.K.; ANLE, J.S.; WAGNER, G.H. Soil microorganisms antagonistic towards Rhizobium japonicum. Soil Biology and Biochemistry, Oxford, v.14, p.45-49, 1982. 160 QUINTO, C.; de la VEJA, H.; FLORES, M.; FERNANDÉZ, L.; BALLADO, T.; SOBERÓN, G.; PALÁCIOS, R. Reiteration of nitrogen fixation gene sequences in Rhizobium phaseoli. Nature, London, v.299, p.724-726, 1982. RAGHUWANSHI, A.; DUDEJA, S.S.; KHURANA, A.L. Effect of temperature on flavonoid production in pigeonpea (Cajanus cajan (L.) Millsp) in relation to nodulation. Biology and Fertility of Soils, Berlin, v.17, p.314-316, 1994. RAMIREZ, M.E.; ISRAEL, D.W.; WOLLUM II, A.G. Phenotypic and genotypic diversity of similar serotypes of soybean bradyrhizobia from two soil populations. Soil Biology and Biochemistry, Oxford, v.29, p.1539-1545, 1997a. RAMIREZ, M.E.; ISRAEL, D.W.; WOLLUM II, A.G. Phenotypic characterization of soybean bradyrhizobia in two soils of North Carolina. Soil Biology and Biochemistry, Oxford, v.29, p.1547-1555, 1997b. RENNIE, R.J.; KEMP, G.A. N2 fixation in field beans quantified by 15N isotope dilution. I. Effect of strains of Rhizobium phaseoli. Agronomy Journal, Madison, v.75, p.640- 644, 1983a. RENNIE, R.J.; KEMP, G.A. N2 fixation in field beans quantified by 15N isotope dilution. II. Effect of cultivars of beans. Agronomy Journal, Madison, v.75, p.645-649, 1983b. RICHARDSON, A.E.; VICCARS, L.A.; WATSON, J.M.; GIBSON, A.H. Differentiation of Rhizobium strains using the polymerase chain reaction with random and directed primers. Soil and Biology Biochemistry, Oxford, v.27, p.515-524, 1995. RIEDEL, K.H.J.; BRITZ, T.J. Propionibacterium species diversity in anaerobic digesters. Biodiversity and Conservation, London, v.2, p.400-411, 1993. ROBERTS, G.P.; LEPS, W.T.; SILVER, L.E.; BRILL, W.J. Use of two dimensional polyacrilamide gel eletrophoresis to identify and classify Rhizobium strains. Applied and Environmental Microbiology, Washington, v.39, p.414-422, 1980. ROHLF, F.J. NT-SYS: Numerical Taxonomy System using Multivariate Analysis System. New York: Applied Bioestatistics, 1992. n.p. ROME, S.; FERNANDEZ, M.P.; BRUNEL, B.; NORMAND, P.; CLEYET-MAREL, J.C. Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. International Journal of Systematic Bacteriology, Washington, v.46, p.972-980, 1996. ROMERO, D.; SINGLETON, P.W.; SEGOVIA, L.; MORETT, E.; BOHLOOL, B.B.; PALACIOS, R.; DÁVILA, G. Effect of naturally occurring nif reiterations on symbiotic effectiveness in Rhizobium phaseoli. Applied and Environmental Microbiology, Washington, v.54, p.848-850, 1988. 161 ROSADO, A.; DUARTE, G.;L SELDIN, L.; VAN ELSAS. Molecular microbial ecology: a minireview. Revista de Microbiologia, São Paulo, v.28, p.135-147, 1997. ROSSBACH, S.; RASUL,G.; SCHNEIDER, M; EARDLEY, B.; de BRUIJN, F.J. Structural and functional conservation of the Rhizopine catabolism (moc) locus limited to selected Rhizobium meliloti strains and unrelated to their geographical origin. Molecular Plant-Microbe Interactions, St. Paul, v.8, p.549-559, 1995. SADOWSKI, M.J.; CREGAN, P.B.; KEYSER, H.H. Nodulation and nitrogen fixation efficacy of Rhizobium fredii with Phaseolus vulgaris genotypes. Applied and Environmental Microbiology, Washington, v.54, p.1907-1910, 1988. SAMBROOK, J.; FRITSCH, E.F.; MANIATIS, T. Molecular cloning: a laboratory manual. 2. ed. New York: Cold Spring Harbor, 1989. V.3. SAXENA, A.K.; REWARI, R.B. Differential response of chickpea (Cicer arietinum L.) – Rhizobium combinations to saline soil conditions. Biology and Fertility of Soils, Berlin, v.13, p.31-34, 1992. SCHAAD, N.W. Laboratory guide for identification of plant pathogenic bacteria. St. Paul: American Phytopathological Society, 1990. 68p. SCHNEIDER, M.; de BRUIJN, F.J. Rep-PCR mediated genomic fingerprinting of rhizobia and computer-assisted phylogenetic pattern analysis. World Journal of Microbiology and Biotechnology, Oxford, v.12, p.163-174, 1996. SEGOVIA, L.; PIÑERO, D.; PALACIOS, R.; MARTÍNEZ-ROMERO, E. Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum. Applied and Environmental Microbiology, Washington, v.57, p.426-433, 1991. SEGOVIA, L.; YOUNG, J.P.W.; MARTÍNEZ-ROMERO, E. Reclassification of american Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. International Journal of Systematic Bacteriology, Washington, v.43, p.374-377, 1993. SELANDER, R.K.; CAUGANT, D.A.; OCHMAN, H.; MUSSER, J.M.; GILMOUR, M.N.; WHITTAM, T.S. Methods of multilocus enzyme eletrophoreis for bacterial population genetics and systematics. Applied and Environmental Microbiology, Washington, v.51, p.873-884, 1986. SELENSKA-POBELL, S.; DÖRING, H.; EVGUENIEVA-HACKENBERG, E. Unusual organization of the 23S rRNA genes in Rhizobiacea. Soil Biology and Biochemistry, Oxford, v.29, p.905-909, 1997. 162 SELENSKA-POBELL, S.; EVGUENIEVA-HACKENBERG, E. Fragmentation of the large subunit rRNA in the family Rhizobiaceae. Journal of Bacteriology, Washington, v.177, p.6993-6998, 1995. SELENSKA-POBELL, S.; EVGUENIEVA-HACKENBERG, E.; RADEVA, G.; SQUARTINI, A. Characterization of Rhizobium ‘hedysari’ by RFLP analysis of PCR amplified rDNA and by genomic PCR fingerprinting. Journal of Applied Bacteriology, Danvers, v.80, p.517-528, 1996. SELENSKA-POBELL, S.; GIGOVA, L.; PETROVA, N. Strain-specific fingerprints of Rhizobium galegae generated by PCR with arbbitrary and repetitive primers. Journal of Applied Bacteriology, Danvers, v.79, p.425-431, 1995. SERRAJ, R.; VASQUEZ-DIAZ, H.; DREVON, J.J. Effects of salt stress on nitrogen fixation, oxygen diffusion, and ion distribution in soybean, common bean and alfalfa. Journal of Plant Nutrition, Tokyo, v.21, p.475-488, 1998. SESSITSCH, A.; RAMÍREZ-SAAD, H.; HARDARSON, G.; AKKERMANS, A.D.L.; de VOS, W.M. Classification of Austrian rhizobia and the mexican isolate FL27 obtained from Phaseolus vulgaris L. as Rhizobium gallicum. International Journal of Systematic Bacteriology, Washington, v.47, p.1097-1101, 1997. SHARIFI, E. Parasitic origins of nitrogen-fixing Rhizobium-legume symbioses. A review of evidence. Biosystems, Ireland, v.16, p.269-289, 1984. SHISSHIDO, M.; PEPPER, I.L. Identification of dominant indigenous Rhizobium meliloti by plasmid profiles and intrinsic antibiotic resistance. Soil Biology and Biochemistry, Oxford, v.22, p.11-16, 1990. SINGH, S.P. Patterns of variation in cultivated common bean (Phaseolus vulgaris, Fabaceae). Economic Botany, New York, v.43, p.39-57, 1989. SINGH, S.P.; GEPTS, P.; DEBOUCK, D.G. Races of common bean (Phaseolus vulgaris, FABACEAE). Economic Botany, New York, v.45, p.379-396, 1991a. SINGH, S.P.; GUTIÉRREZ, J.A.; MOLINA, A.; URREA, C.; GEPTS, P. Genetic diversity in cultivated Phaseolus vulgaris. II. Marker-based analysis of morphological and agronomic traits. Crop Science, Madison, v.31, p.23-29, 1991b. SNEATH, P.H.A.; SOKAL, R.R. Numerical taxonomy. The principle and practice of numerical classification. San Francisco: W.H. Freemam , 1973. 573p. SOBERÓN-CHAVES, G.; NAJERA, R. Isolation from soil of Rhizobium leguminosarum lacking symbiotic information. Canadian Journal of Microbiology, Ottawa, v.35, p.464-468, 1989. 163 SOKAL, R.R.; MICHENER, C.D. A statistical method for evaluating systematic relationships. Kansas University Science Bulletin, Augusta, v.38, p.1408-1438, 1958. SOUZA, V.; EGUIARTE, L.; AVILA, G.; CAPPELLO, R.; CALLARDO, C.; MONTOYA, J.; PIÑERO, D. Genetic structure of Rhizobium etli biovar phaseoli associated with wild and cultured bean plants (Phaseolus vulgaris and Phaseolus coccineus) in Morelos, Mexico. Applied and Environmental Microbiology, Washington, v.60, p.1260-1268, 1994. SPRENT, J.I. Evolution and diversity in the legume – Rhizobium symbiosis symbiosis: chaos or theory? Plant and Soil, Dordrecht, v.161, p.1-10, 1994. St CLAIR, D.A.; WOLYN, D.J.; DuBOIS, J.; BURRIS, R.H.; BLISS, F.A. Field comparison of dinitrogen fixation determined with nitrogen-15-depleted and nitrogen-15- enriched ammonium sulphate in selected inbred backcross lines of common bean. Crop Science, Madison, v.28, p.773-778, 1988. STACKEBRANDT, E.; GOEBEL, B.M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology, Washington, v.44, p.846-849, 1994. STACKEBRANDT, E.; LIESACK, W.; WITT, D. Ribossomal RNA and rRNA sequence analysis. Gene, Amsterdam, v.115, p.255-260, 1992. STRALIOTTO, R.; FRANCO, A.A. Competitividade entre estirpes de Rhizobium tropici e Rhizobium leguminosarum bv. phaseoli e uso de mutantes glucuronidase positivos. In: CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO, 24., 1993, Goiânia. Resumos... Goiânia: Sociedade Brasileira de Ciência do Solo, 1993. p.. STRALIOTTO, R.; CUNHA, C. de O.; MERCANTE, F.M.M.; FRANCO, A.A.; RUMJANEK, N.G. Diversity of rhizobia nodulating common beans (Phaseolus vulgaris L.) isolated from brazilian tropical soils. Anais da Academia Brasileira de Ciências, Rio de Janeiro, v.71, p.531-543, 1999. STRALIOTTO, R.; CUNHA, C.O.; FERREIRA, M.E.; RUMJANEK, N.G. Diversidade genética de rizóbio que nodula o feijoeiro em condições tropicais: Sinorhizobium, um novo gênero nodulando eficientemente o feijoeiro em condições de stress térmico. In: CONGRESSO BRASILEIRO DE MICROBIOLOGIA DO SOLO, 19., 1997, Rio de Janeiro. Abstracts... Rio de Janeiro: Sociedade Brasileira de Microbiologia, 1997. Abstract MS-069. 164 STRALIOTTO, R.; CUNHA, C.O.; MERCANTE, F.M.; RUMJANEK, N.G.; FRANCO, A.A. Genotypic diversity of rhizobia nodulating common beans (Phaseolus vulgaris L.) isolated from Brazilian tropical soils. In: INTERNATIONAL SYMPOSIUM ON SUSTAINABLE AGRICULTURE FOR THE TROPICS: THE ROLE OF BIOLOGICAL NITROGEN FIXATION, 1995, Angra dos Reis. Abstracts... Rio de Janeiro: Embrapa-CNPAB, 1995. p.185-186. STRALIOTTO, R.; MERCANTE, F.M.; JAMES, E.K.; NEVES, M.C.P.; FRANCO, A.A. Tolerance of bean (Phaseolus vulgaris L.) symbiosis with Rhizobium tropici to heat shock. In: PALACIOS, R.; MORA, J.; NEWTON, W.E., eds. New Horizons in Nitrogen Fixation. Dordrecht: Kluwer, 1992. p.745. STRALIOTTO, R.; YUNDA, A.L.; FRANCO, A.A.; BALDANI, J.I. Estirpes de rizóbio do tipo II tolerantes a altas temperaturas e competitivas para inoculação do feijoeiro. In: FEIRA NACIONAL DE BIOTECNOLOGIA, 2., 1991, São Paulo. Resumos... São Paulo: Associação Brasileira de Empresas de Biotecnologia, 1991. p.17. SWELIM, D.M.; HASHEM, F.M.; KUYKENDALL, L.D.; HEGAZI, N.I.; ABDEL-WAHAB, S.M. Host specificity and phenotypic diversity of Rhizobium strains nodulating Leucaena, Acacia and Sesbania in Egypt. Biology and Fertility of Soils, Berlin, v.25, p.224-232, 1997. TAN, Z.Y.; XU, X.D.; WANG, E.T.; GAO, J.L.; MARTÍNEZ-ROMERO, E.; CHEN, W.X. Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. International Journal of Systematic Bacteriology, Washington, v.47, p.874-879, 1997. TESFAYE, M.; PETERSEN, D.J.; HOLL, F.B. Comparison of partial 23S rDNA sequences from Rhizobium species. Canadian Journal of Microbiology, Ottawa, v.43, p. 526-533, 1997. THOMAS, P.M.; GOLLY, K.F.; ZYSKIND, J.W.; VIRGINIA, R.A. Variation of clonal, mesquite-associated rhizobial and bradyrhizobial populations from surface and deep soils by simbiotic gene region restriction fragment lengh polymorphism and plasmid profile analysis. Applied and Environmental Microbiology, Washington, v.60, p.1146-1153, 1994. TORO, N.; OLIVARES, J. Analysis of Rhizobium meliloti sym mutants obtained by heat treatment. Applied and Environmental Microbiology, Washington, v.51, p.1148- 1150, 1986. 165 TREVORS, J.T. Plasmid curing in bacteria. FEMS Microbiology Reviews, Amsterdanm, v.32, p.149-157, 1986. TRINICK, M.J. Relationships amongst the fast-growing rhizobia of Lablab purpureus, Leucaena leucocephala, Mimosa spp., Acacia farnesiana and Sesbania grandiflora and their affinities with other rhizobial groups. Journal of Applied Bacteriology, Danvers, v.49, p.39-53, 1980. TSAI, S.M.; BONETTI, R.; AGBALA, S.M.; ROSSETTO, R. Minimizing the effect of mineral nitrogen on biological nitrogen fixation in common bean by increasing nutrient levels. Plant and Soil, Dordrecht, v.152, p.131-138, 1993. TURK, D.; KEYSER, H.H. Rhizobia that nodulate tree legumes: specificity of the host for nodulation and effectiveness. Canadian Journal of Microbiology, Ottawa, v.38, p.451-460, 1992. Van BERKUM, P.; BEYENE, D.; EARDLY, B.D. Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaseolus vulgaris L.). International Journal of Systematic Bacteriology, Washington, v.46, p.240-244, 1996. Van BERKUM, P.; BEYENE, D.; VERA, F.T.; KEYSER, H.H. Variability among Rhizobium strains originating from nodules of Vicia faba. Applied and Environmental Microbiology, Washington, v.61, p.2649-2653, 1995. Van BERKUM, P.; NAVARRO, R.B.; VARGAS, A.A.T. Classification of the uptake hydrogenase-positive (Hup+ ) bean rhizobia as Rhizobium tropici. Applied and Environmental Microbiology, Washington, v.60, p.554-561, 1994. Van RHIJN, P.; DESAIR, J.; VLASSAK, K.; VANDERLEYDEN, J. The Nod D proteins of Rhizobium sp strain BR 816 differ in their interactions with coinducers and their activities for nodulation of different host plants. Applied and Environmental Microbiology, Washington, v.60, p.315-3623, 1994. Van ROSSUM, D.; SCHUURMANS, F.P.; GILLIS, M.; MUYOTCHA, A.; VANVERSEVELD, H.W.; STOUTHAMER, A.H.; BOOGERD, F.C. Genetic and phenetic analyses of Bradyrhizobium strains nodulating peatnut (Arachis hypogeae L.) roots. Applied and Environmental Microbiology, Washington, v.61, p.1599-1609, 1995. VANDAMME, P.; POT, B.; GILLIS, M.; De VOS, P.; KERSTERS, K.; SWINGS, J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiological Reviews, Washington, v.60, p.407-438, 1996. 166 VARGAS, A.A.T.; GRAHAM, P.H. Phaseolus vulgaris cultivar and Rhizobium strain variation in acid-pH tolerance and nodulation under acidic conditions. Field Crops Research, Amsterdam, v.19, p.91-101, 1988. VARGAS, C.L.; MARTÍNEZ, M.; MEGIAS, M.; QUINTO, C. Identification and cloning of nodulation genes and host specificity determinants of the broad host-range Rhizobium leguminosarum biovar phaseoli strain CIAT 899. Molecular Microbiology, Oxford, v.4, p.1899-1910, 1990. VÁZQUEZ, M.; DAVALOS, A.; De Las PENAS, A.; SANCHEZ, F.; QUINTO, C. Novel organization of the common nodulation genes in Rhizobium leguminosarum bv. phaseoli strains. Journal of Bacteriology, Washington, v.173, p.1250-1258, 1991. VERSALOVIC, J.; SCHNEIDER, M.; de BRUIJN, F.J.; LUPSKI, J.R. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular Cell Biology, San Diego, v.5, p.25-40, 1994. VINCENT, J.M. A manual for the practical study of root-nodule bacteria. Oxford: Blackwell, 1970. 164p. (IBM Handbook, no 15). VINUESA, P.; RADEMAKER, J.L.W.; de BRUIJN, F.J.; WERNER, D. Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment lengh polymorphism analysis of genes encodinga 16S rRNA and 16S-23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting, and partial 16S rDNA sequencing. Applied and Environmental Microbiology, Washington, v.64, p.2096-2104, 1998 VLASSAK, K.; MERCANTE, F.; STRALIOTTO, R.; FRANCO, A.A.; VUYLSTEKE, M.; VANDERLEYDEN, J. Evaluation of the intrinsic competitiveness and saprophytic competence of Rhizobium tropici IIB strains. Biology and Fertility of Soils, Berlin, v.24, p.274-282, 1997. VLASSAK, K.; VANDERLEYDEN, J.; FRANCO, A.A. Competition and persistence of Rhizobium tropici and Rhizobium etli in a tropical soil during sucessive bean (Phaseolus vulgaris L.) cultures. Biology and Fertility of Soils, Berlin, v.21, p.61- 68, 1996. WANG, H.; QI, M.; CUTLER, A.C. A simple method of preparing plant samples for PCR. Nucleic Acids Research, London, v.21, p.4153-4154, 1993. 167 WARD, D.M.; WLLER, R.; BATESON, M.M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural comunity. Nature, London, v.345, p.63-65, 1990. WELSH, J.; MCCLELLAND, M. Fingerprinting genomes using PCR with arbitrary primers. Nucelic Acids Research, London, v.19, p.303-306, 1991. WILLEMS, A.; COLLINS, M.D. Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. International Journal of Systematic Bacteriology, Washington, v.43, p.305-313, 1993. WILLIAMS, J.G.K.; KUBELIC, A.R.; LIVAK, K.J.; RAFALSKI, J.A.; TINGEY, S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, London, v.18, p.6531-6535, 1990. WILSON, E.O. Time to revive systematics. Science, Washington, v.230, p.1227-1229, 1985. WILSON, J.K. Over five hundred reasons for abandoning the cross inoculation groups of legumes. Soil Science, Madison, v.58, p.61-69, 1944. WOESE, C.R. Bacterial evolution. Microbiological Reviews, Washington, v.51, p.221- 271, 1987. WOOD, M.; COOPER, J.E.; BJOURSON, A.J. Response of Lotus rhizobia to acidity and aluminum in liquid culture and in soil. Plant and Soil, Dordrecht, v.107, p.227-231, 1988. XAVIER, G.R.; MARTINS, L.M.V.; NEVES, M.C.P.; RUMJANEK, N.G. Edaphic factors as determinants for the distribution of intrinsic antibiotic resistance in a cowpea rhizobia population. Biology and Fertility of Soils, Berlin, v.27, p.386-392, 1998. YOKOYAMA, L.P.; BANNO, K..; KLUTHCOUSKI, J. Aspetos socioeconômicos da cultura. In: ARAÚJO, R.S.; RAVA, C.A; STONE, L.F.; ZIMMERMANN, M.J., eds. Cultura do Feijoeiro Comum no Brasil. Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato (POTAFOS), 1996. p.1-21. YOUNG, J.P.W. Rhizobium population genetics: enzyme polymorphism in isolates from peas, clover, beans and lucerne grown at the same site. Journal of General and Microbiology, London, v.131, p.2399-2408, 1985. YOUNG, J.P.W.; DOWNER, H.L.; EARDLY, B.D. Phylogeny of the phototrophic Rhizobium strain BTai1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. Journal of Bacteriology, Washington, v.173, p.2271-2277, 1991. 168 YOUNG, J.P.W.; HAUKKA, K.E. Diversity and phylogeny of rhizobia. New Phytologist, Oxford, v.133, p.87-94, 1996. YOUNG, J.P.W.; WEXLER, M. Sym plasmid and chromosomal genotypes are correlated in field populations of Rhizobium leguminosarum. Journal of General and Microbiology, London, v.134, p.2731-2739, 1988. YURA, T.; NAGAI, H.; MORI, H. Regulation of the heat shock response in bacteria. Annual Review of Microbiology, Palo Alto, v.47, p.321-350, 1993. ZEVENHUIZEN, L.P.T.M.; BERTOCCHI, C. Polysaccharide production by Rhizobium phaseoli and the typing of their excreted anionic polysaccharides. FEMS Microbiology Letters, Amsterdam, v.65, p.211-218, 1989. ZHANG, X.; HARPER, R.; KARSISTO, M.; LINDSTRÖM, K. Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. International Journal of Systematic Bacteriology, Washington, v.41, p.104-113, 1991. ZURKOWSKI, W. Molecular mechanisms for loss of nodulation properties of Rhizobium trifolii. Journal of Bacteriology, Washington, v.150, p.999-1007, 1982. | pt_BR |
| dc.subject.cnpq | Agronomia | pt_BR |
| Appears in Collections: | Doutorado em Agronomia - Ciência do Solo | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 1999 - Rosangela Straliotto.pdf | 1.85 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
