Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/23254Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Medeiros, Monique Taveira | - |
| dc.date.accessioned | 2025-09-18T17:16:17Z | - |
| dc.date.available | 2025-09-18T17:16:17Z | - |
| dc.date.issued | 2024-12-19 | - |
| dc.identifier.citation | MEDEIROS, Monique Taveira. Bioprospecção de Compostos Naturais Voláteis Frente a Larvas de Cochliomyia hominivorax. 2024. 74 f. Tese (Doutorado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2024. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/23254 | - |
| dc.description.abstract | O objetivo deste trabalho foi avaliar in vitro o potencial inseticida de 15 diferentes OEs e os constituintes majoritários anetol, carvacrol e timol frente a larvas de Cochliomyia hominivorax. Neste estudo foram utilizadas larvas de terceiro estágio da mosca C. hominivorax mantidas em uma colônia laboratorial. Foram avaliados a atividade inseticida dos OEs de: Citrus bergamia, C. paradisi, Cinnamomum cassia, Copaifera reticulata, Cymbopogon flexuosus, C. winterianus, Eugenia caryophyllus, Illicium verum, Juniperus virginiana, Lavandula hybrida, Origanum vulgare, Pelargonium graveolans, Rosmarinus offcinalis, Salvia sclarea e Thymus vulgaris, dos constituintes majoritários: anetol, carvacrol e timol e o efeito associativo da combinação binária desses três constituintes majoritários. A avaliação da atividade biológica foi realizada a partir do contato da L3 com o papel filtro impregnado a diferentes concentrações do OE. A primeira etapa foi determinar a atividade inseticida dos 15 OEs expondo a larvas a uma faixa de concentração que variou de 2000 – 200 μg/cm2 . Para os OEs que apresentaram percentual de mortalidade de 100% foram determinadas as concentrações letais (CL) 50 e 90, assim como seus constituintes majoritários. Os dados foram tabulados e foi realizado o cálculo do percentual de mortalidade médio para os tempos de 24 e 48 horas após a exposição. Em seguida a CL50 e CL90 foram calculadas utilizando o programa RStudio Team®. Para o efeito associativo foram associados na proporção de 1:1 os constituintes majoritários e o efeito obtido foi calculado no programa CompuSyn versão 1.0, com o nível de significância estatística de p < 0,05 e intervalo de confiança (IC 95%). Na primeira etapa, o percentual de mortalidade foi igual a 100% para os OEs de I. verum, O. vulgare e T. vulgaris. Apresentaram percentual de mortalidade variando de 30 a 60% os OEs de C. bergamia, C. paradisi, C.cassia, C. flexuosus, E. caryophyllus e R. officinalis. Os demais apresentaram percentual de mortalidade inferior a 30%. A CL50 foram de 417,9 e 559,4 μg/cm2 e a CL90 foi de 913,9 e 1028,1 μg/cm2 para o OE de I. verum e o anetol, respectivamente, nas avaliações após 48 horas. Para o OE de O. vulgare a CL50 foram de 540,9 e 253,71 μg/cm2 e a CL90 foram de 1819,3 e 1193,9 1 μg/cm2 para as avaliações após 24 e 48 horas. Para o carvacrol CL50 foram de 970,5 e 931,9 μg/cm2 e a CL90 foram de 1700,2 e 1591,8 μg/cm2 para as avaliações após 24 e 48 horas. Para o OE de T. vulgaris a CL50 foram de 407,1 e 314,8 μg/cm2 e a CL90 foram de 1149,4 e 589,7 μg/cm2 para as avaliações após 24 e 48 horas. Para o timol CL50 foram de 255,7 e 102,3 μg/cm2 e a CL90 1008,6 e 690,1 foram de μg/cm2 para as avaliações após 24 e 48 horas. Na análise do efeito associativo das combinações binárias dos constituintes majoritários, foi possível comprovar um efeito antagônico do anetol com o carvacrol e o timol e um efeito sinérgico do carvacrol com o timol. Com base nos resultados expostos, é possível concluir que OEs podem ser uma alternativa para o controle de larvas de C. hominivorax, especialmente, os OEs de I. verum, O. vulgare e T. vulgaris, assim como, seus constituintes majoritários. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | óleo essencial | pt_BR |
| dc.subject | química verde | pt_BR |
| dc.subject | bicheira | pt_BR |
| dc.subject | controle | pt_BR |
| dc.subject | essential oil | pt_BR |
| dc.subject | green chemistry | pt_BR |
| dc.subject | screwworm | pt_BR |
| dc.subject | control | pt_BR |
| dc.title | Bioprospecção de compostos naturais voláteis frente a larvas de cochliomyia hominivorax. | pt_BR |
| dc.title.alternative | Bioprospecting of volatile natural compounds against cochliomyia hominivorax larvae | en |
| dc.type | Tese | pt_BR |
| dc.description.abstractOther | The objective of this work was to evaluate the in vitro insecticidal potential of 15 different EOs and the main constituents of anethole, carvacrol and thymol against Cochliomyia hominivorax larvae. In this study, L3 of the C. hominivorax fly maintained in a laboratory colony were used. The insecticidal activity of EOs of: Citrus bergamia, C. paradisi, Cinnamomum cassia, Copaifera reticulata, Cymbopogon flexuosus, C. winterianus, Eugenia caryophyllus, Illicium verum, Juniperus virginiana, Lavandula hybrida, Origanum vulgare, Pelargonium graveolans, Rosmarinus offcinalis, Salvia sclarea and Thymus vulgaris and the major constituents: anethole, carvacrol and thymol and the associative effect of the binary combination of the three major constituents. The evaluation of biological activity was carried out by contacting L3 with filter paper impregnated with different concentrations of EO. The first step was to determine the insecticidal activity of the 15 EOs by exposing the larvae to a concentration range that varied from 2000 – 200 μg/cm2. For the EOs that presented a mortality rate of 100%, lethal concentrations (LC) 50 and 90 were determined, as well as their majority constituents. The data were tabulated, and the average mortality percentage was calculated for 24 and 48 hours after exposure. Next, LC50 and LC90 were calculated using the RStudio Team® program and the associative effect was calculated using the CompuSyn version 1.0 program, with a statistical significance level of p < 0.05 and confidence interval (95% CI). In the first stage, the mortality percentage was equal to 100% for the EOs of I. verum, O. vulgare and T. vulgaris. The EOs of C. bergamia, C. paradisi, C. cassia, C. flexuosus, E. caryophyllus and R. officinalis presented a mortality rate ranging from 30 to 60%. The others had a mortality rate of less than 30%. The LC50 was 417.9 and 559.4 μg/cm2 and the LC90 was 913.9 and 1028.1 μg/cm2 for I. verum EO and anethole, respectively, in the evaluations after 48 hours. For the OE of O. vulgare, the LC50 were 540.9 and 253.71 μg/cm2 and the LC90 were 1819.3 and 1193.9 1 μg/cm2 for evaluations after 24 and 48 hours. For carvacrol, the LC50 was 970.5 and 931.9 μg/cm2 and the LC90 was 1700.2 and 1591.8 μg/cm2 for evaluations after 24 and 48 hours. For the EO of T. vulgaris, the LC50 were 407.1 and 314.8 μg/cm2 and the LC90 were 1149.4 and 589.7 μg/cm2 for evaluations after 24 and 48 hours. For thymol, LC50 were 255.7 and 102.3 μg/cm2 and LC90 were 1008.6 and 690.1 μg/cm2 for evaluations after 24 and 48 hours. In the analysis of the associative effect of binary combinations of the majority constituents, it was possible to prove an antagonistic effect of anethole with carvacrol and thymol and a synergistic effect of carvacrol with thymol. Based on the results presented, it is possible to conclude that EOs can be an alternative for the control of C. hominivorax larvae, especially the EOs of I. verum, O. vulgare and T. vulgaris, as well as their majority constituents. | en |
| dc.contributor.advisor1 | Coumendouros., Katherina | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0002-9806-2618 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/6886641792170591 | pt_BR |
| dc.contributor.advisor-co1 | Campos, Diefrey Ribeiro | - |
| dc.contributor.advisor-co1ID | https://orcid.org/0000-0002-5434-1463 | pt_BR |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/8547992443497955 | pt_BR |
| dc.contributor.referee1 | Coumendouros, Katherina | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0002-9806-2618 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/6886641792170591 | pt_BR |
| dc.contributor.referee2 | Azevedo, Thaís Ribeiro Correia | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0003-3045-8787 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/6049103053269712 | pt_BR |
| dc.contributor.referee3 | Cid, Yara Peluso | - |
| dc.contributor.referee3ID | https://orcid.org/0000-0003-0775-0704 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/0788912635109182 | pt_BR |
| dc.contributor.referee4 | Martins, Isabella Vilhena Freire | - |
| dc.contributor.referee4ID | https://orcid.org/0000-0002-8700-3065 | pt_BR |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/6446528818006897 | pt_BR |
| dc.contributor.referee5 | Costa Junior, Livio Martins | - |
| dc.contributor.referee5ID | https://orcid.org/0000-0002-1475-049X | pt_BR |
| dc.contributor.referee5Lattes | http://lattes.cnpq.br/6651961821189728 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/6767327074559297 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Veterinária | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Ciências Veterinárias | pt_BR |
| dc.relation.references | ACEVEDO, G. R.; ZAPATER, M.; TOLOZA, A. C. Insecticide resistance of house fly, Musca domestica (L.) from Argentina. Parasitology Research, v. 105, n. 2, p. 489– 493, 2 jul. 2009. ADAM, F. et al. New benchmark for basic and neutral nitrogen compounds speciation in middle distillates using comprehensive two-dimensional gas chromatography. Journal of Chromatography A, v. 1148, n. 1, p. 55–64, abr. 2007. AKRE, C. The Use of Pyrethroids, Carbamates, Organophosphates, and Other Pesticides in Veterinary Medicine. Em: Chemical Analysis of antimicrobial Veterinary Drug Residues in Food. Hoboken, NJ, USA: John Wiley;38; Sons, Inc., 2016. p. 383–426. ALMEIDA, M. Â. O. et al. Ocorrência de ectoparasitos em avestruzes (Struthio camelus) criadas no semi-árido baiano. Revista Brasileira de Parasitologia Veterinária, v. 17, n. 3, p. 155–157, set. 2008. ALTUNA, M. et al. New World screwworm (Cochliomyia hominivorax) myiasis in feral swine of Uruguay: One Health and transboundary disease implications. Parasites & Vectors, v. 14, n. 1, p. 26, 7 dez. 2021. ANADÓN, A.; MARTÍNEZ-LARRAÑAGA, M. R.; MARTÍNEZ, M. A. Use and abuse of pyrethrins and synthetic pyrethroids in veterinary medicine. The Veterinary Journal, v. 182, n. 1, p. 7–20, out. 2009. ANTONIO, R. et al. Investigation of urban ethnoveterinary in three veterinary clinics at east zone of São Paulo city, Brazil. Journal of Ethnopharmacology, v. 173, p. 183– 190, set. 2015. ANZIANI, O. S. et al. Persistent activity of doramectin and ivermectin in the prevention of cutaneous myiasis in cattle experimentally infested with Cochliomyia hominivorax. Veterinary Parasitology, v. 87, n. 2–3, p. 243–247, jan. 2000. ANZIANI, O. S.; GUGLIELMONE, A. A.; AGUIRRE, D. H. Larvicidal Activity of Abamectin against Natural Cochliomyia hominivorax Larva Infestation. Annals of the New York Academy of Sciences, v. 791, n. 1, p. 443–444, 17 jul. 1996. APROTOSOAIE, A. C. et al. Essential oils of Lavandula genus: a systematic review of their chemistry. Phytochemistry Reviews, v. 16, n. 4, p. 761–799, 3 ago. 2017. ARRUDA, C. et al. Occurrence, chemical composition, biological activities, and analytical methods on Copaifera genus—A review. Biomedicine & Pharmacotherapy, v. 109, p. 1–20, jan. 2019. DE CARVALHO, R. Isolamento e caracterização do gene da esterase relacionado a resistência a inseticidas organofosforados na mosca praga da pecuária Cochliomyia hominivorax (Díptera: Calliphoridae). Campinas, SP: Universidade Estadual de Campinas, 22 mar. 2007. BAGAVAN, A. et al. Contact and fumigant toxicity of hexane flower bud extract of Syzygium aromaticum and its compounds against Pediculus humanus capitis 42 (Phthiraptera: Pediculidae). Parasitology Research, v. 109, n. 5, p. 1329–1340, 4 nov. 2011. BANULS, D. et al. A Dietary Plant Extract Formulation Helps Reduce Flea Populations in Cats: A Double-Blind Randomized Study. Pharmaceuticals, v. 16, n. 2, p. 195, 28 jan. 2023. BARDAJÍ, D. K. R. et al. Copaifera reticulata oleoresin: Chemical characterization and antibacterial properties against oral pathogens. Anaerobe, v. 40, p. 18–27, ago. 2016. BARROS, G. P. DE et al. Does tail docking prevent Cochliomyia hominivorax myiasis in sheep? A six-year retrospective cohort study. Animal Welfare, v. 33, p. e26, 8 maio 2024. BARROS, G. P. DE; BRICARELLO, P. A. Myiasis by Cochliomyia hominivorax; (Coquerel, 1858): A Neglected Zoonosis in Brazil. Open Journal of Veterinary Medicine, v. 10, n. 06, p. 80–91, 2020. BATISTA-DA-SILVA, J. A.; MOYA-BORJA, G. E.; QUEIROZ, M. M. C. Factors of Susceptibility of Human Myiasis Caused by the New World Screwworm, Cochliomyia hominivorax in São Gonçalo, Rio de Janeiro, Brazil. Journal of Insect Science, v. 11, n. 14, p. 1–7, abr. 2011. BEDINI, S. et al. Allium sativum, Rosmarinus officinalis, and Salvia officinalis Essential Oils: A Spiced Shield against Blowflies. Insects, v. 11, n. 3, p. 143, 25 fev. 2020. BEDINI, S. et al. Artemisia spp. essential oils against the disease-carrying blowfly Calliphora vomitoria. Parasites & Vectors, v. 10, n. 1, p. 80, 13 dez. 2017. BEDINI, S. et al. Bioactivity of Different Chemotypes of Oregano Essential Oil against the Blowfly Calliphora vomitoria Vector of Foodborne Pathogens. Insects, v. 12, n. 1, p. 52, 11 jan. 2021. BEDINI, S. et al. Toxicity and oviposition deterrence of essential oils of Clinopodium nubigenum and Lavandula angustifolia against the myiasis-inducing blowfly Lucilia sericata. PLOS ONE, v. 14, n. 2, p. e0212576, 20 fev. 2019a. BENELLI, G.; PAVELA, R. Beyond mosquitoes—Essential oil toxicity and repellency against bloodsucking insects. Industrial Crops and Products, v. 117, p. 382–392, jul. 2018. BENITEZ USHER, C. et al. Prophylactic use of ivermectin against cattle myiasis caused by Cochliomyia hominivorax (Coquerel, 1858). Veterinary Parasitology, v. 72, n. 2, p. 215–220, out. 1997. BLACQUIÈRE, T. et al. Neonicotinoids in bees: a review on concentrations, side- effects, and risk assessment. Ecotoxicology, v. 21, n. 4, p. 973–992, 18 maio 2012. BRICARELLO, P. A. et al. Data of insecticide action of a nanoemulsion of Citronella essential oil on Cochliomyia hominivorax blowfly. Data in Brief, v. 38, p. 107391, out. 2021b. BRICARELLO, P. A. et al. Ovicidal, larvicidal and oviposition repelling action of a nanoemulsion of citronella essential oil (Cymbopogon winterianus) on Cochliomyia 43 hominivorax (Diptera: Calliphoridae). Journal of Asia-Pacific Entomology, v. 24, n. 3, p. 724–730, ago. 2021a. BUDD, R. et al. Monitoring Fipronil and Degradates in California Surface Waters, 2008-2013. Journal of Environmental Quality, v. 44, n. 4, p. 1233–1240, jul. 2015. CARVALHO, R. A. et al. Molecular characterization of esterase E3 gene associated with organophosphorus insecticide resistance in the New World screwworm fly, Cochliomyia hominivorax. Medical and Veterinary Entomology, v. 23, n. s1, p. 86– 91, 24 jun. 2009a. CESTARI, I. M. et al. Evaluation of the potential insecticide activity of Tagetes minuta (Asteraceae) essential oil against the head lice Pediculus humanus capitis (Phthiraptera: Pediculidae). Neotropical Entomology, v. 33, n. 6, p. 805–807, dez. 2004. CHAABAN, A. et al. Chemical composition of Piper gaudichaudianum essential oil and its bioactivity against Lucilia cuprina (Diptera: Calliphoridae). Journal of Essential Oil Research, v. 30, n. 3, p. 159–166, 4 maio 2018. CHAABAN, A. et al. Chemical Composition of the Essential Oil of Tagetes minuta and Its Activity against Cochliomyia macellaria (Diptera: Calliphoridae). European Journal of Medicinal Plants, v. 18, n. 1, p. 1–10, 10 jan. 2017. CHAABAN, A. et al. Effects of Tagetes minuta essencial oil on Lucilia cuprina third instar larvae. Data in Brief, v. 25, p. 104008, ago. 2019a. CHAABAN, A. et al. Essential Oils for Myiasis Control: Potentialities for Ecofriendly Insecticides. European Journal of Medicinal Plants, v. 21, n. 4, p. 1–25, 21 dez. 2017. CHAABAN, A. et al. Insecticide activity of Baccharis dracunculifolia essential oil against Cochliomyia macellaria (Diptera: Calliphoridae). Natural Product Research, v. 32, n. 24, p. 2954–2958, 17 dez. 2018. CHAABAN, A. et al. Insecticide activity of Curcuma longa (leaves) essential oil and its major compound α-phellandrene against Lucilia cuprina larvae (Diptera: Calliphoridae): Histological and ultrastructural biomarkers assessment. Pesticide Biochemistry and Physiology, v. 153, p. 17–27, jan. 2019b. CHEN, Y.-W. et al. The impact of pyriproxyfen on the development of honeybee (Apis mellifera L.) colony in field. Journal of Asia-Pacific Entomology, v. 19, n. 3, p. 589– 594, set. 2016. CHOI, J. et al. Constituents of the essential oil of the Cinnamomum cassia stem bark and the Biological Properties. Archives of Pharmacal Research, v. 24, n. 5, p. 418– 423, out. 2001. CHUPEAU, Z. et al. Organophosphorus Flame Retardants: A Global Review of Indoor Contamination and Human Exposure in Europe and Epidemiological Evidence. International Journal of Environmental Research and Public Health, v. 17, n. 18, p. 6713, 15 set. 2020. COELHO, A. A. M.; PAULA, J. E. DE; ESPÍNDOLA, L. S. Insecticidal activity of cerrado plant extracts on Rhodnius milesi Carcavallo, Rocha, Galvão; Jurberg 44 (Hemiptera: Reduviidae), under laboratory conditions. Neotropical Entomology, v. 35, n. 1, p. 133–138, fev. 2006. COLE, R. A.; HABER, W. A.; SETZER, W. N. Chemical composition of essential oils of seven species of Eugenia from Monteverde, Costa Rica. Biochemical Systematics and Ecology, v. 35, n. 12, p. 877–886, dez. 2007. CONCEIÇÃO, C. L. et al. Evaluation of Insecticidal Activity of Thyme, Oregano, and Cassia Volatile Oils on Cat Flea. Revista Brasileira de Farmacognosia, v. 30, n. 6, p. 774–779, 23 dez. 2020. COOK, D. A Historical Review of Management Options Used against the Stable Fly (Diptera: Muscidae). Insects, v. 11, n. 5, p. 313, 15 maio 2020. COQUEREL, C. H. Note sur les larves appartenant à une espèce nouvelle de diptère (Lucilia hominivorax) developpées dans les sinus frontaux de l’homme à Cayenne. In: Annales de la Société entomologique de France. 1858. p. 171-176. CORREIA, T. R. et al. Larvicidal efficacy of nitenpyram on the treatment of myiasis caused by Cochliomyia hominivorax (Diptera: Calliphoridae) in dogs. Veterinary Parasitology, v. 173, n. 1–2, p. 169–172, out. 2010. CORTINAS, R.; JONES, C. J. Ectoparasites of Cattle and Small Ruminants. Veterinary Clinics of North America: Food Animal Practice, v. 22, n. 3, p. 673–693, nov. 2006. COSSETIN, L. F. et al. Comparing the efficacy of nutmeg essential oil and a chemical pesticide against Musca domestica and Chrysomya albiceps for selecting a new insecticide agent against synantropic vectors. Experimental Parasitology, v. 225, p. 108104, jun. 2021. COSTA, R. et al. Study on the chemical composition variability of some processed bergamot (Citrus bergamia) essential oils. Flavour and Fragrance Journal, v. 25, n. 1, p. 4–12, 6 jan. 2010. COSTA-JÚNIOR, L. M. et al. A review on the occurrence of Cochliomyia hominivorax (Diptera: Calliphoridae) in Brazil. Revista Brasileira de Parasitologia Veterinaria, 1 out. 2019. CRAMER-RIBEIRO, B. C. et al. Inquiry of cases of myiasis by Cochliomyia hominivorax in dogs (Canis familiaris) of the Northern and Western zones of Rio de Janeiro city in 2000. Brazilian Journal of Veterinary Research and Animal Science, v. 40, n. 1, p. 13–20, 2003. CUSHING, E. C.; PATTON, W. S. Studies on the Higher Diptera of Medical and Veterinary Importance. Annals of Tropical Medicine & Parasitology, v. 27, n. 4, p. 539–551, 20 dez. 1933. CUTOLO, A. A. et al. Efficacy of afoxolaner (NexGard®) on the treatment of myiasis caused by the New World screwworm fly Cochliomyia hominivorax (Diptera: Calliphoridae) in naturally infested dogs. Veterinary Parasitology: Regional Studies and Reports, v. 24, p. 100569, abr. 2021. 45 DA CONCEIÇÃO, C. L. et al. In vitro evaluation of the activity of Cinnamaldehyde as an inhibitor of the biological cycle of Ctenocephalides felis felis. Brazilian journal of veterinary medicine, v. 45, p. e005123, 2023. DA COSTA, A. J. et al. First report of the efficacy of a fluralaner-based pour-on product (Exzolt® 5%) against ectoparasites infesting cattle in Brazil. Parasites & Vectors, v. 16, n. 1, p. 336, 26 set. 2023. DE CARVALHO, R. A. et al. Changes in the frequency of the G137D and W251S mutations in the carboxylesterase E3 gene of Cochliomyia hominivorax (Diptera: Calliphoridae) populations from Uruguay. Veterinary Parasitology, v. 170, n. 3–4, p. 297–301, jun. 2010a. DE SILVA, H. J.; SAMARAWICKREMA, N. A.; WICKREMASINGHE, A. R. Toxicity due to organophosphorus compounds: what about chronic exposure? Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 100, n. 9, p. 803–806, set. 2006. DENKOVA-KOSTOVA, R. et al. Chemical composition, antioxidant and antimicrobial activity of essential oils from tangerine (Citrus reticulata L.), grapefruit (Citrus paradisi L.), lemon (Citrus lemon L.) and cinnamon (Cinnamomum zeylanicum Blume). Zeitschrift für Naturforschung C, v. 76, n. 5–6, p. 175–185, 26 maio 2021. DEVILLERS, J.; DEVILLERS, H. Lethal and Sublethal Effects of Pyriproxyfen on Apis and Non-Apis Bees. Toxics, v. 8, n. 4, p. 104, 17 nov. 2020. DO VALE, T. L. et al. Efficacy of lotilaner against myiasis caused by Cochliomyia hominivorax (Diptera: Calliphoridae) in naturally infested dogs. Parasites & Vectors, v. 16, n. 1, p. 86, 6 mar. 2023. DOS SANTOS, G. C. M. et al. Oral pharmacokinetic profile of fipronil and efficacy against flea and tick in dogs. Journal of Veterinary Pharmacology and Therapeutics, v. 45, n. 1, p. 23–33, 31 jan. 2022. DYCK, V. A.; HENDRICHS, J.; ROBINSON, A. S. Sterile Insect Technique. Boca Raton: CRC Press, 2021. DZAMIC, A. et al. Chemical composition and antifungal activity of Illicium verum and Eugenia caryophyllata essential oils. Chemistry of Natural Compounds, v. 45, n. 2, p. 259–261, 8 mar. 2009. DZAMIC, A. M. et al. Chemical composition, antifungal and antioxidant activity of Pelargonium graveolens essential oil. Journal of Applied Pharmaceutical Science, 2014. EDDI, C.; NARI, A.; CARACOSTANTOGOLO, J. Use of macrocyclic lactones to control cattle parasites in South America. Em: Macrocyclic lactones in antiparasitic therapy. UK: CAB International, 2002. p. 262–287. ELLSE, L.; WALL, R. The use of essential oils in veterinary ectoparasite control: a review. Medical and Veterinary Entomology, v. 28, n. 3, p. 233–243, 22 set. 2014. ENSLEY, S. M. Neonicotinoids. Em: Veterinary Toxicology. [s.l.] Elsevier, 2018b. p. 521–524. 46 ENSLEY, S. M. Pyrethrins and Pyrethroids. Em: Veterinary Toxicology. [s.l.] Elsevier, 2018a. p. 515–520. ETCHEVERS, I. et al. Review on ecological interactions of the Cochliomyia hominivorax fly and assessment of the possible impacts of its eradication in Uruguay. Agrociencia Uruguay, v. 26, n. 2, p. e1056, 16 set. 2022. FARINA, P. et al. Andean Plants Essential Oils: A Scented Alternative to Synthetic Insecticides for the Control of Blowflies. Insects, v. 12, n. 10, p. 894, 1 out. 2021. FARINA, P. et al. Chitosan and Essential Oils Combined for Beef Meat Protection against the Oviposition of Calliphora vomitoria, Water Loss, Lipid Peroxidation, and Colour Changes. Foods, v. 11, n. 24, p. 3994, 9 dez. 2022. FERRAZ, C. A. et al. Ecotoxicity of plant extracts and essential oils: A review. Environmental Pollution, v. 292, p. 118319, jan. 2022. FIGIEL, A. et al. Composition of oregano essential oil (Origanum vulgare) as affected by drying method. Journal of Food Engineering, v. 98, n. 2, p. 240–247, maio 2010. FLEMING, S. A. et al. Anthelmintic Resistance of Gastrointestinal Parasites in Small Ruminants. Journal of Veterinary Internal Medicine, v. 20, n. 2, p. 435–444, 5 mar. 2006. FRANCESCONI, F.; LUPI, O. Myiasis. Clinical Microbiology Reviews, v. 25, n. 1, p. 79–105, jan. 2012. FRESIA, P. et al. Historical perspective and new avenues to control the myiasis-causing fly Cochliomyia hominivorax in Uruguay. Agrociencia Uruguay, v. 25, n. 2, 18 nov. 2021. GANJEWALA, D. Cymbopogon essential oils: Chemical compositions and bioactivities. International Journal of Essential Oil Therapeutics, v. 3, p. 56–65, 2009. GARDULF, A.; WOHLFART, I.; GUSTAFSON, R. A Prospective Cross-Over Field Trial Shows Protection of Lemon Eucalyptus Extract Against Tick Bites. Journal of Medical Entomology, v. 41, n. 6, p. 1064–1067, 1 nov. 2004. GEALH, W. C. et al. Treatment of oral myiasis caused by Cochliomyia hominivorax: two cases treated with ivermectin. British Journal of Oral and Maxillofacial Surgery, v. 47, n. 1, p. 23–26, jan. 2009. GONÇALVES, B. V. DA S.; BARBERINI, I. R.; FURTADO, S. K. Etnoveterinária: a fitoterapia aplicada a medicina de animais de companhia. Revista Fitos, v. 15, n. Supl 1, p. 102–115, 31 jan. 2022. GRISI, L. et al. Reassessment of the potential economic impact of cattle parasites in Brazil. Revista Brasileira de Parasitologia Veterinária, v. 23, n. 2, p. 150–156, jun. 2014. GUERRERO, F. D.; LOVIS, L.; MARTINS, J. R. Acaricide resistance mechanisms in Rhipicephalus (Boophilus) microplus. Revista Brasileira de Parasitologia Veterinária, v. 21, n. 1, p. 1–6, mar. 2012. 47 GUIMARÃES, J. H.; PAPAVERO, N.; PRADO, Â. P. DO. As miíases na região neotropical (identificação, biologia, bibliografia). Revista Brasileira de Zoologia, v. 1, n. 4, p. 239–416, 1982. GUNNARSSON, L. et al. Evolutionary Conservation of Human Drug Targets in Organisms used for Environmental Risk Assessments. Environmental Science & Technology, v. 42, n. 15, p. 5807–5813, 1 ago. 2008. GUPTA, R. C. Classification and Uses of Organophosphates and Carbamates.Toxicology of Organophosphate & Carbamate Compounds. Elsevier, 2006. p. 5–24. GUPTA, R. C.; ANADÓN, A. Fipronil. Em: Veterinary Toxicology. Elsevier, 2018. p. 533–538. HĂDĂRUGĂ, N. et al. Comparative study of Juniperus communis and Juniperus virginiana essential oils: TLC and GC analysis. Journal of Planar Chromatography – Modern TLC, v. 24, n. 2, p. 130–135, abr. 2011. HALL, M.; WALL, R. Myiasis of Humans and Domestic Animals. Em: [s.l: s.n.]. p. 257–334. HAN, H. S. et al. The comparative efficacy of afoxolaner, spinosad, milbemycin, spinosad plus milbemycin, and nitenpyram for the treatment of canine cutaneous myiasis. Veterinary Dermatology, v. 29, n. 4, p. 312, 6 ago. 2018. HANIF, M. A. et al. Essential Oils. Em: Essential Oil Research. Cham: Springer International Publishing, 2019. p. 3–17. HARDY, J. L. Susceptibility and Resistance of Vector Mosquitoes. Em: The Arboviruses: Epidemiology and Ecology. [s.l.] CRC Press, 2020. p. 87–126. HEATH, A. C. G. Beneficial aspects of blowflies (Diptera: Calliphoridae). New Zealand Entomologist, v. 7, n. 3, p. 343–348, jan. 1982. HEMINGWAY, J. et al. The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, v. 34, n. 7, p. 653–665, jul. 2004. HEMINGWAY, J. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochemistry and Molecular Biology, v. 30, n. 11, p. 1009–1015, nov. 2000. HERRERO‐JÁUREGUI, C. et al. Chemical Variability of Copaifera reticulata Oleoresin. Chemistry & Biodiversity, v. 8, n. 4, p. 674–685, 11 abr. 2011. HILLARY, V. E.; CEASAR, S. A.; IGNACIMUTHU, S. Efficacy of plant products in controlling disease vector mosquitoes, a review. Entomologia Experimentalis et Applicata, v. 172, n. 3, p. 195–214, 5 mar. 2024. ILBEIGI, K. et al. Assessing Environmental Risks during the Drug Development Process for Parasitic Vector-Borne Diseases: A Critical Reflection. ACS Infectious Diseases, v. 10, n. 4, p. 1026–1033, 12 abr. 2024. NOLAN, LOK, J. Macrocyclic Lactones in the Treatment and Control of Parasitism in Small Companion Animals. Current Pharmaceutical Biotechnology, v. 13, n. 6, p. 1078–1094, 1 abr. 2012. 48 JAQUELINE SEUGLING et al. Development of Baccharis dracunculifolia (Asteraceae) Essential Oil Nanoemulsion and Its Biological Activity on Pre-pupae of Cochliomyia hominivorax (Diptera: Calliphoridae). Journal of Pharmacy and Pharmacology, v. 7, n. 6, 8 jun. 2019. JENKINS, J. R. Skin Disorders of the Rabbit. Veterinary Clinics of North America: Exotic Animal Practice, v. 4, n. 2, p. 543–563, maio 2001. KAČÁNIOVÁ, M. et al. Salvia sclarea Essential Oil Chemical Composition and Biological Activities. International Journal of Molecular Sciences, v. 24, n. 6, p. 5179, 8 mar. 2023. KAUSHIK, M. et al. A systematic review of plant-based mosquito repellents and their activity. Indian Journal of Natural Products and Resources, 2023. KHATER, H. F. et al. Control of the myiasis‐producing fly, Lucilia sericata, with Egyptian essential oils. International Journal of Dermatology, v. 50, n. 2, p. 187–194, 28 fev. 2011. KHATER, H. F. et al. Toxicity and growth inhibition potential of vetiver, cinnamon, and lavender essential oils and their blends against larvae of the sheep blowfly, Lucilia sericata. International Journal of Dermatology, v. 57, n. 4, p. 449–457, 8 abr. 2018a. KHATER, K. Effect of two volatile oils extracted from Syzygium aromaticum, Mentha longifolia, and imidacloprid on Lucilia cuprina (Diptera: Calliphoridae). Parasitologists United Journal, v. 14, n. 1, p. 46–57, 1 abr. 2021. KING, W. V.; BRADLEY, G. H. The Screw Worm Outbreak in Florida. Journal of Economic Entomology, v. 28, n. 5, p. 772–777, 1 out. 1935. KNIPLING, E. F. Possibilities of Insect Control or Eradication Through the Use of Sexually Sterile Males1. Journal of Economic Entomology, v. 48, n. 4, p. 459–462, 1 ago. 1955. KOSCHORRECK, J.; KOCH, C.; RÖNNEFAHRT, I. Environmental risk assessment of veterinary medicinal products in the EU—a regulatory perspective. Toxicology Letters, v. 131, n. 1–2, p. 117–124, maio 2002. KUMAR, R. Molecular markers, and their application in the monitoring of acaricide resistance in Rhipicephalus microplus. Experimental and Applied Acarology, v. 78, n. 2, p. 149–172, 12 jun. 2019. LI, A. Y.; LOHMEYER, K. H.; MILLER, J. A. Dynamics, and mechanisms of permethrin resistance in a field population of the horn fly, Haematobia irritans irritans. Insect Science, v. 16, n. 2, p. 175–184, 9 abr. 2009. LI, C.-J.; ANASTAS, P. T. Green Chemistry: present and future. Chemical Society Reviews, v. 41, n. 4, p. 1413, 2012. LIMA, W. S. et al. Evaluation of the prophylactic effect and curative efficacy of fipronil 1% pour on (Topline®) on post-castration scrotal myiasis caused by Cochliomyia hominivorax in cattle. Veterinary Parasitology, v. 125, n. 3–4, p. 373–377, nov. 2004. 49 LIS-BALCHIN, M. Chemical composition of essential oils from different species, hybrids, and cultivars of Lavandula. Em: Lavender. 1st Edition ed. [s.l.] CRC Press, 2002. p. 265–276. LIU, F. et al. Quantitative differentiation of toxicity contributions and predicted global risk of fipronil and its transformation products to aquatic invertebrates. Water Research, v. 255, p. 121461, maio 2024. LIU, N. Insecticide Resistance in Mosquitoes: Impact, Mechanisms, and Research Directions. Annual Review of Entomology, v. 60, n. 1, p. 537–559, 7 jan. 2015. LOPES, C. V. A.; ALBUQUERQUE, G. S. C. DE. Agrotóxicos e seus impactos na saúde humana e ambiental: uma revisão sistemática. Saúde em Debate, v. 42, n. 117, p. 518–534, jun. 2018. LOPES, W. D. Z. et al. The effectiveness of a fixed-dose combination pour-on formulation of 1.25% fipronil and 2.5% fluazuron against economically important ectoparasites and associated pharmacokinetics in cattle. Parasitology International, v. 66, n. 5, p. 627–634, out. 2017. LUMARET, J.-P. et al. A Review on the Toxicity and Non-Target Effects of Macrocyclic Lactones in Terrestrial and Aquatic Environments. Current Pharmaceutical Biotechnology, v. 13, n. 6, p. 1004–1060, 1 abr. 2012. MADDHESHIYA, R.; SINGH, K. P. Effect of Lantana camara essential oil on embryogenesis and postembryonic development of the blowfly, Chrysomya megacephala (Diptera: Calliphoridae) following egg treatment. Invertebrate Reproduction & Development, v. 66, n. 1, p. 16–22, 2 jan. 2022. MANION, C. R.; WIDDER, R. M. Essentials of essential oils. American Journal of Health-System Pharmacy, v. 74, n. 9, p. e153–e162, 1 maio 2017. MARTIN, R. J.; ROBERTSON, A. P.; WOLSTENHOLME, A. J. Mode of action of the macrocyclic lactones. Em: Macrocyclic lactones in antiparasitic therapy. UK: CAB International, 2002. p. 125–140. MARTINS, L. G. V.; BARBOSA, T. M.; GAMA, R. A. Myiasis in humans: Case reports in Northeastern Brazil including multispecies co-infestation by Sarcophagidae. Parasitology International, v. 85, p. 102436, dez. 2021. MASTRANGELO, T.; BEZERRA, F.; FERNANDES, T. Dietas larvais alternativas para criação massal da mosca da bicheira, Cochliomyia hominivorax. Ciência Rural, v. 44, n. 4, p. 672–677, abr. 2014. MASTRANGELO, T.; WELCH, J. An Overview of the Components of AW-IPM Campaigns against the New World Screwworm. Insects, v. 3, n. 4, p. 930–955, 12 out. 2012. MATOS, L. F. et al. Chemical composition and insecticidal effect of essential oils from Illicium verum and Eugenia caryophyllus on Callosobruchus maculatus in cowpea. Industrial Crops and Products, v. 145, p. 112088, mar. 2020. 50 MCCOY, C.; BROCE, A. B.; DRYDEN, M. W. Flea blood feeding patterns in cats treated with oral nitenpyram and the topical insecticides imidacloprid, fipronil and selamectin. Veterinary Parasitology, v. 156, n. 3–4, p. 293–301, out. 2008. MCKELLAR, A. Q.; GOKBULUT, C. Pharmacokinetic Features of the Antiparasitic Macrocyclic Lactones. Current Pharmaceutical Biotechnology, v. 13, n. 6, p. 888– 911, 1 abr. 2012. MENDES-DE-ALMEIDA, F. et al. Cochliomyia hominivorax myiasis in a colony of stray cats (Felis catus Linnaeus, 1758) in Rio de Janeiro, RJ. Veterinary Parasitology, v. 146, n. 3–4, p. 376–378, maio 2007. MIKHAIEL, A. A.; AMIN, M. M. Laboratory Assessment for the Efficacy of Some botanical oils to Prevent Animal Wound Myiasis by Flesh Fly Chrysomya albiceps (Diptera: Calliphoridae). Journal of Radiation Research and Applied Sciences, v. 6, n. 1, p. 53–67, dez. 2013. MILLER, J. A.; OEHLER, D. D.; KUNZ, S. E. Release of Pyrethroids from Insecticidal Ear Tags. Journal of Economic Entomology, v. 76, n. 6, p. 1335–1340, 1 dez. 1983. MIRANDA, F. R. et al. Success of nitenpyram in the treatment of ocular myiasis in the orbital cavity of a dog - case report. Brazilian Journal of Veterinary Medicine, v. 42, 2020. MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO (Brasil). Instrução Normativa no 50, de 24 de setembro de 2013. Estabelece os procedimentos para a notificação obrigatória da infestação por Cochliomyia hominivorax. Diário Oficial da União: seção 1, Brasília, DF, p. 45, 25 set. 2013. MISHRA, P. A systematic review on different aspect for mosquito management. International Journal of Mosquito Research, v. 11, n. 2, p. 01–08, 1 jan. 2024. MONTES, R. H. O. et al. Amperometric determination of the insecticide fipronil using batch injection analysis: comparison between unmodified and carbon-nanotube- modified electrodes. Journal of Solid-State Electrochemistry, v. 20, n. 9, p. 2453– 2459, 21 set. 2016. MOYA-BORJA, G. E. et al. Prophylactic and persistent efficacy of doramectin against Cochliomyia hominivorax in cattle. Veterinary Parasitology, v. 49, n. 1, p. 95–105, jul. 1993. MOYA-BORJA, G. E. et al. Protective efficacy of doramectin and ivermectin against Cochliomyia hominivorax. Veterinary Parasitology, v. 72, n. 1, p. 101–109, set. 1997. MUNIZ, R. A. et al. Efficacy of injectable doramectin in the protection of castrated cattle against field infestations of Cochliomyia hominivorax. Veterinary Parasitology, v. 58, n. 4, p. 327–333, jul. 1995. MUÑOZ, A. A. F.; CACERES, A. F. B.; LEÓN, J. C. P. First report of myiasis in dogs caused by Cochliomyia hominivorax (Coquerel 1858) in Colombia. Veterinary Parasitology: Regional Studies and Reports, v. 19, p. 100356, jan. 2020. MURPHY, M.; BALL, C. A.; GROSS, S. Comparative in vivo adulticidal activity of a topical dinotefuran versus an imidacloprid-based formulation against cat fleas 51 (Ctenocephalides felis) on cats. Veterinary therapeutics: research in applied veterinary medicine, v. 10, n. 1–2, p. 9–16, 2009. NOLAN, J. Mechanisms of resistance to chemicals in arthropod parasites of veterinary importance. Veterinary Parasitology, v. 18, n. 2, p. 155–166, ago. 1985. NOSHAD, M.; ALIZADEH BEHBAHANI, B.; NIKFARJAM, Z. Chemical composition, antibacterial activity, and antioxidant activity of Citrus bergamia essential oil: Molecular docking simulations. Food Bioscience, v. 50, p. 102123, dez. 2022. OAKESHOTT, J. G. et al. Comparing the organophosphorus and carbamate insecticide resistance mutations in cholin- and carboxyl-esterases. Chemico-Biological Interactions, v. 157–158, p. 269–275, dez. 2005. OLIVEIRA, L. M. et al. Ocimum gratissimum essential oil and eugenol against Ctenocephalides felis felis and Rhipicephalus sanguineus: In vitro activity and residual efficacy of a eugenol-based spray formulation. Veterinary Parasitology, v. 309, p. 109771, set. 2022. OLIVEIRA, P. C. DE et al. Efficacy of sarolaner on the treatment of myiasis caused by Cochliomyia hominivorax (Diptera: Calliphoridae) in dogs. Veterinary Parasitology, v. 276, p. 108966, dez. 2019. OLIVEIRA, P. E.; RECH, A. R. Floral biology and pollination in Brazil: history and possibilities. Acta Botanica Brasilica, v. 32, n. 3, p. 321–328, set. 2018. PARKER, I. D. et al. Florida Key Deer Abundance and Recovery Following New World Screwworm Infestation. Southeastern Naturalist, v. 19, n. 2, p. 179, 28 abr. 2020. PAVELA, R. Insecticidal properties of several essential oils on the house fly (Musca domestica L.). Phytotherapy Research, v. 22, n. 2, p. 274–278, 20 fev. 2008. PEZZI, M. et al. Cutaneous myiasis in cats and dogs: Cases, predisposing conditions, and risk factors. Veterinary Medicine and Science, v. 7, n. 2, p. 378–384, 18 mar. 2021. PEZZI, M. et al. Myiasis in domestic cats: a global review. Parasites & Vectors, v. 12, n. 1, p. 372, 29 dez. 2019. PITAROKILI, D. et al. Composition and Antifungal Activity on Soil-Borne Pathogens of the Essential Oil of Salvia sclarea from Greece. Journal of Agricultural and Food Chemistry, v. 50, n. 23, p. 6688–6691, 1 nov. 2002. POLITI, F. A. S. et al. Acaricidal activity of ethanolic extract from aerial parts of Tagetes patula L. (Asteraceae) against larvae and engorged adult females of Rhipicephalus sanguineus (Latreille, 1806). Parasites & Vectors, v. 5, n. 1, p. 295, 17 dez. 2012. POUDEL, S. et al. Pesticide Use and Its Impacts on Human Health and Environment. Environment & Ecosystem Science, v. 4, n. 1, p. 47–51, 5 out. 2020. RAHUL, M.; DEEP MALA, S.; KRISHNA PAL, S. Analysis of the chemical composition (GC–MS) of Lantana camara (Verbenaceae) essential oil and its insecticidal effect on the post-embryonic development of Chrysomya megacephala 52 (Fabricius, 1794) (Diptera: Calliphoridae). Journal of Applied Biology & Biotechnology, 10 jul. 2020. RECK, J. et al. Does Rhipicephalus microplus tick infestation increase the risk for myiasis caused by Cochliomyia hominivorax in cattle? Preventive Veterinary Medicine, v. 113, n. 1, p. 59–62, jan. 2014. REISSERT-OPPERMANN, S. et al. Insecticide resistance in stable flies (Stomoxys calcitrans) on dairy farms in Germany. Parasitology Research, v. 118, n. 9, p. 2499– 2507, 30 set. 2019. RIBEIRO, F. D. A. et al. Activity of neem extract on the embryonary development of Ctenocephalides felis felis (Bouché, 1835) (Siphonaptera: Pulicidae). Revista brasileira de parasitologia veterinaria, v. 17 Suppl 1, p. 87–91, set. 2008. RITTER, R. A. et al. Ethnoveterinary knowledge and practices at Colares island, Pará state, eastern Amazon, Brazil. Journal of Ethnopharmacology, v. 144, n. 2, p. 346– 352, nov. 2012. RUÍZ‐MARTÍNEZ, I. et al. The Role of Botfly Myiasis Due to Dermatobia hominis L. Jr. (Diptera: Cuterebridae) as a Predisposing Factor to New World Screwworm Myiasis (Cochliomyia hominivorax Coquerel) (Diptera: Calliphoridae) a. Annals of the New York Academy of Sciences, v. 791, n. 1, p. 434–442, 17 jul. 1996. RUST, M. Insecticide Resistance in Fleas. Insects, v. 7, n. 1, p. 10, 17 mar. 2016. SANGSTER, N. C. Managing parasiticide resistance. Veterinary Parasitology, v. 98, n. 1–3, p. 89–109, jul. 2001. SANTOS, A. R. DOS et al. Evaluation of essential oils and diluents against Chrysomya megacephala, an important mechanical vector. Journal of Natural Pesticide Research, v. 3, p. 100024, mar. 2023a. SARAIVA, L. C. et al. Insecticidal and repellent activity of geranium essential oil against Musca domestica and Lucilia cuprina. International Journal of Tropical Insect Science, v. 40, n. 4, p. 1093–1098, 24 dez. 2020. SATYAL, P. et al. Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations. Foods, v. 5, n. 4, p. 70, 27 out. 2016. SCOTT, I.; BISHOP, R.; POMROY, W. Anthelmintic resistance in equine helminth parasites – a growing issue for horse owners and veterinarians in New Zealand? New Zealand Veterinary Journal, v. 63, n. 4, p. 188–198, 4 jul. 2015. SELL, C. Chemistry of Essential Oils. Em: Handbook of Essential Oils. Third edition. Boca Raton: CRC Press, [2020]: CRC Press, 2020. p. 161–189. SHALABY, H. A. et al. Larvicidal activity of camphor and lavender oils against sheep blowfly, Lucilia sericata (Diptera: Calliphoridae). Journal of Parasitic Diseases, v. 40, n. 4, p. 1475–1482, 24 dez. 2016. SHAROPOV, F. S.; ZHANG, H.; SETZER, W. N. Composition of geranium (Pelargonium graveolens) essential oil from Tajikistan. American Journal of Essential Oils and Natural Products, v. 2, n. 2, p. 13–16, dez. 2014. 53 SIQUEIRA, J. A. A. et al. Occurrence and anatomical distribution of myiasis caused by Cochliomyia hominivorax (Diptera: Calliphoridae) in swine. Veterinary Parasitology: Regional Studies and Reports, v. 22, p. 100481, dez. 2020. SKODA, S. R.; PHILLIPS, P. L.; WELCH, J. B. Screwworm (Diptera: Calliphoridae) in the United States: Response to and Elimination of the 2016–2017 Outbreak in Florida. Journal of Medical Entomology, v. 55, n. 4, p. 777–786, 28 jun. 2018. SOFOWORA, A. Research on Medicinal Plants and Traditional Medicine in Africa. The Journal of Alternative and Complementary Medicine, v. 2, n. 3, p. 365–372, set. 1996. ŠTRBAC, F. et al. Botanical Control of Parasites in Veterinary Medicine. International Journal of Agriculture and Biosciences, v. 3, p. 215–222, 2023. SUASSUNA BEZERRA, A. D. et al. Ectoparasitos em Caprinos e Ovinos no Município de Mossoró, Rio Grande Do Norte. Ciência Animal Brasileira, v. 11, n. 1, 1 abr. 2010. SUWANNAYOD, S. et al. Activity of Kaffir Lime (Citrus Hystrix) Essential Oil Against Blow Flies and House Fly. The Southeast Asian Journal of Tropical Medicine and Public Health, v. 49, n. 1, p. 32–45, 2018. SZUMNY, A. et al. Composition of rosemary essential oil (Rosmarinus officinalis) as affected by drying method. Journal of Food Engineering, v. 97, n. 2, p. 253–260, mar. 2010. TADEE, P. et al. Essential oil pharmaceuticals for killing ectoparasites on dogs. Journal of veterinary science, v. 25, n. 1, p. e5, jan. 2024. TANDONNET, S. et al. A chromosomal-scale reference genome of the New World Screwworm, Cochliomyia hominivorax. DNA Research, v. 30, n. 1, 1 fev. 2023. TAVARES, E. S. et al. Análise do óleo essencial de folhas de três quimiotipos de Lippia alba (Mill.) N. E. Br. (Verbenaceae) cultivados em condições semelhantes. Revista Brasileira de Farmacognosia, v. 15, n. 1, p. 1–5, mar. 2005. TAVARES, M. et al. Trends in insect repellent formulations: A review. International Journal of Pharmaceutics, v. 539, n. 1–2, p. 190–209, mar. 2018. TEIXEIRA, B. et al. Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil. Journal of the Science of Food and Agriculture, v. 93, n. 11, p. 2707–2714, 30 ago. 2013. THOMPSON, J. D. et al. Qualitative and Quantitative Variation in Monoterpene Co- Occurrence and Composition in the Essential Oil of Thymus vulgaris Chemotypes. Journal of Chemical Ecology, v. 29, n. 4, p. 859–880, 2003. TIAN, H. et al. Bioactivity and Sublethal Effects of Ageratina adenophora (Asteraceae) on Bactrocera dorsalis (Diptera: Tephritidae). Journal of Entomological Science, v. 59, n. 1, 26 fev. 2024. TORR, S. J.; HALL, M. J. R. Odour-baited targets to control New World screwworm, Cochliomyia hominivorax (Diptera: Calliphoridae): a preliminary study. Bulletin of Entomological Research, v. 82, n. 3, p. 417–423, 10 set. 1992. 54 UYSAL, B. et al. Essential oil composition and antibacterial activity of the grapefruit (Citrus Paradisi. L) peel essential oils obtained by solvent‐free microwave extraction: comparison with hydrodistillation. International Journal of Food Science & Technology, v. 46, n. 7, p. 1455–1461, 27 jul. 2011. VAN DEN DOOL, H.; KRATZ, P. D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. v. 11, p. 463–471, 1963. VAN DER SLUIJS, J. P. et al. Neonicotinoids, bee disorders and the sustainability of pollinator services. Current Opinion in Environmental Sustainability, v. 5, n. 3–4, p. 293–305, set. 2013. VARGAS-TERÁN, M. et al. Impact of Screwworm Eradication Programmes Using the Sterile Insect Technique. Em: Sterile Insect Technique. Boca Raton: CRC Press, 2021. p. 949–978. VARLOUD, M.; FOURIE, J. J. Onset of efficacy and residual speed of kill over one month of a topical dinotefuran-permethrin-pyriproxyfen combination (Vectra®3D) against the adult cat flea (Ctenocephalides felis felis) on dogs. Veterinary Parasitology, v. 211, n. 1–2, p. 89–92, jun. 2015. VERMA, R. S. et al. Essential oil composition of the sub-aerial parts of eight species of Cymbopogon (Poaceae). Industrial Crops and Products, v. 142, p. 111839, dez. 2019. VIANA, T. DE S. et al. Evaluation of Chilean Boldo Essential Oil as a Natural Insecticide Against Chrysomya megacephala (Diptera: Calliphoridae). Journal of Medical Entomology, v. 57, n. 5, p. 1364–1372, 7 set. 2020. WANG, W. et al. Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chemistry, v. 108, n. 3, p. 1019–1022, jun. 2008. ZAOUALI, Y.; BOUZAINE, T.; BOUSSAID, M. Essential oils composition in two Rosmarinus officinalis L. varieties and incidence for antimicrobial and antioxidant activities. Food and Chemical Toxicology, v. 48, n. 11, p. 3144–3152, nov. 2010. ZENEIDA, T. P. et al. Effect of Cymbopogon citrates (Poaceae) oil and citral on post- embryonic time of blowflies. Journal of Entomology and Nematology, v. 7, n. 6, p. 54–64, 31 dez. 2015. ZHANG, K.; YAO, L. The anxiolytic effect of Juniperus virginiana L. essential oil and determination of its active constituents. Physiology & Behavior, v. 189, p. 50–58, maio 2018. ZHOU, X.; HOHMAN, A. E.; HSU, W. H. Current review of isoxazoline ectoparasiticides used in veterinary medicine. Journal of Veterinary Pharmacology and Therapeutics, v. 45, n. 1, p. 1–15, 17 jan. 2022. ZOUARI, N. Essential Oils Chemotypes: A Less Known Side. Medicinal & Aromatic Plants, v. 02, n. 02, 2013. ZUMPT, F. Myiasis in Man and Animals in the Old World a Textbook for Physicians, Veterinarians and Zoologists. 267p., 1965. | pt_BR |
| dc.subject.cnpq | Microbiologia | pt_BR |
| Appears in Collections: | Doutorado em Ciências Veterinárias | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| MONIQUE TAVEIRA MEDEIROS.pdf | 846.87 kB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
