Por favor, use este identificador para citar o enlazar este ítem: http://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/24397
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorVelez, Afonso Santine Magalhães Mesquita-
dc.date.accessioned2026-02-03T15:45:24Z-
dc.date.available2026-02-03T15:45:24Z-
dc.date.issued2025-11-28-
dc.identifier.citationVELEZ, Afonso Santine Magalhães Mesquita. Hibridação molecular e dimerização de farmacóforos como estratégias no planejamento de novos fármacos para o tratamento de infecções causadas por tripanossomatídeos. 2025. 198 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025.pt_BR
dc.identifier.urihttp://rima110.im.ufrrj.br:8080/jspui/handle/20.500.14407/24397-
dc.description.abstractAs doenças causadas por protozoários tripanossomatídeos têm grande impacto na saúde pública em diferentes regiões do planeta e, até o momento, não dispõem de tratamentos adequados que garantam o bem-estar e a segurança dos pacientes durante os longos períodos de tratamento. Estando majoritariamente presente no continente americano, a doença de Chagas(tripanossomíase americana), causada pelo protozoário hemoflagelado Trypanosoma cruzi, afeta mais de 7 milhões de pessoas em todo o mundo. No continente africano, a doença do sono (trirpanossomíase humana africana), causada pelo Trypanosoma brucei, é um problema atual, visto que a mortalidade desta doença ocorre se não tratada no início de seus sintomas. No continente africano, mais de 55 milhões de pessoas vivem expostas em áreas endêmicas, em risco real de infecção. Considerando a demanda por desenvolvimento de novas alternativas terapêuticas para o tratamento dessas doenças, esse trabalho tem como foco principal o planejamento racional de novas moléculas por meio de duas abordagens distintas. No capítulo 1, trata-se do planejamento de moléculas híbridas, explorando o potencial de derivados sintéticos da amida natural piperina, extraídos dos frutos secos de Piper nigrum, juntamente com grupos farmacofóricos presentes em fármacos comerciais com atividade antiparasitária conhecida, como nitroimidazóis (presentes e responsáveis pela atividade antiparasitária dos fármacos benznidazol, megazol e metronidazol). Todas as moléculas sintetizadas foram avaliadas frente às principais formas morfológicas do T. cruzi, especialmente as formas amastigotas (cepa Tulahuen C2C4-LacZ), bem como frente ao T. brucei, e quanto à sua citotoxicidade em diferentes células de mamíferos. Além dos cálculos de docagem molecular, foram conduzidos cálculos em modelos enzimáticos de TcSDH e de 14DM de T. cruzi para investigar a capacidade inibitória da nova série de ligantes híbridos. Além da hibridação molecular, no Capítulo 2 realizou-se o planejamento racional de compostos diméricos inspirados unicamente no núcleo farmacofórico do benznidazol (2- nitroimidazol), gerados por meio de simples N-alquilações com agentes alquilantes bidentados, o que se mostrou uma estratégia promissora. A avaliação biológica demonstrou que todos os compostos dímeros foram ativos contra formas amastigotas de Trypanosoma cruzi (Tulahuen C2C4-LacZ). Notavelmente, os dímeros de cadeia mais longa exibiram potência notável (CI50 < 1,0 μM); isso confirmou que sua atividade anti- T. cruzi é dependente do tamanho da cadeia metilênica espaçadora, uma vez que os híbridos de cadeia mais longa interagem melhor com a nitroredutase do T. cruzi (TcNTR), que atua na ativação metabólica desses nitroimidazóis (pró-farmacos) no interior da célula do parasito. Esses compostos também mostraram atividade significativa contra T. b. brucei (T. b. brucei 427) e citotoxicidade muito baixa em células de mamíferos, destacando sua seletividade, especialmente em relação aos dímeros de cadeia mais longa. Esses grupos farmacofóricos nitroimidazólicos são de fundamental importância na terapia dessas doenças antiparasitárias, que, apesar de sua baixa eficácia, é uma das poucas que ainda conseguem ter êxito em alguma etapa do tratamento. Todos os compostos de ambas as séries foram caracterizados por IV, RMN 1H e 13C, bem como HRMS. Esse estudo em sua totalidade visa trazer à luz um melhor entendimento do seu funcionamento frente aos diferentes parasitos e hospedeiros, em diferentes abordagens, a fim de promover um melhoramento em sua aplicação nas estruturas de novos candidatos a fármacos, ajudando a desmistificar sua aplicação no desenvolvimento de novos candidatos a protótipos de moléculas com atividade frente a doenças infecciosas parasitárias.pt_BR
dc.description.sponsorshipConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqpt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectPiperinapt_BR
dc.subjectNitroimidazóispt_BR
dc.subjectDoença de Chagaspt_BR
dc.subjectDoença do sonopt_BR
dc.subjectPiperinept_BR
dc.subjectNitroimidazolespt_BR
dc.subjectChagas diseasept_BR
dc.subjectSleeping sicknesspt_BR
dc.titleHibridação molecular e dimerização de farmacóforos como estratégias no planejamento de novos fármacos para o tratamento de infecções causadas por tripanossomatídeospt_BR
dc.title.alternativeMolecular hybridization and dimerization of pharmacophore groups as strategies for designing new drugs to treat infections caused by trypanosomatidsen
dc.typeTesept_BR
dc.description.abstractOtherDiseases caused by trypanosomatid protozoa significantly impact public health worldwide, and effective long- term treatments are still lacking. Predominantly found in the Americas, Chagas disease (American trypanosomiasis), caused by the hemoflagellated protozoan Trypanosoma cruzi, affects over 7 million people globally. In Africa, sleeping sickness (Human African trypanosomiasis), caused by Trypanosoma brucei, remains a serious health threat because of its high fatality rate if not treated early. Over 55 million people live in endemic zones across Africa, facing real risks of infection. Due to the urgent need for new therapeutic options, this work emphasizes the rational design of novel molecules using two approaches. Chapter 1 details the design of hybrids based on synthetic derivatives of the natural amide piperine, extracted from dried Piper nigrum fruits, combined with pharmacophoric groups found in existing antiparasitic drugs like nitroimidazoles (which contribute to the activity of benznidazole, megazol, and metronidazole). All molecules were tested against the primary forms of T. cruzi, especially the amastigote stage (strain Tulahuen C2C4- LacZ), and evaluated for activity against T. brucei and cytotoxicity toward different mammalian cells. Molecular docking and enzymatic models of TcSDH and 14 DM of T. cruzi were used to assess the inhibitory potential of these hybrid ligands. In Chapter 2, the rational design of dimeric compounds was explored, inspired solely by the pharmacophoric core of benznidazole (2- 2- nitroimidazole), created through simple N-alkylation using bidentate alkylating agents — a promising strategy. Biological tests showed all dimeric compounds were active against T. cruzi amastigotes (Tulahuen C 2 C 4- LacZ). Notably, longer-chain dimers displayed remarkable potency (IC50 < 1 1.0 μM), indicating that their activity depends on the length of the methylene spacer; longer chains interact more effectively with T. cruzi nitroreductase (TcNTR), which activates these prodrugs inside the parasite. These compounds also demonstrated significant activity against T. b. brucei (strain 427) and exhibited minimal cytotoxicity in mammalian cells, underscoring their selectivity — especially among the longer-chain dimers. The nitroimidazole pharmacophoric groups are crucial in antiparasitic therapy, which, despite limited efficacy, continues to show some success at certain stages of treatment. All the compounds in both series were characterized by IR, 1H and 13C NMR, as well as HRMS. Overall, this study aims to enhance understanding of their mechanisms of action across different parasites and hosts. It uses multiple approaches to improve the design of new drug candidates and facilitate the development of prototype molecules active against parasitic infections.en
dc.contributor.advisor1Lima, Marco Edilson Freire de-
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-0563-3483pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8392420706762318pt_BR
dc.contributor.advisor2Su, Bin-
dc.contributor.advisor-co1Lima, Debora Decote Ricardo de-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0001-8761-7641pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/3572066508469025pt_BR
dc.contributor.referee1Lima, Marco Edilson Freire de-
dc.contributor.referee1IDhttps://orcid.org/0000-0003-0563-3483pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8392420706762318pt_BR
dc.contributor.referee2Lima, Aurea Echevarria Aznar Neves-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/1879077396134052pt_BR
dc.contributor.referee3Kümmerle, Arthur Eugen-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5598000938584486pt_BR
dc.contributor.referee4Covre, Luciana Polaco-
dc.contributor.referee4IDhttps://orcid.org/0000-0001-5877-0137pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/6121567151595747pt_BR
dc.contributor.referee5Regasini, Luis Octavio-
dc.contributor.referee5IDhttps://orcid.org/0000-0001-8574-0670pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/0992736452764550pt_BR
dc.creator.IDhttps://orcid.org/0000-0002-7188-833Xpt_BR
dc.creator.Latteshttp://lattes.cnpq.br/0523866937741746pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Químicapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Químicapt_BR
dc.relation.referencesACUNHA, Thiago V.; CHAVES, Otávio A.; IGLESIAS, Bernardo A. Fluorescent pyrene moiety in fluorinated C 6 F 5 -corroles increases the interaction with HSA and CT-DNA. Journal of Porphyrins and Phthalocyanines, v. 25, n. 02, p. 75-94, 17 feb. 168 2021. Disponível em: <https://www.worldscientific.com/doi/abs/10.1142/S1088424620500534>. ADASME, Melissa F et al. PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, v. 49, n. W1, p. W530- W534, 2 jul. 2021. Disponível em: <https://academic.oup.com/nar/article/49/W1/W530/6266421>. ALCANTARA, Carolina de Lima et al. Host Organelle Interactions Facilitate Cholesterol Acquisition by Trypanosoma cruzi Amastigotes. Journal of Eukaryotic Microbiology, v. 72, n. 4, 20 jul. 2025. Disponível em: <https://onlinelibrary.wiley.com/doi/10.1111/jeu.70027>. ALENCAR, Mayke B. et al. Energy metabolism in Trypanosoma cruzi : the validated and putative bioenergetic and carbon sources. mBio, v. 16, n. 6, 11 juny 2025. Disponível em: <https://journals.asm.org/doi/10.1128/mbio.02215-24>. ALSTON, Theodore A.; ABELES, Robert H. Enzymatic conversion of the antibiotic metronidazole to an analog of thiamine. Archives of Biochemistry and Biophysics, v. 257, n. 2, p. 357-362, set. 1987. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/0003986187905777>. ANDRADE-NETO, Valter Viana et al. Host cholesterol influences the activity of sterol biosynthesis inhibitors in Leishmania amazonensis. Memorias do Instituto Oswaldo Cruz, v. 117, n. February, p. 3-8, 2022. ANDRADE-NETO, Valter Viana et al. The pharmacological inhibition of sterol biosynthesis in Leishmania is counteracted by enhancement of LDL endocytosis. Acta Tropica, v. 119, n. 2-3, p. 194-198, 2011. ANG, Chee Wei et al. Nitroimidazoles: Molecular Fireworks That Combat a Broad Spectrum of Infectious Diseases. Journal of Medicinal Chemistry, v. 60, n. 18, p. 7636- 7657, 2017a. ANG, Chee Wei et al. Nitroimidazoles: Molecular Fireworks That Combat a Broad Spectrum of Infectious Diseases. Journal of Medicinal Chemistry, v. 60, n. 18, p. 7636- 7657, 28 set. 2017b. Disponível em: <https://pubs.acs.org/doi/10.1021/acs.jmedchem.7b00143>. 169 ARAÚJO, Cleônia Roberta Melo et al. DRUG DEVELOPMENT BY MOLECULAR HYBRIDIZATION: A MEDICINAL CHEMISTRY PRACTICE CLASS USING PARACETAMOL AND SULFADIAZINE TABLETS AND THE VIRTUAL TOOL SciFinder ®. Química Nova, 2015. Disponível em: <http://www.gnresearch.org/doi/10.5935/0100-4042.20150053>. AZZAM, Rasha A. et al. Crystal structure of 2-{[5-(methylsulfanyl)-4-phenyl-4 H -1,2,4- triazol-3-yl]methyl}benzo[ d ]thiazole. Acta Crystallographica Section E Crystallographic Communications, v. 79, n. 9, p. 817-820, 1 set. 2023. Disponível em: <https://scripts.iucr.org/cgi-bin/paper?S2056989023007041>. BAHIA, Samara Ben B.B. et al. Molecular hybridization as a powerful tool towards multitarget quinoidal systems: Synthesis, trypanocidal and antitumor activities of naphthoquinone-based 5-iodo-1,4-disubstituted-, 1,4- and 1,5-disubstituted-1,2,3- triazoles. MedChemComm, v. 7, n. 8, p. 1555-1563, 2016. Disponível em: <http://dx.doi.org/10.1039/C6MD00216A>. BARBARAS, Damien et al. Potent and selective antiplasmodial activity of the cyanobacterial alkaloid nostocarboline and its dimers. Bioorganic and Medicinal Chemistry Letters, v. 18, n. 15, p. 4413-4415, 2008a. BARBARAS, Damien et al. Potent and selective antiplasmodial activity of the cyanobacterial alkaloid nostocarboline and its dimers. Bioorganic & Medicinal Chemistry Letters, v. 18, n. 15, p. 4413-4415, ago. 2008b. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0960894X08006987>. BARREIRO, E. J.; FRAGA, C. A. M. Química Medicinal As Bases Moleculares Da Ação Dos Fármacos. 2a Edição ed. [S.l: s.n.], 2008. Disponível em: <https://www.academia.edu/23615105/Eliezer_J._Barreiro_Química_Medicinal_As_Ba ses_Moleculares_Da_Ação_Dos_Fármacos_2a_Edição>. Acesso em: 21 abr. 2020. BARRETT, Michael P. The rise and fall of sleeping sickness. The Lancet, v. 367, n. 9520, p. 1377-1378, abr. 2006. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0140673606685917>. BARROSO FERREIRA, Renata Trotta; BRANQUINHO, Maria Regina; CARDARELLI-LEITE, Paola. Transmissão oral da doença de Chagas pelo consumo de açaí: um desafio para a Vigilância Sanitária. Vigilância Sanitária em Debate, v. 2, n. 4, 170 25 nov. 2014. Disponível em: <http://www.visaemdebate.incqs.fiocruz.br/index.php/visaemdebate/article/view/358/16 0>. BATEMAN, Alex et al. UniProt: the Universal Protein Knowledgebase in 2025. Nucleic Acids Research, v. 53, n. D1, p. D609-D617, 6 gen. 2025. Disponível em: <https://academic.oup.com/nar/article/53/D1/D609/7902999>. BELTRAN-HORTELANO, Iván et al. The role of imidazole and benzimidazole heterocycles in Chagas disease: A review. European Journal of Medicinal Chemistry, v. 206, p. 112692, nov. 2020. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0223523420306644>. BERUBE, Gervais. Natural and Synthetic Biologically Active Dimeric Molecules: Anticancer Agents, Anti-HIV Agents, Steroid Derivatives and Opioid Antagonists. Current Medicinal Chemistry, v. 13, n. 2, p. 131-154, 2005. BESTEIRO, Sébastien et al. Energy generation in insect stages of Trypanosoma brucei: metabolism in flux. Trends in Parasitology, v. 21, n. 4, p. 185-191, abr. 2005. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S1471492205000486>. BOBBA, Viharika et al. Synthesis and biological evaluation of imidamide analogs as selective anti-trypanosomal agents. Bioorganic and Medicinal Chemistry, v. 61, n. February, p. 116740, 2022. Disponível em: <https://doi.org/10.1016/j.bmc.2022.116740>. BRUKER (2007). APEX3 V2019.1-0. BRUKER AXS INC., MADISON, WISCONSIN, USA. No Title. [S.d.]. Bruker (2013). SAINT v8.40A. Bruker AXS Inc., Madison, Wisconsin, USA. [S.d.]. BRUN, Reto et al. Human African trypanosomiasis. The Lancet, v. 375, n. 9709, p. 148- 159, gen. 2010. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0140673609608291>. BUCKNER, Frederick S et al. Efficient Technique for Screening Drugs for Activity against. Microbiology, v. 40, n. 11, p. 2592-2597, 1996. BUSATTI, Haendel G. N. O. et al. Effect of metronidazole analogues on Giardia lamblia cultures. Parasitology Research, v. 102, n. 1, p. 145-149, 18 oct. 2007. Disponível em: 171 <https://linkinghub.elsevier.com/retrieve/pii/S0732889312004440>. BÜSCHER, Philippe et al. Human African trypanosomiasis. The Lancet, v. 390, n. 10110, p. 2397-2409, 25 nov. 2017. BUTLER, Mark S. et al. Natural product-derived compounds in clinical trials and drug approvals. Natural Product Reports, 2025. Disponível em: <https://xlink.rsc.org/?DOI=D5NP00031A>. CANTEY, Paul T. et al. CDC - Chagas Disease - Epidemiology & Risk Factors. Transfusion, v. 52, n. 9, p. 1922-1930, set. 2019. CARNEVALLIA, DENISE BERTIN; ARAÚJO, Ana Paula Serra De. Atividade Biológica da Pimenta Preta (Piper nigrun L.): Revisão de Literatura. UNICIÊNCIAS, v. v. 17, n., p. 41-46, 2013. CDC - CENTERS FOR DISEASE CONTROL AND PREVENTION. American Trypanosomiasis. Disponível em: <https://www.cdc.gov/dpdx/trypanosomiasisamerican/index.html>. Acesso em: 26 juny 2024. CDC - CENTERS FOR DISEASE CONTROL AND PREVENTION. Tripanossomíase Africana. Disponível em: <https://www.cdc.gov/dpdx/trypanosomiasisafrican/index.html>. Acesso em: 21 nov. 2023. CHAGAS, Carlos. Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Memórias do Instituto Oswaldo Cruz, v. 1, n. 2, p. 159-218, ago. 1909. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074- 02761909000200008&lng=pt&tlng=pt>. CHAVES, Otávio et al. Fluorescence and Docking Studies of the Interaction between Human Serum Albumin and Pheophytin. Molecules, v. 20, n. 10, p. 19526-19539, 27 oct. 2015. Disponível em: <http://www.mdpi.com/1420-3049/20/10/19526>. CHAVES, Otávio A. et al. In situ ultra-fast heat deposition does not perturb the structure of serum albumin. Photochemical & Photobiological Sciences, v. 15, n. 12, p. 1524-1535, 1 des. 2016. Disponível em: <https://link.springer.com/10.1039/c6pp00209a>. 172 CHAVES, Otávio A. et al. Increasing the polarity of β-lapachone does not affect its binding capacity with bovine plasma protein. International Journal of Biological Macromolecules, v. 263, p. 130279, abr. 2024. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0141813024010821>. CHAVES, Otávio A. et al. Interaction of Two Commercial Azobenzene Food Dyes, Amaranth and New Coccine, with Human Serum Albumin: Biophysical Characterization. ACS Food Science & Technology, v. 3, n. 5, p. 955-968, 19 maig 2023. Disponível em: <https://pubs.acs.org/doi/10.1021/acsfoodscitech.3c00125>. CHAVES, Otávio Augusto et al. A Study of the Interaction Between trans - Dehydrocrotonin, a Bioactive Natural 19- nor -Clerodane, and Serum Albumin. Journal of the Brazilian Chemical Society, 2016. Disponível em: <https://jbcs.sbq.org.br/audiencia_pdf.asp?aid2=4608&nomeArquivo=160021AR.pdf>. CHAVES, Otávio Augusto et al. Effect of peripheral platinum(II) bipyridyl complexes on the interaction of tetra-cationic porphyrins with human serum albumin. Journal of Molecular Liquids, v. 301, p. 112466, març 2020. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0167732219335238>. CHAVES, Otávio Augusto et al. In Vitro Study of the Interaction Between HSA and 4‐ Bromoindolylchalcone, a Potent Human MAO‐B Inhibitor: Spectroscopic and Molecular Modeling Studies. ChemistrySelect, v. 4, n. 3, p. 1007-1014, 23 gen. 2019. Disponível em: <https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.201802665>. CHAVES, Otávio Augusto et al. Investigation of interaction between human plasmatic albumin and potential fluorinated anti-trypanosomal drugs. Journal of Fluorine Chemistry, v. 199, p. 103-112, jul. 2017. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0022113917301409>. CHAVES, Otávio Augusto et al. Studies on the toxic effects of three regioisomeric methoxylated xanthones against Trypanosoma cruzi amastigotes and their binding with human serum albumin. International Journal of Biological Macromolecules, v. 323, p. 147020, set. 2025. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0141813025075774>. CHAVES, Otávio Augusto et al. Synthetic dimethoxyxanthones bind similarly to human serum albumin compared with highly oxygenated xanthones. Chemical Physics Impact, 173 v. 8, p. 100411, juny 2024. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S2667022423002505>. CHEMAXON. MarvinSketch v23.1.0. . [S.l: s.n.]. Disponível em: <http://www.chemaxon.com>. , 2024 CHEN, Shui-Sheng. The roles of imidazole ligands in coordination supramolecular systems. CrystEngComm, v. 18, n. 35, p. 6543-6565, 2016. Disponível em: <http://xlink.rsc.org/?DOI=C6CE01258B>. CHEN ZHONGPING et al. Um Veículo de Medicamento de Lipossoma com Resposta a Hipóxia e seu Método de Preparação e Aplicação. . China: [s.n.]. , 2017 CHENG, Weiyan et al. Identification of novel 4-anilinoquinazoline derivatives as potent EGFR inhibitors both under normoxia and hypoxia. Bioorganic & Medicinal Chemistry, v. 22, n. 24, p. 6796-6805, des. 2014. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S096808961400769X>. CHOI, Jun Yong; PODUST, Larissa M.; ROUSH, William R. Drug Strategies Targeting CYP51 in Neglected Tropical Diseases. Chemical Reviews, v. 114, n. 22, p. 11242-11271, 26 nov. 2014. Disponível em: <https://pubs.acs.org/doi/10.1021/cr5003134>. CHOW, Larry; CHAN, Tak. Novel Classes of Dimer Antitumour Drug Candidates. Current Pharmaceutical Design, v. 15, n. 6, p. 659-674, 2009. CHURCH, Deirdre L.; RABIN, Harvey R.; LAISHLEY, Edward J. Reduction of 2- , 4- and 5-nitroimidazole drugs by hydrogenase 1 in clostridium pasteurianum. Journal of Antimicrobial Chemotherapy, v. 25, n. 1, p. 15-23, 1990. CIRQUEIRA, Marília L. et al. Trypanosoma cruzi nitroreductase: Structural features and interaction with biological membranes. International Journal of Biological Macromolecules, v. 221, p. 891-899, nov. 2022. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0141813022020050>. CLAUDIO VIEGAS-JUNIOR; ELIEZER J. BARREIRO; CARLOS ALBERTO MANSSOUR FRAGA. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Current Medicinal Chemistry, v. 14, n. 17, p. 1829-1852, 1 jul. 2007. Disponível em: <http://www.eurekaselect.com/openurl/content.php?genre=article&issn=0929- 174 8673&volume=14&issue=17&spage=1829>. COPPENS, Isabelle; COURTOY, Pierre J. Exogenous and endogenous sources of sterols in the culture-adapted procyclic trypomastigotes of Trypanosoma brucei. Molecular and Biochemical Parasitology, v. 73, n. 1-2, p. 179-188, 1995. COSAR, C; JULOU, L. [The activity of 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole (R. P. 8823) against experimental Trichomonas vaginalis infections]. Annales de l’Institut Pasteur, v. 96, n. 2, p. 238-41, feb. 1959. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/13627590>. COSTA-TUNA, Andreia et al. Interaction between a water-soluble anionic porphyrin and human serum albumin unexpectedly stimulates the aggregation of the photosensitizer at the surface of the albumin. International Journal of Biological Macromolecules, v. 255, p. 128210, gen. 2024. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0141813023051097>. COURA, José Rodrigues; DE CASTRO, Solange L. A critical review on chagas disease chemotherapy. Memorias do Instituto Oswaldo Cruz, v. 97, n. 1, p. 3-24, 2002. CROSSLAND, Ronald K.; SERVIS, Kenneth L. Facile synthesis of methanesulfonate esters. The Journal of Organic Chemistry, v. 35, n. 9, p. 3195-3196, set. 1970. Disponível em: <https://pubs.acs.org/doi/abs/10.1021/jo00834a087>. CUNHA, Eleonora Lima Alves et al. Benznidazole, itraconazole, and their combination for the treatment of chronic experimental Chagas disease in dogs. Experimental Parasitology, v. 238, n. January, 2022. CUNHA, Eleonora Lima Alves et al. Benznidazole, itraconazole and their combination in the treatment of acute experimental chagas disease in dogs. Experimental Parasitology, v. 204, n. May, p. 107711, 2019. Disponível em: <https://doi.org/10.1016/j.exppara.2019.05.005>. DA ROSA, Rafael; SCHENKEL, Eloir Paulo; CAMPOS BERNARDES, Lílian Sibelle. Semisynthetic and newly designed derivatives based on natural chemical scaffolds: moving beyond natural products to fight Trypanosoma cruzi. Phytochemistry Reviews, v. 19, n. 1, p. 105-122, 2020. DA SILVA FERREIRA, Welisson et al. Novel 1,3,4-thiadiazolium-2-phenylamine 175 chlorides derived from natural piperine as trypanocidal agents: chemical and biological studies. Bioorganic & medicinal chemistry, v. 16, n. 6, p. 2984-91, 15 març 2008. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/18226906>. DA SILVA FERREIRA, Welisson. PLANEJAMENTO, SÍNTESE E AVALIAÇÃO DAS ATIVIDADES ANTIFÚNGICA E TRIPANOCIDA DA PIPERINA E DERIVADOS DO NÚCLEO 1,3,4-OXADIAZOL-2-TIONA. 2014. 1-275 f. UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA, 2014. DAINA, Antoine; MICHIELIN, Olivier; ZOETE, Vincent. ILOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. Journal of Chemical Information and Modeling, v. 54, n. 12, p. 3284- 3301, 22 des. 2014. Disponível em: <https://pubs.acs.org/doi/abs/10.1021/ci500467k>. Acesso em: 1 març 2023. DAINA, Antoine; MICHIELIN, Olivier; ZOETE, Vincent. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, v. 7, n. 1, p. 42717, 3 març 2017. Disponível em: <https://www.nature.com/articles/srep42717>. DASILVA, E et al. Synthesis, and biological evaluation of new 1,3,4-thiadiazolium-2- phenylamine derivatives against promastigotes and amastigotes. European Journal of Medicinal Chemistry, v. 37, n. 12, p. 979-984, 1 des. 2002. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0223523402014010>. DE CICCO, Nuccia N.T. et al. LDL uptake by Leishmania amazonensis: Involvement of membrane lipid microdomains. Experimental Parasitology, v. 130, n. 4, p. 330-340, 2012. Disponível em: <http://dx.doi.org/10.1016/j.exppara.2012.02.014>. DEMIR, Yeliz et al. Enzyme inhibition, molecular docking, and density functional theory studies of new thiosemicarbazones incorporating the 4‐hydroxy‐3,5‐dimethoxy benzaldehyde motif. Archiv der Pharmazie, v. 356, n. 4, 27 abr. 2023. Disponível em: <https://onlinelibrary.wiley.com/doi/10.1002/ardp.202200554>. DIAS, Luiz C. et al. Quimioterapia da doença de Chagas: estado da arte e perspectivas no desenvolvimento de novos fármacos. Química Nova, v. 32, n. 9, p. 2444-2457, 2009. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100- 176 40422009000900038&lng=pt&nrm=iso&tlng=pt>. DIXON, Honor; GINGER, C.D.; WILLIAMSON, J. Trypanosome sterols and their metabolic origins. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, v. 41, n. 1, p. 1-18, gen. 1972. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/0305049172900028>. DOMINGO-FERNÁNDEZ, Daniel et al. Natural Products Have Increased Rates of Clinical Trial Success throughout the Drug Development Process. Journal of Natural Products, v. 87, n. 7, p. 1844-1851, 26 jul. 2024. Disponível em: <https://pubs.acs.org/doi/10.1021/acs.jnatprod.4c00581>. DUMOULIN, Peter C. et al. Endogenous Sterol Synthesis Is Dispensable for Trypanosoma cruzi Epimastigote Growth but Not Stress Tolerance. Frontiers in Microbiology, v. 13, 17 juny 2022. Disponível em: <https://www.frontiersin.org/articles/10.3389/fmicb.2022.937910/full>. EDWARDS, David I. Mechanisms of selective toxicity of metronidazole and other nitroimidazole drugs. Sexually Transmitted Infections, v. 56, n. 5, p. 285-290, 1 oct. 1980. Disponível em: <https://sti.bmj.com/lookup/doi/10.1136/sti.56.5.285>. EL-EMAM, Ali et al. Synthesis, antimicrobial, and anti-inflammatory activity, of novel S-substituted and N-substituted 5-(1-adamantyl)-1,2,4-triazole-3-thiols. Drug Design, Development and Therapy, v. 8, p. 505, maig 2014. Disponível em: <http://www.dovepress.com/synthesis-antimicrobial-and-anti-inflammatory-activity-of- novel-s-subs-peer-reviewed-article-DDDT>. FERREIRA, C. et al. Leishmanicidal effects of piperine, its derivatives, and analogues on Leishmania amazonensis. Phytochemistry, v. 72, n. 17, p. 2155-2164, 2011. FERREIRA, Welisson S. et al. Piperine, its Analogues and Derivatives: Potencial as Antiparasitic Drugs. Revista Virtual de Química, v. 4, n. 3, 2012. Disponível em: <http://www.gnresearch.org/doi/10.5935/1984-6835.20120018>. FIOCRUZ. CICLO EVOLUTIVO. Disponível em: <http://chagas.fiocruz.br/ciclo- evolutivo/#:~:text=cruzi possui variações morfológicas e,interior das células de mamíferos.>. Acesso em: 9 jul. 2020. FIOCRUZ. Novo acordo da Fiocruz com a Bayer visa impulsionar tratamento da doença 177 de Chagas. Disponível em: <https://portal.fiocruz.br/en/news/2023/12/new-fiocruz- agreement-bayer-aims-boost-chagas-disease-treatment>. Acesso em: 26 juny 2024. FOOD AND AGRICULTURAL ORGANIZATION OF THE UNITED NATIONS. STANDARD FOR BLACK, WHITE AND GREEN PEPPERS. Disponível em: <https://www.fao.org/fao-who-codexalimentarius/sh- proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fc odex%252FStandards%252FCXS%2B326-2017%252FCXS_326e.pdf>. Acesso em: 18 març 2024. FRANCO, Caio H. et al. Novel structural CYP51 mutation in Trypanosoma cruzi associated with multidrug resistance to CYP51 inhibitors and reduced infectivity. International Journal for Parasitology: Drugs and Drug Resistance, v. 13, p. 107-120, ago. 2020. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S2211320720300142>. FRANCO, Lucas Silva et al. Exploring the Conformational Effects of N - and C - Methylation of N -Acylhydrazones. ACS Omega, v. 10, n. 17, p. 17993-18004, 6 maig 2025. Disponível em: <https://pubs.acs.org/doi/10.1021/acsomega.5c01289>. FRANKLIM, Tatiany et al. Design, Synthesis and Trypanocidal Evaluation of Novel 1,2,4-Triazoles-3-thiones Derived from Natural Piperine. Molecules, v. 18, n. 6, p. 6366- 6382, 29 maig 2013. Disponível em: <http://www.mdpi.com/1420-3049/18/6/6366>. FREIRE-DE-LIMA, Leonardo et al. The toxic effects of piperine against Trypanosoma cruzi: ultrastructural alterations and reversible blockage of cytokinesis in epimastigote forms. Parasitology Research, v. 102, n. 5, p. 1059-1067, 29 abr. 2008. Disponível em: <http://link.springer.com/10.1007/s00436-008-0876-9>. FU, Li et al. ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Research, v. 52, n. W1, p. W422-W431, 5 jul. 2024. Disponível em: <https://academic.oup.com/nar/article/52/W1/W422/7640525>. FUKUNISHI, Yoshifumi; MIKAMI, Yoshiaki; NAKAMURA, Haruki. The Filling Potential Method: A Method for Estimating the Free Energy Surface for Protein−Ligand Docking. The Journal of Physical Chemistry B, v. 107, n. 47, p. 13201-13210, 1 nov. 2003. Disponível em: <https://pubs.acs.org/doi/10.1021/jp035478e>. 178 FUKUNISHI, Yoshifumi; NAKAMURA, Haruki. Improved Estimation of Protein- Ligand Binding Free Energy by Using the Ligand-Entropy and Mobility of Water Molecules. Pharmaceuticals, v. 6, n. 5, p. 604-622, 26 abr. 2013. Disponível em: <https://www.mdpi.com/1424-8247/6/5/604>. GARCIA, S. et al. Treatment with Benznidazole during the Chronic Phase of Experimental Chagas’ Disease Decreases Cardiac Alterations. Antimicrobial Agents and Chemotherapy, v. 49, n. 4, p. 1521-1528, 1 abr. 2005. Disponível em: <https://www.arca.fiocruz.br/handle/icict/2826>. GONZALEZ-SANZ, Marta et al. Chagas Disease in Europe. Tropical Medicine and Infectious Disease, v. 8, n. 12, p. 1-14, 2023. GUEX, Nicolas; PEITSCH, Manuel C. SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling. ELECTROPHORESIS, v. 18, n. 15, p. 2714-2723, 14 gen. 1997. Disponível em: <https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/elps.115018150 5>. HALL, Belinda S.; WILKINSON, Shane R. Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrobial Agents and Chemotherapy, v. 56, n. 1, p. 115-123, 2012. HARADA, Shigeharu et al. Diversity of parasite complex II. Biochimica et Biophysica Acta (BBA) - Bioenergetics, v. 1827, n. 5, p. 658-667, maig 2013. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0005272813000091>. HOTEZ, Peter J. et al. Control of Neglected Tropical Diseases. New England Journal of Medicine, v. 357, n. 10, p. 1018-1027, 6 set. 2007. Disponível em: <http://www.nejm.org/doi/abs/10.1056/NEJMra064142>. IBGE. LEVANTAMENTO SISTEMÁTICO DA PRODUÇÃO AGRÍCOLA. Disponível em: <https://ftp.ibge.gov.br/Producao_Agricola/Levantamento_Sistematico_da_Producao_A gricola_%5Bmensal%5D/Fasciculo/2017/lspa_201709.pdf>. Acesso em: 26 juny 2024. IHMT. Doenças Tropicais Negligenciadas anotações preliminares 1. . [S.l: s.n.]. Disponível em: <https://www.ihmt.unl.pt/glossary/doencas-tropicais-negligenciadas/>. Acesso em: 16 abr. 2020. , 2020 179 IKAN, Raphael. Natural Products. 2nd Editio ed. [S.l.]: Elsevier, 1991. Disponível em: <https://www.elsevier.com/books/natural-products/ikan/978-0-08-051242-6>. IQVIA. Medicine Spending and Affordability in the U.S. Disponível em: <https://www.iqvia.com/insights/the-iqvia-institute/reports-and- publications/reports/medicine-spending-and-affordability-in-the-us>. Acesso em: 17 nov. 2023. IZUMI, Erika et al. Natural products and Chagas’ disease: A review of plant compounds studied for activity against Trypanosoma cruzi. Natural Product Reports, v. 28, n. 4, p. 809-823, 2011. JAGTAP, Sangeeta. Heck reaction—State of the art. Catalysts, v. 7, n. 9, 2017. JAYAKANTHAN, Mannu et al. Analysis of CYP3A4-HIV-1 protease drugs interactions by computational methods for Highly Active Antiretroviral Therapy in HIV/AIDS. Journal of Molecular Graphics and Modelling, v. 28, n. 5, p. 455-463, gen. 2010. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S1093326309001582>. JEYADEVAN, J. Prince et al. Antimalarial and Antitumor Evaluation of Novel C-10 Non-Acetal Dimers of 10β-(2-Hydroxyethyl)deoxoartemisinin. Journal of Medicinal Chemistry, v. 47, n. 5, p. 1290-1298, 2004. JI, Yi-Qiong; TIAN, Qiu; LIU, Yang. Crystal structure of (α)-N-tert-butyl-C-(3,4- methylenedioxyphenyl) nitrone, C12H15NO3. Zeitschrift für Kristallographie - New Crystal Structures, v. 223, n. 4, p. 531-532, des. 2008. Disponível em: <https://www.degruyter.com/document/doi/10.1524/ncrs.2008.0232/html>. JONES, Gareth et al. Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen. Journal of Molecular Biology, v. 267, n. 3, p. 727- 748, abr. 1997. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0022283696908979>. JUN, Yuan et al. The crystal structure of 1-propyl-2-nitro-imidazole oxide, C 6 H 9 N 3 O 3. Zeitschrift für Kristallographie - New Crystal Structures, v. 238, n. 5, p. 917-918, 26 oct. 2023. Disponível em: <https://www.degruyter.com/document/doi/10.1515/ncrs- 2023-0274/html>. KANDE BETU KUMESU, Victor et al. Safety and efficacy of oral fexinidazole in 180 children with gambiense human African trypanosomiasis: a multicentre, single-arm, open-label, phase 2–3 trial. The Lancet Global Health, v. 10, n. 11, p. e1665-e1674, 1 nov. 2022. Disponível em: <https://dndi.org/scientific-articles/2022/safety-efficacy-oral- fexinidazole-children-with-gambiense-human-african-trypanosomiasis/>. Acesso em: 28 ago. 2025. KAPIL, A. Piperine: A Potent Inhibitor of Leishmania donovani Promastigotes in vitro. Planta Medica, v. 59, n. 05, p. 474-474, 4 oct. 1993. Disponível em: <http://www.thieme- connect.de/DOI/DOI?10.1055/s-2006-959737>. KAYSER, O.; KIDERLEN, A. F.; CROFT, S. L. Natural products as antiparasitic drugs. Parasitology Research, v. 90, p. S55-S62, 1 juny 2003. Disponível em: <http://link.springer.com/10.1007/s00436-002-0768-3>. KEDDERIS, Gregory L.; MIWA, Gerald T. The metabolic activation of nitroheterocyclic therapeutic agents. Drug Metabolism Reviews, v. 19, n. 1, p. 33-62, 22 gen. 1988. Disponível em: <http://www.tandfonline.com/doi/full/10.3109/03602538809049618>. KELLEY, Lawrence A et al. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, v. 10, n. 6, p. 845-858, 7 juny 2015. Disponível em: <https://www.nature.com/articles/nprot.2015.053>. KLAMT, A.; SCHÜÜRMANN, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 2, n. 5, p. 799-805, 1993. Disponível em: <https://xlink.rsc.org/?DOI=P29930000799>. KNOX, Richard J.; KNIGHT, Richard C.; EDWARDS, David I. Studies on the action of nitroimidazole drugs. Biochemical Pharmacology, v. 32, n. 14, p. 2149-2156, 1983. KROPP, Paul J. Photobehavior of alkyl halides in solution: radical, carbocation, and carbene intermediates. Accounts of Chemical Research, v. 17, n. 4, p. 131-137, abr. 1984. Disponível em: <https://pubs.acs.org/doi/abs/10.1021/ar00100a003>. KUMAR, Priti; NAGARAJAN, Arvindhan; UCHIL, Pradeep D. Analysis of Cell Viability by the MTT Assay. Cold Spring Harbor Protocols, v. 2018, n. 6, p. pdb.prot095505, 1 juny 2018. Disponível em: <http://www.cshprotocols.org/lookup/doi/10.1101/pdb.prot095505>. 181 KUMARI, Shikha et al. Amide Bond Bioisosteres: Strategies, Synthesis, and Successes. Journal of Medicinal Chemistry, v. 63, n. 21, p. 12290-12358, 2020. LEE, Bruce Y et al. Global economic burden of Chagas disease: a computational simulation model. The Lancet Infectious Diseases, v. 13, n. 4, p. 342-348, abr. 2013. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S1473309913700021>. LEITSCH, David et al. Nitroimidazole drugs vary in their mode of action in the human parasite Giardia lamblia. International Journal for Parasitology: Drugs and Drug Resistance, v. 2, p. 166-170, des. 2012. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S2211320712000176>. LEPESHEVA, Galina I. et al. CYP51: A Major Drug Target in the Cytochrome P450 Superfamily. Lipids, v. 43, n. 12, p. 1117-1125, 4 des. 2008. Disponível em: <https://aocs.onlinelibrary.wiley.com/doi/10.1007/s11745-008-3225-y>. LEPESHEVA, Galina I. et al. Structural Insights into Inhibition of Sterol 14α- Demethylase in the Human Pathogen Trypanosoma cruzi. Journal of Biological Chemistry, v. 285, n. 33, p. 25582-25590, ago. 2010. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0021925820599432>. LIEBESCHUETZ, John W.; COLE, Jason C.; KORB, Oliver. Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test. Journal of Computer-Aided Molecular Design, v. 26, n. 6, p. 737-748, 28 juny 2012. Disponível em: <http://link.springer.com/10.1007/s10822-012-9551-4>. LIMA, Sérgio Beltrão de Andrade et al. Monitoramento de casos da Doença de Chagas Aguda no Brasil: um estudo descritivo. Research, Society and Development, v. 11, n. 4, p. e27311427487, 18 març 2022. Disponível em: <https://rsdjournal.org/index.php/rsd/article/view/27487>. LIPINSKI, Christopher A. et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, v. 46, n. SUPPL., p. 3–26, 2001. LONG, Anthony; PARRICK, John; HODGKISS, Richard J. An Efficient Procedure for the 1-Alkylation of 2-Nitroimidazoles and the Synthesis of a Probe for Hypoxia in Solid Tumours. Synthesis, v. 1991, n. 09, p. 709-713, 1991. Disponível em: <http://www.thieme-connect.de/DOI/DOI?10.1055/s-1991-26552>. 182 LU, Shin-Hua et al. The discovery of potential acetylcholinesterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies. Journal of Biomedical Science, v. 18, n. 1, p. 8, 21 des. 2011. Disponível em: <https://jbiomedsci.biomedcentral.com/articles/10.1186/1423-0127-18-8>. MACHADO, Felipe P. et al. Synthesis of Novel Tetra-Substituted Pyrazole Derivatives Using Microwave Irradiation and Their Anti-Leukemic Activity Against Jurkat Cells. Molecules, v. 30, n. 13, p. 2880, 7 jul. 2025. Disponível em: <https://www.mdpi.com/1420-3049/30/13/2880>. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J., J. Appl. Cryst. 2006, 39, 453-457. [S.d.]. MARTÍN-ESCOLANO, Javier et al. An Updated View of the Trypanosoma cruzi Life Cycle: Intervention Points for an Effective Treatment. ACS infectious diseases, v. 8, n. 6, p. 1107-1115, 10 juny 2022. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/35652513/>. Acesso em: 3 abr. 2025. MARTINS, Francisco Mainardi et al. Synthesis, Structural Characterization, and In Silico Antiviral Prediction of Novel DyIII-, YIII-, and EuIII-Pyridoxal Helicates. Inorganics, v. 13, n. 8, p. 252, 23 jul. 2025. Disponível em: <https://www.mdpi.com/2304- 6740/13/8/252>. MAX W. MILLER, HAROLD L. HOWES, JR., ROBERT V. KASUBICK, AND ARTHUR R. ENGLIS. Alkylation of 2-Methyl-5-nitroimidazole. Some Potent Antiprotozoal Agents. v. 13, n. 1967, p. 849-852, 1970. MAYA, Juan Diego et al. Trypanosoma cruzi: Effect and mode of action of nitroimidazole and nitrofuran derivatives. Biochemical Pharmacology, v. 65, n. 6, p. 999- 1006, 2003. MAYER, João C. P. et al. Synthesis, spectroscopic characterization and DNA/HSA binding studies of (phenyl/naphthyl)ethenyl-substituted 1,3,4-oxadiazolyl-1,2,4- oxadiazoles. New Journal of Chemistry, v. 45, n. 1, p. 471-484, 2021. Disponível em: <https://xlink.rsc.org/?DOI=D0NJ04530F>. MAZZETI, Ana Lia et al. Combination therapy using nitro compounds improves the efficacy of experimental Chagas disease treatment. Parasitology, v. 148, n. 11, p. 1320- 1327, 2021. 183 MENDONÇA, Andréa Aparecida Santos et al. Relevance of Trypanothione Reductase Inhibitors on Trypanosoma cruzi Infection: A Systematic Review, Meta-Analysis, and In Silico Integrated Approach. Oxidative Medicine and Cellular Longevity, v. 2018, p. 1-20, 24 oct. 2018. Disponível em: <https://www.hindawi.com/journals/omcl/2018/8676578/>. MICROSOFT CORPORATION. Microsoft Excel. . [S.l: s.n.]. Disponível em: <https://office.microsoft.com/excel>. , 2025 MICSONAI, András et al. BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Research, v. 46, n. W1, p. W315-W322, 2 jul. 2018. Disponível em: <https://academic.oup.com/nar/article/46/W1/W315/5035652>. MINISTÉRIO DA SAÚDE BR. Ministério da Saúde investiu mais de R$27 milhões para combater transmissão da doença de Chagas no Brasil. Disponível em: <https://www.gov.br/saude/pt-br/assuntos/noticias/2022/dezembro/ministerio-da-saude- investiu-mais-de-r-27-milhoes-para-combater-transmissao-da-doenca-de-chagas-no- brasil#:~:text=Ano passado%2C o Ministério da,com foco na transmissão congênita.>. Acesso em: 26 juny 2024. MONTALTI, Marco et al. Handbook of Photochemistry. [S.l.]: CRC Press, 2006. Disponível em: <https://www.taylorfrancis.com/books/9781420015195>. MORALES, Jorge et al. Novel Mitochondrial Complex II Isolated from Trypanosoma cruzi Is Composed of 12 Peptides Including a Heterodimeric Ip Subunit. Journal of Biological Chemistry, v. 284, n. 11, p. 7255-7263, març 2009. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0021925820326089>. MORENO, Maria João et al. Analysis of the Equilibrium Distribution of Ligands in Heterogeneous Media–Approaches and Pitfalls. International Journal of Molecular Sciences, v. 23, n. 17, p. 9757, 28 ago. 2022. Disponível em: <https://www.mdpi.com/1422-0067/23/17/9757>. MORETH, Marcele et al. Nitroimidazoles - a promising class of compounds for the treatment of Tuberculosis. Revista Virtual de Química, v. 2, n. 2, 2010. Disponível em: <http://www.gnresearch.org/doi/10.5935/1984-6835.20100010>. MOTT, Bryan T. et al. Synthesis and antimalarial efficacy of two-carbon-linked, artemisinin-derived trioxane dimers in combination with known antimalarial drugs. 184 Journal of Medicinal Chemistry, v. 56, n. 6, p. 2630-2641, 2013. MSF. Doença de Chagas. Disponível em: <https://www.msf.org.br/o-que- fazemos/atividades-medicas/doenca-de- chagas?utm_source=adwords_msf&utm_medium=&utm_campaign=doencas_geral_co municacao&utm_content=_exclusao- saude_brasil_39923&gclid=CjwKCAjw4rf6BRAvEiwAn2Q76gyJ3s2isajlIfzi3vw9CQ2 NrzT-juwxxN0Ug>. Acesso em: 1 set. 2020. MUKHERJEE, Sumit et al. Sterol 14-α-demethylase is vital for mitochondrial functions and stress tolerance in Leishmania major. PLOS Pathogens, v. 16, n. 8, p. e1008810, 20 ago. 2020. Disponível em: <https://dx.plos.org/10.1371/journal.ppat.1008810>. MUKHERJEE, Sumit et al. Sterol methyltransferase is required for optimal mitochondrial function and virulence in Leishmania major. Molecular Microbiology, v. 111, n. 1, p. 65-81, 21 gen. 2019. Disponível em: <https://onlinelibrary.wiley.com/doi/10.1111/mmi.14139>. MULLER, Christa E. Basic Chemistry of 2-Nitroimidazoles (Azomycin Derivatives). ChemInform, v. 31, p. 47-59, 1999. MÜLLER KRATZ, Jadel et al. Clinical and pharmacological profile of benznidazole for treatment of Chagas disease. Expert review of clinical pharmacology, v. 11, n. 10, p. 943- 957, 3 oct. 2018. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/30111183/>. Acesso em: 2 gen. 2022. NAESSENS, J. Bovine trypanotolerance: A natural ability to prevent severe anaemia and haemophagocytic syndrome? International Journal for Parasitology, v. 36, n. 5, p. 521- 528, maig 2006. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0020751906000695>. NAVEENRAJ, Selvaraj; ANANDAN, Sambandam. Binding of serum albumins with bioactive substances – Nanoparticles to drugs. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, v. 14, p. 53-71, març 2013. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S1389556712000639>. NDJONKA, Dieudonné et al. Natural products as a source for treating neglected parasitic diseases. International Journal of Molecular Sciences, v. 14, n. 2, p. 3395-3439, 2013. 185 NEWMAN, David J.; CRAGG, Gordon M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, v. 83, n. 3, p. 770-803, 2020. NIHASHI, Nozomu et al. Siccanin Is a Novel Selective Inhibitor of Trypanosomatid Complex II (Succinate-Ubiquinone Reductase) and a Potent Broad-Spectrum Anti- trypanosomatid Drug Candidate. Kala Azar in South Asia. Cham: Springer International Publishing, 2016. p. 101-122. Disponível em: <http://link.springer.com/10.1007/978-3- 319-47101-3_9>. OLIVEIRA, Ramon G. De; ALENCAR -FILHO, Edilson B.; VASCONCELLOS, Mário L. A. A. A influência da piperina na biodisponibilidade de fármacos: uma abordagem molecular. Química Nova, v. 37, n. 1, p. 69-73, 2014. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100- 40422014000100013&lng=pt&nrm=iso&tlng=en>. OPAS; OMS. Doenças Tropicais Negligenciadas: dia mundial chama a atenção para o fortalecimento de ações intersetoriais para melhorar a qualidade de vida das comunidades - OPAS/OMS | Organização Pan-Americana da Saúde. Disponível em: <https://www.paho.org/pt/noticias/30-1-2024-doencas-tropicais-negligenciadas-dia- mundial-chama-atencao-para-fortalecimento>. Acesso em: 24 set. 2025. OROSCO, Dayanna; MENDOZA, Arturo René; MELÉNDEZ, Carlos Mario. Exploring the Potential of Natural Products as Antiparasitic Agents for Neglected Tropical Diseases. Current Topics in Medicinal Chemistry, v. 24, n. 2, p. 89-108, gen. 2024. Disponível em: <https://www.eurekaselect.com/222001/article>. ORPEN, A . G. et al. Appendix A: Typical Interatomic Distances in Organic Compounds and Organometallic Compounds and Coordination Complexes of the d‐ and f‐block metals. Structure Correlation. [S.l.]: Wiley, 1994. p. 752-858. Disponível em: <https://onlinelibrary.wiley.com/doi/10.1002/9783527616091.app1>. PAHO/WHO. Chagas Disease. Disponível em: <https://www.paho.org/en/topics/chagas-disease#:~:text=Chagas disease is endemic in,newborns become infected during gestation.>. Acesso em: 25 juny 2024. PAN, Yongping et al. Consideration of Molecular Weight during Compound Selection in Virtual Target-Based Database Screening. Journal of Chemical Information and 186 Computer Sciences, v. 43, n. 1, p. 267-272, 1 gen. 2002. Disponível em: <https://pubs.acs.org/doi/10.1021/ci020055f>. PAQUIN, Alexis; REYES-MORENO, Carlos; BÉRUBÉ, Gervais. Recent Advances in the Use of the Dimerization Strategy as a Means to Increase the Biological Potential of Natural or Synthetic Molecules. Molecules, v. 26, n. 8, p. 2340, 17 abr. 2021. Disponível em: <https://www.mdpi.com/1420-3049/26/8/2340>. PARKINSON, Gary N.; SKELLY, Jane V.; NEIDLE, Stephen. Crystal Structure of FMN-Dependent Nitroreductase from Escherichia c oli B: A Prodrug-Activating Enzyme ,. Journal of Medicinal Chemistry, v. 43, n. 20, p. 3624-3631, 1 oct. 2000. Disponível em: <https://pubs.acs.org/doi/10.1021/jm000159m>. PATTERSON, Stephen; WYLLIE, Susan. Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects. Trends in Parasitology, v. 30, n. 6, p. 289-298, juny 2014a. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S1471492214000579>. PATTERSON, Stephen; WYLLIE, Susan. Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects. Trends in Parasitology, v. 30, n. 6, p. 289-298, 1 juny 2014b. PEARSON, William R. An Introduction to Sequence Similarity (“Homology”) Searching. Current Protocols in Bioinformatics, v. 42, n. 1, juny 2013. Disponível em: <https://currentprotocols.onlinelibrary.wiley.com/doi/10.1002/0471250953.bi0301s42>. PÉREZ-MOLINA, José A.; MOLINA, Israel. Chagas disease. The Lancet, v. 391, n. 10115, p. 82-94, 2018. PÉREZ MONTILLA, Carlos A. et al. Major benznidazole metabolites in patients treated for Chagas disease: Mass spectrometry-based identification, structural analysis and detoxification pathways. Toxicology Letters, v. 377, n. February, p. 71-82, 2023. PINA, J. et al. Alternating Binaphthyl−Thiophene Copolymers: Synthesis, Spectroscopy, and Photophysics and Their Relevance to the Question of Energy Migration versus Conformational Relaxation. Macromolecules, v. 42, n. 5, p. 1710-1719, 10 març 2009. Disponível em: <https://pubs.acs.org/doi/10.1021/ma802395c>. PIRES, Douglas E. V.; BLUNDELL, Tom L.; ASCHER, David B. pkCSM: Predicting 187 Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry, v. 58, n. 9, p. 4066-4072, 14 maig 2015. Disponível em: <https://pubs.acs.org/doi/10.1021/acs.jmedchem.5b00104>. PITASSE-SANTOS, Paulo et al. A Novel Protocol for the Synthesis of 1,2,4-Oxadiazoles Active against Trypanosomatids and Drug-Resistant Leukemia Cell Lines. Tropical Medicine and Infectious Disease, v. 7, n. 12, p. 403, 28 nov. 2022. Disponível em: <https://www.mdpi.com/2414-6366/7/12/403>. PRADHAN, Supratim et al. Scrutinized lipid utilization disrupts Amphotericin-B responsiveness in clinical isolates of Leishmania donovani. eLife, v. 14, 27 maig 2025. Disponível em: <https://elifesciences.org/articles/102857>. PUBCHEM. Metronidazole | C6H9N3O3 | CID 4173 - PubChem. Disponível em: <https://pubchem.ncbi.nlm.nih.gov/compound/Metronidazole#section=Melting- Point&fullscreen=true>. Acesso em: 23 oct. 2025. RAMACHANDRAN, Srinivas et al. Automated minimization of steric clashes in protein structures. Proteins: Structure, Function, and Bioinformatics, v. 79, n. 1, p. 261-270, 5 gen. 2011. Disponível em: <https://onlinelibrary.wiley.com/doi/10.1002/prot.22879>. RIBEIRO, Tatiana Santana et al. Toxic effects of natural piperine and its derivatives on epimastigotes and amastigotes of Trypanosoma cruzi. Bioorganic & Medicinal Chemistry Letters, v. 14, n. 13, p. 3555-3558, jul. 2004. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0960894X04005177>. RIBEIRO, Vanessa et al. Current trends in the pharmacological management of Chagas disease. International Journal for Parasitology: Drugs and Drug Resistance, v. 12, p. 7- 17, 2020. Disponível em: <https://doi.org/10.1016/j.ijpddr.2019.11.004>. ROCHA, Sheisi F. L. S.; SANT’ANNA, Carlos M. R. A procedure combining molecular docking and semiempirical method PM7 for identification of selective Shp2 inhibitors. Biopolymers, v. 110, n. 11, 3 nov. 2019. Disponível em: <https://onlinelibrary.wiley.com/doi/10.1002/bip.23320>. ROCHA, Yancka Lener Hora et al. Perfil epidemiológico da doença de Chagas aguda no Brasil. Research, Society and Development, v. 12, n. 8, p. e8112842939, 18 ago. 2023. Disponível em: <https://rsdjournal.org/index.php/rsd/article/view/42939>. 188 RODRIGUES COURA, José. TRIPANOSOMOSE, DOENÇA DE CHAGAS. Ciência e Cultura (on-line version). [S.l: s.n.], 2003. Disponível em: <http://cienciaecultura.bvs.br/scielo.php?script=sci_arttext&pid=S0009- 67252003000100022>. Acesso em: 20 abr. 2020. RODRIGUES, Klinger Antonio da Franca et al. Eugenia uniflora L. Essential Oil as a Potential Anti- Leishmania Agent: Effects on Leishmania amazonensis and Possible Mechanisms of Action. Evidence-Based Complementary and Alternative Medicine, v. 2013, p. 1-10, 2013. Disponível em: <http://www.hindawi.com/journals/ecam/2013/279726/>. ROSS, Philip D.; SUBRAMANIAN, S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry, v. 20, n. 11, p. 3096-3102, 1 maig 1981. Disponível em: <https://pubs.acs.org/doi/abs/10.1021/bi00514a017>. SAADEH, Haythem A. et al. Synthesis and antimicrobial activity of new 1,2,4-triazole- 3-thiol metronidazole derivatives. Monatshefte für Chemie - Chemical Monthly, v. 141, n. 4, p. 471-478, 28 abr. 2010. Disponível em: <http://link.springer.com/10.1007/s00706- 010-0281-9>. SAKYI, Patrick Opare et al. Therapeutic Potential of Natural Products as Innovative and New Frontiers for Combating Parasitic Diseases. Parasitologia, v. 5, n. 3, p. 49, 14 set. 2025. Disponível em: <https://www.mdpi.com/2673-6772/5/3/49>. SCALESE, Gonzalo et al. Biosynthesis of ergosterol as a relevant molecular target of metal-based antiparasitic and antifungal compounds. Coordination Chemistry Reviews, v. 503, n. August 2023, 2024. SEEBER, Frank; BOOTHROYD, John C. Escherichia coli β-galactosidase as an in vitro and in vivo reporter enzyme and stable transfection marker in the intracellular protozoan parasite Toxoplasma gondii. Gene, v. 169, n. 1, p. 39-45, feb. 1996. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/0378111995007865>. SEMLER, Ursula; GROSS, Georg G. Distribution of piperine in vegetative parts of Piper nigrum. Phytochemistry, v. 27, n. 5, p. 1566-1567, gen. 1988. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/0031942288802498>. SHAO, Yihan et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys., v. 8, n. 27, p. 3172-3191, 2006. Disponível 189 em: <https://xlink.rsc.org/?DOI=B517914A>. Sheldrick, G.M. SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany, 1996. [S.d.]. SIJM, Maarten et al. Identification of Phenylpyrazolone Dimers as a New Class of Anti‐ Trypanosoma cruzi Agents. ChemMedChem, v. 14, n. 18, p. 1662-1668, 18 set. 2019. Disponível em: <https://onlinelibrary.wiley.com/doi/10.1002/cmdc.201900370>. SILVERSTEIN, R. M.; BASSLER, G. Clayton; MORRILL, Terence C. Identificação espectrométrica de compostos orgânicos. California: [s.n.], 1994. SIMÕES, Marcus Vinicius et al. Chagas Disease Cardiomyopathy. International Journal of Cardiovascular Sciences, 2018. Disponível em: <http://www.gnresearch.org/doi/10.5935/2359-4802.20180011>. SMITH, Mark A.; EDWARDS, David I. Redox potential and oxygen concentration as factors in the susceptibility of helicobacter pylori to nitroheterocyclic drugs. Journal of Antimicrobial Chemotherapy, v. 35, n. 6, p. 751-764, 1995. SOEIRO, Maria de Nazaré Correia et al. In Vitro and In Vivo Studies of the Antiparasitic Activity of Sterol 14α-Demethylase (CYP51) Inhibitor VNI against Drug-Resistant Strains of Trypanosoma cruzi. Antimicrobial Agents and Chemotherapy, v. 57, n. 9, p. 4151-4163, set. 2013. Disponível em: <https://journals.asm.org/doi/10.1128/AAC.00070-13>. STEWART, J. J. P. Stewart Computational Chemistry. MOPAC. . Colorado Springs, CO, EUA: [s.n.]. Disponível em: <http://openmopac.net/ >. , 2016 STEWART, James J. P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, v. 13, n. 12, p. 1173-1213, 9 des. 2007. Disponível em: <https://link.springer.com/10.1007/s00894-007-0233-4>. STEWART, James J. P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modeling, v. 19, n. 1, p. 1-32, 28 gen. 2013. Disponível em: <http://link.springer.com/10.1007/s00894-012-1667-x>. STRIKER, George et al. Photochromicity and Fluorescence Lifetimes of Green 190 Fluorescent Protein. The Journal of Physical Chemistry B, v. 103, n. 40, p. 8612-8617, 1 oct. 1999. Disponível em: <https://pubs.acs.org/doi/10.1021/jp991425e>. SUETH-SANTIAGO, V. et al. CYP51: Is it a good idea? Revista Virtual de Quimica, v. 7, n. 2, p. 539-575, 2015. TAKOOREE, Heerasing et al. A systematic review on black pepper (Piper nigrum L.): from folk uses to pharmacological applications. Critical Reviews in Food Science and Nutrition, v. 59, n. sup1, p. S210-S243, 27 juny 2019. Disponível em: <https://www.tandfonline.com/doi/full/10.1080/10408398.2019.1565489>. TAMIZ, Amir P. et al. Application of the Bivalent Ligand Approach to the Design of Novel Dimeric Serotonin Reuptake Inhibitors. Journal of the American Chemical Society, v. 122, n. 22, p. 5393-5394, 1 juny 2000. Disponível em: <https://pubs.acs.org/doi/10.1021/ja000199f>. THOMAS-BROWN, P. G.; RUDDOCK, P. L.; GOSSELL-WILLIAMS, M. Pharmacokinetics. Pharmacognosy: Fundamentals, Applications, and Strategies, Second Edition, p. 559-577, 30 jul. 2023. Disponível em: <https://www.ncbi.nlm.nih.gov/books/NBK557744/>. Acesso em: 14 oct. 2025. THOMAS, Carol; GWENIN, Christopher D. The role of nitroreductases in resistance to nitroimidazoles. Biology. [S.l: s.n.]. , 2021 TOMINAGA, Hideyuki et al. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Analytical Communications, v. 36, n. 2, p. 47-50, 1999. Disponível em: <https://xlink.rsc.org/?DOI=a809656b>. TROCHINE, Andrea et al. Benznidazole Biotransformation and Multiple Targets in Trypanosoma cruzi Revealed by Metabolomics. PLoS Neglected Tropical Diseases, v. 8, n. 5, p. e2844, 22 maig 2014. Disponível em: <https://dx.plos.org/10.1371/journal.pntd.0002844>. TYAGI, Vikas et al. A natural product inspired hybrid approach towards the synthesis of novel pentamidine based scaffolds as potential anti-parasitic agents. Bioorganic & Medicinal Chemistry Letters, v. 23, n. 1, p. 291-296, gen. 2013. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0960894X12014035>. UCHIYAMA, Nahoko. Antichagasic Activities of Natural Products against 191 Trypanosoma cruzi. JOURNAL OF HEALTH SCIENCE, v. 55, n. 1, p. 31-39, 2009. Disponível em: <http://joi.jlc.jst.go.jp/JST.JSTAGE/jhs/55.31?from=CrossRef>. URBINA, Julio A. Ergosterol biosynthesis and drug development for Chagas disease. Memorias do Instituto Oswaldo Cruz, v. 104, n. SUPPL. 1, p. 311-318, 2009. USECHE, Yerly et al. Central nervous system commitment in Chagas disease. Frontiers in Immunology, v. 13, 10 nov. 2022. Disponível em: <https://www.frontiersin.org/articles/10.3389/fimmu.2022.975106/full>. VELEZ, Afonso et al. Seasoning to Kill: the Example of the Natural Amide Piperine and Its Potential in the Design of New Antiparasitic Drugs. Journal of the Brazilian Chemical Society, 2024. Disponível em: <https://jbcs.sbq.org.br/audiencia_pdf.asp?aid2=12713&nomeArquivo=2024- 0061RV_MedChem.pdf>. VELEZ, Afonso Santine M M et al. 2-Nitro-1-vinyl-1 H -imidazole. p. 1-6, 2022. VERDONK, Marcel L. et al. Improved protein–ligand docking using GOLD. Proteins: Structure, Function, and Bioinformatics, v. 52, n. 4, p. 609-623, set. 2003. Disponível em: <https://onlinelibrary.wiley.com/doi/10.1002/prot.10465>. VLAHAKIS, Jason Z. et al. The anti-malarial activity of bivalent imidazolium salts. Bioorganic & Medicinal Chemistry, v. 19, n. 21, p. 6525-6542, nov. 2011. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0968089611004305>. WATERHOUSE, Andrew et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, v. 46, n. W1, p. W296-W303, 2 jul. 2018. Disponível em: <https://academic.oup.com/nar/article/46/W1/W296/5000024>. WATERHOUSE, Andrew M et al. The structure assessment web server: for proteins, complexes and more. Nucleic Acids Research, v. 52, n. W1, p. W318-W323, 5 jul. 2024. Disponível em: <https://academic.oup.com/nar/article/52/W1/W318/7650609>. WAVEFUNCTION, Inc. Spartan’24 v1.3.0. . Irvine, CA: [s.n.]. Disponível em: <https://www.wavefun.com/spartan>. , 2025 WHO. Celebrating World Chagas Disease Day for the first time in 2020. Disponível em: <https://www.who.int/news-room/events/detail/2020/04/14/default- calendar/celebrating-world-chagas-disease-day-for-the-first-time-in-2020>. Acesso em: 192 1 set. 2020. WHO. Infectious and parasitic diseases. Disponível em: <https://platform.who.int/mortality/themes/theme-details/topics/topic- details/MDB/infectious-and-parasitic-diseases>. Acesso em: 17 nov. 2023a. WHO. Tripanossomíase humana africana (doença do sono). Disponível em: <https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african- (sleeping-sickness)#:~:text=Human African trypanosomiasis%2C also known,from infected humans or animals.>. Acesso em: 17 nov. 2023b. XAVIER, Samanta Cristina das Chagas et al. Distantiae Transmission of Trypanosoma cruzi: A New Epidemiological Feature of Acute Chagas Disease in Brazil. PLoS Neglected Tropical Diseases, v. 8, n. 5, p. e2878, 22 maig 2014. Disponível em: <https://dx.plos.org/10.1371/journal.pntd.0002878>. XAVIER, Sérgio Salles et al. Apical aneurysm in the chronic phase of Chagas disease: prevalence and prognostic value in an urban cohort of 1053 patients. Rev SOCERJ, n. 4, p. 351-356, 2005. XIANG, Zhexin. Advances in Homology Protein Structure Modeling. Current Protein & Peptide Science, v. 7, n. 3, p. 217-227, 1 juny 2006. Disponível em: <http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1389- 2037&volume=7&issue=3&spage=217>. YAMASAKI, Keishi et al. Albumin–drug interaction and its clinical implication. Biochimica et Biophysica Acta (BBA) - General Subjects, v. 1830, n. 12, p. 5435-5443, des. 2013. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0304416513002018>. YUAN, Shuguang; CHAN, H.C. Stephen; HU, Zhenquan. Using <scp>PyMOL</scp> as a platform for computational drug design. WIREs Computational Molecular Science, v. 7, n. 2, 5 març 2017a. Disponível em: <https://wires.onlinelibrary.wiley.com/doi/10.1002/wcms.1298>. YUAN, Shuguang; CHAN, H.C. Stephen; HU, Zhenquan. Using PyMOL as a platform for computational drug design. WIREs Computational Molecular Science, v. 7, n. 2, 5 març 2017b. Disponível em: <https://wires.onlinelibrary.wiley.com/doi/10.1002/wcms.1298>. 193 ZHAO, Hongtao. Plasma Protein Binding as an Optimizable Parameter for In Vivo Efficacy. Journal of Medicinal Chemistry, v. 68, n. 11, p. 12136-12140, 12 juny 2025. Disponível em: <https://pubs.acs.org/doi/10.1021/acs.jmedchem.5c00964>. ZHENG, Lei et al. HSADab: A comprehensive database for human serum albumin. International Journal of Biological Macromolecules, v. 277, p. 134289, oct. 2024. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0141813024050943>. ZSILA, Ferenc. Subdomain IB Is the Third Major Drug Binding Region of Human Serum Albumin: Toward the Three-Sites Model. Molecular Pharmaceutics, v. 10, n. 5, p. 1668- 1682, 6 maig 2013. Disponível em: <https://pubs.acs.org/doi/10.1021/mp400027q>.pt_BR
dc.subject.cnpqQuímicapt_BR
Aparece en las colecciones: Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2025 - Afonso Santine Magalhães Mesquita Velez.pdf19,86 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.