Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/9294
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Oliveira, Fabiano Alves de | |
dc.date.accessioned | 2023-12-21T18:37:12Z | - |
dc.date.available | 2023-12-21T18:37:12Z | - |
dc.date.issued | 2018-01-16 | |
dc.identifier.citation | OLIVEIRA, Fabiano Alves de. Avaliação da alta pressão hidrostática sobre a qualidade de filé de sardinha brasileira. 2018. 121 f. Tese (Doutorado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2018. . | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/9294 | - |
dc.description.abstract | Sardinha é um dos principais gêneros de peixes capturados no mundo, e no Brasil, e em particular no estado do Rio de Janeiro, a sardinha brasileira (Sardinella brasiliensis) representa a mais importante espécie comercializada. Apesar de ser amplamente consumido no país, exibe vida curta na forma fresca refrigerada, com progressivas alterações indesejáveis ainda nesse período. Apesar de sua importância comercial e social, nenhum processo inovador de processamento com objetivo de aumentar a vida de prateleira foi desenvolvido nas últimas décadas. Diante disso, o objetivo dessa tese foi avaliar os efeitos da Alta Pressão Hidrostática (APH) sobre qualidade de sardinha. Apesar de a aplicação dessa tecnologia em peixes já ocorrer em escala industrial em todo o mundo, efeitos desejáveis ou adversos podem ocorrer em intensidade altamente específica para cada peixe, e não há informação científica relevante em sardinhas. O Capítulo I faz abordagem introdutória sobre sardinha e APH. O Capítulo II aprofunda discussão sobre os efeitos da APH em pescados em geral, trazendo à luz da discussão os principais resultados de pesquisas científicas sobre o assunto central. No Capítulo III são apresentados resultados experimentais da aplicação de 100, 200, 300 ou 400 MPa por 0 ou 15 min em sardinha. O aumento da intensidade da APH causou clareamento progressivo e discreto aumento de pH. A força de cisalhamento e drip de pressão exibiu efeito varável de acordo com nível de APH. Concluiu-se que os tratamentos 300 MPa / 0 min, 400 MPa / 0 min, 200 MPa / 15 min e 300 MPa / 15 min exibiram efeitos de maior similaridade com o controle (sardinha fresca, não pressurizada). O Capítulo IV avaliou os efeitos desses níveis de APH sobre qualidade física e química de sardinhas durante o armazenamento (21 dias, 5°C). Foi demonstrado que a APH exibe potencial para: 1) atenuar a redução da força de cisalhamento; 2) reverter, ainda que parcialmente, o aumento de L* e redução de a* causada pela própria APH no dia 0; 3) estabilizar o drip de pressão a 300 Pa / 15 min; e 4) não houve catálise de oxidações de proteínas ou de lipídios, principalmente, até os 14 dias de armazenamento. Concluiu-se não haver limitações para o processamento de sardinha, nos níveis avaliados, no que se refere aos principais efeitos sobre qualidade física e química. O Capítulo V avaliou os efeitos da APH sobre formação de compostos nitrogenados (TMA e NBVT) e degradação de nucleotídeo, tradicionais indicadores de degradação de peixes. Observou-se que a APH inibiu a formação de TMA e N-BVT, modificou o perfil de degradação de nucleotídeos, promovendo acúmulo de IMP e inibindo formação de HxR e Hx, consequentemente retardando aumento do valor K (principalmente 300 MPa / 15 min). Esses resultados sugerem que a APH exibe potencial para estabilização da qualidade durante o período de armazenamento. | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | isostático | por |
dc.subject | peixe | por |
dc.subject | autólise | por |
dc.subject | isostatic | eng |
dc.subject | fish | eng |
dc.subject | autolitic | eng |
dc.title | Avaliação da alta pressão hidrostática sobre a qualidade de filé de sardinha brasileira | por |
dc.title.alternative | Assessment of High Pressure Processing on quality of brasilian sardine fillet | eng |
dc.type | Tese | por |
dc.description.abstractOther | Sardine is one of the main genera of fish caught in the world, and in Brazil, and especially in the state of Rio de Janeiro, the Brazilian sardine (Sardinella brasiliensis) represents the most important species marketed. Although it is widely consumed in the country, the Brazilian sardine has a short shelf-life in refrigerated fresh form, with undesirable progressive changes even in that period. Despite its commercial and social importance, no innovative process aiming an increased shelf life has been developed in recent decades. Therefore, the objective of this thesis was to evaluate the effects of the High Hydrostatic Pressure (HHP) on sardine quality. Although the use of this technology in fish is already done on an industrial scale worldwide, desirable or adverse effects may occur at fish-specific intensities, and there is no relevant scientific information on sardines. Chapter I introduces sardine and HHP. Chapter II further discusses on the effects of HHP on fish in general, bringing the main results of scientific research on the central issue to discussion. In Chapter III experimental results of the application of 100, 200, 300 or 400 MPa for 0 or 15 min in sardine are presented. The increase in HHP intensity caused progressive bleaching and a slight increase in pH. The shear force and drip loss exhibited variable effects according to HHP level. It was concluded that the treatments 300 MPa / 0 min, 400 MPa / 0 min, 200 MPa / 15 min and 300 MPa / 15 min exhibited effects of greater similarity with the control (fresh, non-pressurized sardines). Chapter IV evaluated the effects of the HHP levels on the physical and chemical quality of sardines during storage (21 days, 5 ° C). It has been shown that HHP exhibits potential to: 1) attenuate shear force reduction and increase in pH occurring during storage; 2) reverse, even partially, the increase of L * and reduction of a * caused by the HHP itself on day 0; 3) stabilize drip loss at 300 Pa / 15 min; and 5) cause no catalysis of protein or lipid oxidations, especially up to 14 days of storage. It was concluded that there are no limitations for the processing of sardines, at the levels evaluated, regarding the main effects on physical and chemical quality. Chapter V evaluated the effects of HHP on formation of nitrogenous compounds (TMA and N-TVB) and degradation of nucleotides, traditional indicators of fish degradation. It was observed that HHP inhibited the formation of TMA and N-TVB, modified the degradation profile of nucleotides, promoted accumulation of IMP and inhibited the formation of HxR and Hx, consequently delaying the increase of K value (mainly 300 MPa / 15 min). These results suggest that APH exhibits potential for quality stabilization over the storage period. | eng |
dc.contributor.advisor1 | Rosenthal, Amauri | |
dc.contributor.advisor1ID | 025.072.978-40 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/1329532290735502 | por |
dc.contributor.advisor-co1 | Moreira, Elisa Helena Rocha | |
dc.contributor.referee1 | Rosenthal, Amauri | |
dc.contributor.referee2 | Conte-Junior, Carlos Adam | |
dc.contributor.referee3 | Souza, Sabrina Luzia Gregio de | |
dc.contributor.referee4 | Cabral Neto, Otávio | |
dc.contributor.referee5 | Godoy, Ronoel Luiz de Oliveira | |
dc.creator.ID | 060.142.096-97 | por |
dc.creator.Lattes | http://lattes.cnpq.br/0653801298697622 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Tecnologia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos | por |
dc.relation.references | 1. ADEKUNTE, A.; TIWARI, B.; CULLEN, P.; SCANNELL, A.; O’DONNELL, C. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, v. 122, n. 3, p. 500–507, 2010. 2. AHMED, Z.; DONKOR, O.; STREET, W. A. Calpains- and myofibrillar changes in postmortem fish : Impact on structural softening and release of bioactive peptides. Trends in Food Science & Technology, v. 45, n. 1, p. 130–146, 2015. Disponível em: <http://dx.doi.org/10.1016/j.tifs.2015.04.002>. 3. AHN, J.; LEE, H.-Y.; BALASUBRAMANIAM, V. Inactivation of Geobacillus stearothermophilus spores in low-acid foods by pressure-assisted thermal processing. Journal of the Science of Food and Agriculture, v. 95, n. 1, p. 174–178, 2015. Disponível em: <http://doi.wiley.com/10.1002/jsfa.6700>. 4. ALBERTO, F.; BARRAZA, A.; AGUSTÍN, R.; LEÓN, Q.; ÁLVAREZ, X. L. Kinetics of protein and textural changes in atlantic salmon under frozen storage. Food Chemistry, v. 182, n. 1, p. 120–127, 2015. Disponível em: < https://doi.org/10.1016/j.foodchem.2015.02.055>. 5. ALBERTOS, I.; JAIME, I.; MARÍA, A.; GONZ, L.; RICO, D. Carob seed peel as natural antioxidant in minced and refrigerated (4 °C) Atlantic horse mackerel (Trachurus trachurus). LWT - Food Science and Technology, v. 64, n. 2, p. 650–656, 2015. Disponível em: < https://doi.org/10.1016/j.lwt.2015.06.037>. 6. ALPAS, H.; AKHAN, C. Shelf-life extension and safety concerns about haddock (Merlangius euxinus) under high hydrostatic pressure. Journal of Food Safety, v. 32, n. 4, p. 517-527, 2012. Disponível em: < https://doi.org/ 10.1111/jfs.12015. 7. AMANATIDOU, A. Effect of combined application of high pressure treatment and modified atmospheres on the shelf life of fresh Atlantic salmon. Innovative Food Science & Emerging Technologies, v. 1, n. 2, p. 87–98, 2000. 8. ANDRADE, S. D. C. S.; MÁRSICO, E. T.; FRANCO, R. M.; GODOY, R. L. D. O.; PACHECO, S.; QUEIROZ, M. D. F.; GUIMARÃES, C. F. M. Validade comercial de sardinhas inteiras e refrigeradas avaliada por análises físico-químicas, bacteriológicas e sensorial. Ciência Rural, v. 42, n. 10, p. 1901–1907, 2012. 9. ANDRADE, S. D. C. S.; MÁRSICO, E. T.; LUIZ, R.; GODOY, D. O.; PACHECO, S.; FRANCO, R. M.; MANO, S. B.; CONTE-JUNIOR, C. A. Chemical Quality Indexes of Mullet ( Mugilplatanus ) Stored on Ice. Food and Nutrition Sciences, v. 5, p. 1030–1039, 2014. 10. ANGRA DOS REIS. A pesca na baia de Ilha Grande. Disponível em: <http://www.angra.rj.gov.br/secretaria_spe_artedepesca.asp?IndexSigla=SPE&vNomeLink=A rte de Pesca Artesanal#.WPOOymnyvIU>. 11. ANGSUPANICH, K.; EDDE, M.; LEDWARD, D. A. Effects of high pressure on the myofibrillar proteins of cod and Turkey muscle. Journal of Agricultural and Food Chemistry, v. 47, n. 1, p. 92–99, 1999. 12. ANGSUPANICH, K.; LEDWARD, D. A. High pressure treatment effects on cod (Gadus morhua) muscle. Food Chemistry, v. 63, n. 1, p. 39–50, 1998. 13. ASHIE, I. N. A.; SIMPSON, B. K. Application of high hydrostatic pressure to control enzyme related fresh seafood texture deterioration. Food Research International, v. 29, n. 5–6, p. 569–575, 1996. 14. ASHIE, I. N. A.; SIMPSON, B. K.; RAMASWAMY, H. S. CHANGES IN TEXTURE AND MICROSTRUCTURE OF PRESSURE-TREATED FISH MUSCLE TISSUE DURING CHILLED STORAGE. v. 8, p. 13–32, 1997. 15. AUBOURG, S. P.; QUITRAL, V.; ANGE, M.; MAIER, L.; VINAGRE, J. Autolytic degradation and microbiological activity in farmed Coho salmon ( Oncorhynchus kisutch ) 100 during chilled storage. Food Chemistry, v. 104, p. 369–375, 2007. 16. AUBOURG, S. P.; TORRES, J. A.; SARAIVA, J. A.; GUERRA-RODRÍGUEZ, E.; VÁZQUEZ, M. Effect of high-pressure treatments applied before freezing and frozen storage on the functional and sensory properties of Atlantic mackerel (Scomber scombrus). LWT - Food Science and Technology, v. 53, n. 1, p. 100–106, 2013. Disponível em: <http://dx.doi.org/10.1016/j.lwt.2013.01.028>. 17. BABAKHANI, A.; FARVIN, K. H. S.; JACOBSEN, C. Antioxidative Effect of Seaweed Extracts in Chilled Storage of Minced Atlantic Mackerel ( Scomber scombrus ): Effect on Lipid and Protein Oxidation. Food and Bioprocess Technology, p. 352–364, 2016. Disponível em: <http://dx.doi.org/10.1007/s11947-015-1630-9>. 18. BAJOVIC, B.; BOLUMAR, T.; HEINZ, V. Quality considerations with high pressure processing of fresh and value added meat products. Meat Science, v. 92, n. 3, p. 280–289, nov. 2012. Disponível em: <https://doi.org/10.1016/j.meatsci.2012.04.024>. 19. BAK, K. H.; LINDAHL, G.; KARLSSON, A. H.; LLORET, E.; GOU, P.; ARNAU, J.; ORLIEN, V. The effect of high pressure and residual oxygen on the color stability of minced cured restructured ham at different levels of drying, pH, and NaCl. Meat Science, v. 95, n. 2, p. 433–443, 2013. Disponível em: <http://dx.doi.org/10.1016/j.meatsci.2011.10.015>. 20. BAK, K. H.; LINDAHL, G.; KARLSSON, A. H.; ORLIEN, V. Effect of high pressure, temperature, and storage on the color of porcine longissimus dorsi. Meat Science, v. 92, n. 4, p. 374–381, 2012. Disponível em: <http://dx.doi.org/10.1016/j.meatsci.2012.02.002>. 21. BALASUBRAMANIAM, V. M.; FARKAS, D.; TUREK, E. J. Preserving Foods through High-Pressure Processing. Food Technology, v. 62, n. 11, p. 32–38, 2008. 22. BALASUBRAMANIAM, V. M.; TING, E. Y.; STEWART, C. M.; ROBBINS, J. A. Recommended laboratory practices for conducting high-pressure microbial inactivation experiments. Innovative Food Science and Emerging Technologies, v. 5, n. 3, p. 299–306, 2004. Disponível em: < https://doi.org/10.1016/j.ifset.2004.04.001>. 23. BALOI, M.; DE CARVALHO, C. V. A.; STERZELECKI, F. C.; PASSINI, G.; CERQUEIRA, V. R. Effects of feeding frequency on growth, feed efficiency and body composition of juveniles Brazilian sardine, Sardinella brasiliensis (Steindacher 1879). Aquaculture Research, v. 47, p. 1–7, 2014. Disponível em: < https://doi.org/ 10.1111/are.12514>. 24. BALOI, M. F.; STERZELECKI, F. C.; SUGAI, J. K.; PASSINI, G.; CARVALHO, C. V. A.; CERQUEIRA, V. R. Growth performance, body composition and metabolic response to feeding rates in juvenile Brazilian sardine Sardinella brasiliensis. Aquaculture Nutrition, n. May 2016, p. 1–9, 2017. Disponível em: <http://doi.wiley.com/10.1111/anu.12521>. 25. BARBA, F. J.; SHIFERAW, N.; BUCKOW, R.; KNORR, D.; ORLIEN, V. New opportunities and perspectives of high pressure treatment to improve health and safety attributes of foods . A review. Food Research International, v. 77, p. 725–742, 2015. Disponível em: <http://dx.doi.org/10.1016/j.foodres.2015.05.015>. 26. BARBOSA-CÁNOVAS, G. V.; MEDINA-MEZA, I.; CANDOĞAN, K.; BERMÚDEZAGUIRRE, D. Advanced retorting, microwave assisted thermal sterilization (MATS), and pressure assisted thermal sterilization (PATS) to process meat products. Meat Science, v. 98, n. 3, p. 420–434, nov. 2014. Disponível em: < https://doi.org/10.1016/j.meatsci.2014.06.027>. 27. BELTRAN, E.; PLA, R.; YUSTE, J.; MOR-MUR, M. Use of antioxidants to minimize rancidity in pressurized and cooked chicken slurries. Meat Science, v. 66, n. 3, p. 719–725, 2004. Disponível em: <https://doi.org/10.1016/j.meatsci.2003.07.004>. 28. BERMÚDEZ-AGUIRRE, D.; BARBOSA-CÁNOVAS, G. V. An Update on High Hydrostatic Pressure, from the Laboratory to Industrial Applications. Food Engineering Reviews, v. 3, n. 1, p. 44–61, 2011. Disponível em: <http://dx.doi.org/10.1007/s12393-010-9030-4>. 29. BINDU, J.; GINSON, J.; KAMALAKANTH, C. K.; ASHA, K. K.; SRINIVASA GOPAL, T. K. Physico-chemical changes in high pressure treated Indian white prawn (Fenneropenaeus indicus) during chill storage. Innovative Food Science and Emerging Technologies, v. 17, 101 p. 37–42, 2013. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2012.10.003>. 30. BOLUMAR, T.; ANDERSEN, M. L.; ORLIEN, V. Mechanisms of radical formation in beef and chicken meat during high pressure processing evaluated by electron spin resonance detection and the addition of antioxidants. Food Chemistry, v. 150, p. 422–428, 2014. Disponível em: <http://dx.doi.org/10.1016/j.foodchem.2013.10.161>. 31. BOWKER, B.; ZHUANG, H. Relationship between water-holding capacity and protein denaturation in broiler breast meat. Poultry Science, v. 94, n. 7, p. 1657–1664, 2015. Disponível em: <http://dx.doi.org/10.3382/ps/pev120>. 32. BRASIL. Política Nacional de Desenvolvimento Sustentável da Aquicultura e da Pesca, Lei No 11.959, de 29 de Junho de 2009. Disponível em: <http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2009/lei/l11959.htm>. 33. BRASIL. Boletim Estatístico de Pesca e Aquicultura - 2011. 34. BRIONES-LABARCA, V.; PEREZ-WON, M.; ZAMARCA, M.; AGUILERA-RADIC, J. M.; TABILO-MUNIZAGA, G. Effects of high hydrostatic pressure on microstructure, texture, colour and biochemical changes of red abalone (Haliotis rufecens) during cold storage time. Innovative Food Science and Emerging Technologies, v. 13, p. 42–50, 2012. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2011.09.002>. 35. BUCKOW, R.; SIKES, A.; TUME, R. Effect of High Pressure on Physicochemical Properties of Meat. v. 57, n. 3, p. 770–786, 2013. Disponivel em: < http://dx.doi.org/10.1080/10408398.2011.560296>. 36. CALANCHE, J.; SAMAYOA, S.; ALONSO, V.; PROVINCIAL, L.; RONCALÉS, P.; BELTRÁN, J. a. Assessing the effectiveness of a cold chain for fresh fish salmon (Salmo salar) and sardine (Sardina pilchardus) in a food processing plant. Food Control, v. 33, n. 1, p. 126–135, 2013. Disponível em: <http://dx.doi.org/10.1016/j.foodcont.2013.02.005>. 37. CAMPUS, M. High Pressure Processing of Meat, Meat Products and Seafood. Food Engineering Reviews, v. 2, n. 4, p. 256–273, 2010. Disponível em: < http://dx.doi.org/10.1007/s12393-010-9028-y>. 38. CAMPUS, M.; ADDIS, M. F.; CAPPUCCINELLI, R.; PORCU, M. C.; PRETTI, L.; TEDDE, V.; SECCHI, N.; STARA, G.; ROGGIO, T. Stress relaxation behaviour and structural changes of muscle tissues from Gilthead Sea Bream (Sparus aurata L.) following high pressure treatment. Journal of Food Engineering, v. 96, n. 2, p. 192–198, 2010. Disponível em: <https://doi.org/10.1016/j.jfoodeng.2009.07.013>. 39. CARDENIA, V.; RODRIGUEZ-ESTRADA, M. T.; BALDACCI, E.; LERCKER, G. Healthrelated lipids components of sardine muscle as affected by photooxidation. Food and Chemical Toxicology, v. 57, p. 32–38, 2013. Disponível em: < https://doi.org/10.1016/j.fct.2013.02.053>. 40. CARLEZ, A.; VECIANA-NOGUES, T.; CHEFTEL, J.-C. Changes in colour and myoglobin of minced beef meat due to high pressure processing. LWT - Food Science and Technology, v. 28, n. 5, p. 528–538, 1995. Disponível em: <http://dx.doi.org/10.1006/fstl.1995.0088 >. 41. CAVA, R.; LADERO, L.; GONZÁLEZ, S.; CARRASCO, A.; RAMÍREZ, M. R. Effect of pressure and holding time on colour, protein and lipid oxidation of sliced dry-cured Iberian ham and loin during refrigerated storage. Innovative Food Science and Emerging Technologies, v. 10, n. 1, p. 76–81, 2009. Disponível em: < https://doi.org/10.1016/j.ifset.2008.09.005>. 42. CERGOLE, M. C.; DIAS-NETO, J. Plano de Gestão para o uso sustentável da sardinhaverdadeira Sardinella brasiliensis no Brasil. Disponível em: <http://www.ibama.gov.br/sophia/cnia/livros/planogestaosardinhaverdadeiradigital.pdf>. 43. CERGOLE, M. C.; SACCARDO, S. A.; ROSSI-WONGTSCHOWSKI, C. L. D. B. Fluctuations in the spawning stock biomass and recruitment of the brazilian sardine (Sardinella brasiliensis) 1977-1997. Revista Brasileira de Oceanografia, v. 50, n. 848, p. 13–26, 2002. 44. CHAIJAN, M.; BENJAKUL, S.; VISESSANGUAN, W.; FAUSTMAN, C. Changes of 102 pigments and color in sardine (Sardinella gibbosa) and mackerel (Rastrelliger kanagurta) muscle during iced storage. Food Chemistry, v. 93, n. 4, p. 607–617, 2005. Disponível em: < https://doi.org/10.1016/j.foodchem.2004.10.035>. 45. CHAIJAN, M.; BENJAKUL, S.; VISESSANGUAN, W.; FAUSTMAN, C. Changes of lipids in sardine (Sardinella gibbosa) muscle during iced storage. Food Chemistry, v. 99, n. 1, p. 83–91, 2006. Disponível em: < https://doi.org/10.1016/j.foodchem.2005.07.022>. 46. CHATZIKYRIAKIDOU, K.; KATSANIDIS, E. Impact of initial handling and subsequent storage conditions on the safety and keeping quality of sardines. Procedia Food Science, v. 1, p. 1105–1110, 2011. Disponível em: <https://doi.org/10.1016/j.profoo.2011.09.165>. 47. CHEAH, P. B.; LEDWARD, D. A. High pressure effects on lipid oxidation in minced pork. Meat Science, v. 43, n. 2, p. 123–134, 1996. Disponível em: <https://doi.org/10.1016/0309- 1740(96)84584-0>. 48. CHEFTEL, J. C.; CULIOLI, J. Effects of high pressure on meat: A review. Meat Science, v. 43, n. 2, p. 123-124, 1997. Disponível em: <https://doi.org/10.1016/0309-1740(96)84584-0>. 49. CHÉRET, R.; CHAPLEAU, N.; DELBARRE-LADRAT, C.; VERREZ-BAGNIS, V. Effects of high pressure on texture and microstructure of sea bass ( Dicentrarchus labrax L .) fillets. Journal of Food Science, v. 70, p. e477–e483, 2005. Disponível em: < Disponível em: <https://doi.org/10.1111/j.1365-2621.2005.tb11518.x> 50. CHÉRET, R.; HERNÁNDEZ-ANDRÉS, A.; DELBARRE-LADRAT, C.; DE LAMBALLERIE, M.; VERREZ-BAGNIS, V. Proteins and proteolytic activity changes during refrigerated storage in sea bass (Dicentrarchus labrax L.) muscle after high-pressure treatment. European Food Research and Technology, v. 222, n. 5–6, p. 527–535, 2006. Disponível em: < Disponível em: <https://doi.org/10.1007/s00217-005-0158-z 51. CHEVALIER, D.; BAIL, A. L.; GHOUL, M. Effects of high pressure treatment ( 100 ± 200 MPa ) at low temperature on turbot (Scophthalmus maximus ) muscle. Food Research International, v. 34, p. 425–429, 2001. < Disponível em: <https://doi.org/ 10.1016/S0963- 9969(00)00187-3>. 52. CHOUHAN, A.; KAUR, B. P.; RAO, P. S. Effect of high pressure processing and thermal treatment on quality of hilsa (Tenualosa ilisha) fillets during refrigerated storage. Innovative Food Science and Emerging Technologies, v. 29, p. 151–160, 2015. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2015.03.016>. 53. CHRISTENSEN, L. B.; HOVDA, M. B.; RODE, T. M. Quality changes in high pressure processed cod , salmon and mackerel during storage. Food Control, v. 72, p. 90–96, 2017. Disponível em: <http://dx.doi.org/10.1016/j.foodcont.2016.07.037>. 54. CLARIANA, M.; GARCÍA-REGUEIRO, J. A. Effect of high pressure processing on cholesterol oxidation products in vacuum packaged sliced dry-cured ham. Food and Chemical Toxicology, v. 49, n. 6, p. 1468–1471, 2011. Disponível em: <http://dx.doi.org/10.1016/j.fct.2011.03.027>. 55. CONWAY, E. J.; BYRNE, A. An absorption apparatus for the microdetermination of certain volatile substances: the micro-determination of ammonia. Biochemical Journal, v. 27, p. 419–429, 1933. 56. CRUZ-ROMERO, M. C.; KERRY, J. P.; KELLY, A. L. Fatty acids, volatile compounds and colour changes in high-pressure-treated oysters (Crassostrea gigas). Innovative Food Science & Emerging Technologies, v. 9, n. 1, p. 54–61, 2008. < Disponível em: <https://doi.org/ 10.1016/j.ifset.2007.05.003>. 57. CRUZ-ROMERO, M.; KELLY, A. L.; KERRY, J. P. Effects of high-pressure and heat treatments on physical and biochemical characteristics of oysters (Crassostrea gigas). Innovative Food Science and Emerging Technologies, v. 8, n. 1, p. 30–38, 2007. < Disponível em: <https://doi.org/ 10.1016/j.ifset.2006.05.002>. 58. CRUZ-ROMERO, M.; KERRY, J. P.; KELLY, A. L. Changes in the microbiological and physicochemical quality of high-pressure-treated oysters (Crassostrea gigas) during chilled storage. Food Control, v. 19, n. 12, p. 1139–1147, 2008. < Disponível em: <https://doi.org/ 103 10.1016/j.foodcont.2007.12.004>. 59. CRUZ-ROMERO, M.; SMIDDY, M.; HILL, C.; KERRY, J. P.; KELLY, A. L. Effects of high pressure treatment on physicochemical characteristics of fresh oysters (Crassostrea gigas). Innovative Food Science & Emerging Technologies, v. 5, n. 2, p. 161–169, 2004. < Disponível em: <https://doi.org/ 10.1016/j.ifset.2004.01.002>. 60. DEFAYE, a. B.; LEDWARD, D. a.; MACDOUGALL, D. B.; TESTER, R. F. Renaturation of metmyoglobin subjected to high isostatic pressure. Food Chemistry, v. 52, n. 1, p. 19–22, 1995. < Disponível em: <https://doi.org/ 10.1016/0308-8146(94)P4175-F>. 61. DELBARRE-LADRAT, C.; CHÉRET, R.; TAYLOR, R.; VERREZ-BAGNIS, V. Trends in Postmortem Aging in Fish : Understanding of Proteolysis and Disorganization of the Myofibrillar Structure. Critical Reviews in Food Science and Nutrition, v. 46, n. 5, p. 409– 421, 2006. < Disponível em: <https://doi.org/10.1080/10408390591000929>. 62. DELLES, R. M.; XIONG, Y. L. The effect of protein oxidation on hydration and waterbinding in pork packaged in an oxygen-enriched atmosphere. Meat Science, v. 97, n. 2, p. 181–188, 2014. Disponível em: <http://dx.doi.org/10.1016/j.meatsci.2014.01.022>. 63. EFSA. Panel on Dietetic Products Nutrition and Allergies (NDA); Scientific Opinion on the Tolerable Upper Intake Level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid. EFSA Journal, v. 10, n. 7, p. 1–48, 2012. 64. ERKAN, N.; OZKAN, O. Quality assessment of whole and gutted sardines ( Sardina pilchardus ) stored in ice. International Journal of Food Science and Technology, v. 43, p. 1549–1559, 2008. Disponível em: <https://doi.org/10.1111/j.1365-2621.2007.01579.x>. 65. ERKAN, N.; ÜRETENER, G.; ALPAS, H. Effect of high pressure (HP) on the quality and shelf life of red mullet (Mullus surmelutus). Innovative Food Science and Emerging Technologies, v. 11, n. 2, p. 259–264, 2010. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2010.01.001>. 66. ERKAN, N.; ÜRETENER, G.; ALPAS, H. Effect of High Hydrostatic Pressure ( HHP ) Treatment on Physicochemical Properties of Horse Mackerel ( Trachurus trachurus ). Food and Bioprocess Technology, v. 4, n. 7, p. 1322–1329, 2011. < Disponível em: <https://doi.org/10.1007/s11947-010-0415-4>. 67. ERKAN, N.; ÜRETENER, G.; ALPAS, H.; SELÇUK, A.; ÖZDEN, Ö.; BUZRUL, S. The effect of different high pressure conditions on the quality and shelf life of cold smoked fish. Innovative Food Science and Emerging Technologies, v. 12, n. 2, p. 104–110, 2011. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2010.12.004>. 68. ESTÉVEZ, M. Protein carbonyls in meat systems: A review. Meat Science, v. 89, n. 3, p. 259–279, 2011. Disponível em: <http://dx.doi.org/10.1016/j.meatsci.2011.04.025>. 69. FAO. FAO Fisheries and Aquaculture Department Summary tables of Fishery Statistics. Disponível em: <ftp://ftp.fao.org/FI/STAT/summary/default.htm>. 70. FAUSTMAN, C.; SUN, Q.; MANCINI, R.; SUMAN, S. P. Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Science, v. 86, n. 1, p. 86–94, 2010. Disponível em: <http://dx.doi.org/10.1016/j.meatsci.2010.04.025>. 71. FERNANDES, C. E.; VASCONCELOS, M. A. D. S.; RIBEIRO, M. D. A.; SARUBBO, L. A.; ANDRADE, S. A. C.; FILHO, A. B. D. M. Nutritional and lipid profiles in marine fish species from Brazil. Food chemistry, v. 160, p. 67–71, 2014. Disponível em: <https://doi.org/ 10.1016/j.foodchem.2014.03.055>. 72. FERNÁNDEZ, J.; PÉREZ-ÁLVAREZ, J. A.; FERNÁNDEZ-LÓPEZ, J. a. Thiobarbituric acid test for monitoring lipid oxidation in meat. Food Chemistry, v. 59, n. 3, p. 345–353, 1997. < Disponível em: <https://doi.org/10.1016/S0308-8146(96)00114-8>. 73. FERRARO, V.; CARVALHO, A. P.; PICCIRILLO, C.; SANTOS, M. M.; PAULA, P. M.; E. PINTADO, M. Extraction of high added value biological compounds from sardine, sardinetype fish and mackerel canning residues - A review. Materials Science and Engineering C, v. 33, n. 6, p. 3111–3120, 2013. Disponível em: <http://dx.doi.org/10.1016/j.msec.2013.04.003>. 104 74. FIGUEIREDO, B. C.; BRAGAGNOLO, N.; SKIBSTED, L. H.; ORLIEN, V. Inhibition of Cholesterol and Polyunsaturated Fatty Acids Oxidation through the Use of Annatto and Bixin in High-Pressure Processed Fish. Journal of Food Science, v. 80, n. 8, p. C1646–C1653, 2015. Disponível em: <http://doi.wiley.com/10.1111/1750-3841.12964>. 75. FIPERJ. Fundação Instituto de Pesca do estado do Rio de Janeiro - Relatório 2015. p. 174, 2015. Disponível em: <http://www.fiperj.rj.gov.br/fiperj_imagens/arquivos/revistarelatorios2015.pdf>. 76. FIRETTI, R.; ASTOLPHI, Jo. L. de L.; GARCIA, S. M. AQUISIÇÃO DE PESCADOS PARA CONSUMO DOMICILIAR NA REGIÃO SUDESTE : análise a partir da pesquisa de orçamentos familiares 2009 1. Rev. de Economia Agrícola, v. 60, n. 1, p. 17–30, 2013. Disponível em: <http://www.iea.sp.gov.br/ftpiea/publicar/rea2013-1/rea1-1-06f2.pdf>. 77. FUENTES, V.; VENTANAS, J.; MORCUENDE, D.; ESTÉVEZ, M.; VENTANAS, S. Lipid and protein oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high hydrostatic pressure. Meat Science, v. 85, n. 3, p. 506–514, 2010. < Disponível em: <https://doi.org/10.1016/j.meatsci.2010.02.024>. 78. FULLADOSA, E.; SERRA, X.; GOU, P.; ARNAU, J. Effects of potassium lactate and high pressure on transglutaminase restructured dry-cured hams with reduced salt content. Meat Science, v. 82, n. 2, p. 213–218, 2009. < Disponível em: <https://doi.org/ 10.1016/j.meatsci.2009.01.013>. 79. GARCÍA-ARIAS, M. T.; ÁLVAREZ PONTES, E.; GARCÍA-LINARES, M. C.; GARCÍAFERNANDEZ, M. C.; SÁNCHEZ-MUNIZ, F. J. Cooking-freezing-reheating (CFR) of sardine (Sardina pilchardus) fillets. Effect of different cooking and reheating procedures on the proximate and fatty acid compositions. Food Chemistry, v. 83, n. 3, p. 349–356, 2003a. Disponível em: < https://doi.org/10.1016/S0308-8146(03)00095-5>. 80. GARCÍA-ARIAS, M. T.; ÁLVAREZ PONTES, E.; GARCÍA-LINARES, M. C.; GARCÍAFERNÁNDEZ, M. C.; SÁNCHEZ-MUNIZ, F. J. Grilling of sardine fillets. Effects of frozen and thawed modality on their protein quality. LWT - Food Science and Technology, v. 36, n. 8, p. 763–769, 2003b. < Disponível em: <https://doi.org/10.1016/S0023-6438(03)00097-5>. 81. GHALY, A. E.; DAVE, D.; BUDGE, S.; BROOKS, M. S. Fish Spoilage Mechanisms and Preservation Techniques : Review. American Journal of Applied Sciences, v. 7, n. 7, p. 859–877, 2010. < Disponível em: <https://doi.org/10.3844/ajassp.2010.859.877>. 82. GÖKODLU, N.; ÖZDEN, O.; ERKAN, N. Physical, chemical and sensory analyses of freshly harvested sardines (Sardina pilchardus) stored at 4°C. Journal of Aquatic Food Product Technology, v. 7, n. 2, p. 5–15, 1998. Disponível em: <http:// doi.org/ 10.1300/J030v07n02_02>. 83. GÓMEZ-ESTACA, J.; MONTERO, P.; GIMÉNEZ, B.; GÓMEZ-GUILLÉN, M. C. Effect of functional edible films and high pressure processing on microbial and oxidative spoilage in cold-smoked sardine (Sardina pilchardus). Food Chemistry, v. 105, n. 2, p. 511–520, 2007. Disponível em: < https://doi.org/10.1016/j.foodchem.2007.04.006>. 84. GONÇALVES, A. A. Tecnologia de Pescado – Ciência, Tecnologia, Inovação e Legislação. First ed. São Paulo: Atheneu, 2011. 85. GOULAS, A. E.; KONTOMINAS, M. G. Combined effect of light salting , modified atmosphere packaging and oregano essential oil on the shelf-life of sea bream (Sparus aurata): Biochemical and sensory attributes. Food Chemistry, v. 100, p. 287–296, 2007. < Disponível em: <https://doi.org/10.1016/j.foodchem.2005.09.045>. 86. GRAM, L.; HUSS, H. H. Microbiological spoilage of fish and fish and products. International Journal of Food Microbiology, v. 33, n. 1, p. 121–137, 1996. < Disponível em: <https://doi.org/ 10.1016/0168-1605(96)01134-8>. 87. GRIGORAKIS, K.; TAYLOR, K. D. A.; ALEXIS, M. N. Seasonal patterns of spoilage of icestored cultured gilthead sea bream ( Sparus aurata ). v. 81, p. 263–268, 2003. < Disponível em: <https://doi.org/ https://doi.org/10.1016/S0308-8146(02)00421-1>. 88. GROSSI, A.; BOLUMAR, T.; SØLTOFT-JENSEN, J.; ORLIEN, V. High pressure treatment 105 of brine enhanced pork semitendinosus : Effect on microbial stability , drip loss , lipid and protein oxidation , and sensory properties. Innovative Food Science and Emerging Technologies, v. 22, p. 11–21, 2014. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2013.09.011>. 89. GUDBJORNSDOTTIR, B.; JONSSON, A.; HAFSTEINSSON, H.; HEINZ, V. Effect of highpressure processing on Listeria spp. and on the textural and microstructural properties of cold smoked salmon. LWT - Food Science and Technology, v. 43, n. 2, p. 366–374, 2010. Disponível em: <http://dx.doi.org/10.1016/j.lwt.2009.08.015>. 90. GUYON, C.; MEYNIER, A.; LAMBALLERIE, M. Protein and lipid oxidation in meat: a review with emphasis on high-pressure treatments. Trends in Food Science & Technology, v. 50, p. 131–143, 2016. Disponível em: <http://dx.doi.org/10.1016/j.tifs.2016.01.026>. 91. HAYERT, M.; PERRIER-CORNET, J.-M.; GERVAIS, P. A simple method for measuring the pH of acid solutions under high pressure. The Journal of Physical Chemistry A, v. 103, n. 12, p. 1785–1789, 1999. Disponível em: <http://pubs.acs.org/doi/abs/10.1021/jp983204z>. 92. HE, H.; ADAMS, R. M.; FARKAS, D. F.; MORRISSEY, M. T. Use of High-pressure Processing for Oyster Shucking and Shelf-life Extension. Journal of Food Science, v. 67, n. 2, p. 640–645, 2002. Disponível em: <http://doi.wiley.com/10.1111/j.1365- 2621.2002.tb10652.x>. 93. HE, Z.; HUANG, Y.; LI, H.; QIN, G.; WANG, T.; YANG, J. Effect of high-pressure treatment on the fatty acid composition of intramuscular lipid in pork. Meat Science, v. 90, n. 1, p. 170–175, 2012. Disponível em: <http://dx.doi.org/10.1016/j.meatsci.2011.06.022>. 94. HEDGES, N. D.; GOODBAND, R. M. The influence of high hydrostatic pressure on the water holding capacity of fish muscle. (11-14 First Joint Trans-Atlantic Fisheries Technology Conference - TAFT 2003 33rd WEFTA and 48th AFTC meetings, Ed.) In: Innovative handling and processing, June, Reykjavik - Iceland. Anais... Reykjavik - Iceland: 2003. 95. HICKS, D. T.; PIVARNIK, L. F.; MCDERMOTT, R.; RICHARD, N.; HOOVER, D. G.; KNIEL, K. E. Consumer awareness and willingness to pay for high-pressure processing of ready-to-eat food. Journal of Food Science Education, v. 8, n. 2, p. 32–38, 2009. < Disponível em: <https://doi.org/10.1111/j.1541-4329.2009.00069.x>. 96. HSU, K. C.; HWANG, J. S.; CHI, H. Y.; LAI, K. M. Effect of different high pressure treatments on shucking, biochemical, physical and sensory characteristics of oysters to elaborate a traditional Taiwanese oyster omelette. Journal of the Science of Food and Agriculture, v. 90, n. 3, p. 530–535, 2010. < Disponível em: https://doi.org/ 10.1002/jsfa.3854. 97. HSU, K. C.; KO, W. C. Effect of Hydrostatic Pressure on Aggregation and Viscoelastic Properties of Tilapia (Orechromis niloticus) Myosin. Journal of Food Science, v. 66, n. 8, p. 1158–1162, 2001. Disponível em: <https://doi.org/10.1111/j.1365-2621.2001.tb16098.x>. 98. HSU, K.; HWANG, J.; YU, C.; JAO, C. Food Chemistry Changes in conformation and in sulfhydryl groups of actomyosin of tilapia ( Orechromis niloticus ) on hydrostatic pressure treatment. v. 103, p. 560–564, 2007. < Disponível em: https://doi.org/ 10.1016/j.foodchem.2006.09.001. 99. HUANG, H.; LUNG, H.; YANG, B. B.; WANG, C. Responses of microorganisms to high hydrostatic pressure processing. Food Control, v. 40, n. 31, p. 250–259, 2014a. Disponível em: <http://dx.doi.org/10.1016/j.foodcont.2013.12.007>. 100. HUANG, H. W.; HSU, C. P.; YANG, B. B.; WANG, C. Y. Potential utility of highpressure processing to address the risk of food allergen concerns. Comprehensive Reviews in Food Science and Food Safety, v. 13, n. 1, p. 78–90, 2014. Disponível em: <http://dx.doi.org/10.1111/1541-4337.12045>. 101. HUANG, H. W.; WU, S.-J.; LU, J.-K.; SHYU, Y.-T.; WANG, C.-Y. Current status and future trends of high-pressure processing in food industry. Food Control, v. 72, n. 12, p. 1–8, 2017. Disponível em: <http://dx.doi.org/10.1016/j.foodcont.2016.07.019 >. 102. HUANG, Y.; HE, Z.; LI, H.; LI, F.; WU, Z. Effect of antioxidant on the fatty acid 106 composition and lipid oxidation of intramuscular lipid in pressurized pork. Meat Science, v. 91, n. 2, p. 137–141, 2012. Disponível em: <http://dx.doi.org/10.1016/j.meatsci.2012.01.006>. 103. HUFF-LONERGAN, E.; LONERGAN, S. M. MEAT Mechanisms of water-holding capacity of meat : The role of postmortem biochemical and structural changes. v. 71, p. 194– 204, 2005. Disponível em: <http://dx.doi.org/10.1016/j.meatsci.2005.04.022>. 104. HUGHES, B. H.; PERKINS, L. B.; YANG, T. C.; SKONBERG, D. I. Impact of postrigor high pressure processing on the physicochemical and microbial shelf-life of cultured red abalone ( Haliotis rufescens ). Food chemistry, v. 194, p. 487–494, 2016. Disponível em: <http://dx.doi.org/10.1016/j.foodchem.2015.07.144>. 105. HUNTERLAB. Hunter Lab Color Scale. Insights on Color, v. 8, n. 9, p. 1-15, 1996 106. HURTADO, J. L.; MONTERO, P.; BORDERÍAS, J. Extension of shelf life of chilled hake (Merlucccius capensis) by high pressure. Food Science and Technology International, v. 6, n. 3, p. 243–249, 2000. 107. HURTADO, J. L.; MONTERO, P.; BORDERÍAS, J.; SOLAS, M. T. Highpressure/ temperature treatment effect on the characteristics of octopus (Octopus vulgaris) arm muscle. European Food Research and Technology, v. 213, n. 1, p. 22–29, 2001. Disponível em: <http://dx.doi.org/ 10.1007/s002170100321>. 108. HWANG, J. S.; LAI, K. M.; HSU, K. C. Changes in textural and rheological properties of gels from tilapia muscle proteins induced by high pressure and setting. Food Chemistry, v. 104, n. 2, p. 746–753, 2007. Disponível em: <http://dx.doi.org/ 10.1016/j.foodchem.2006.11.075>. 109. JAIN, D.; PATHARE, P. B.; MANIKANTAN, M. R. Evaluation of texture parameters of Rohu fish ( Labeo rohita ) during iced storage. v. 81, p. 336–340, 2007. Disponível em: <http://dx.doi.org/10.1016/j.jfoodeng.2006.11.006>. 110. JANTAKOSON, T.; KIJROONGROJANA, K.; BENJAKUL, S. Effect of high pressure and heat treatments on black tiger shrimp (Penaeus monodon Fabricius) muscle protein. International Aquatic Research, v. 4, n. 1, p. 19, 2012. Disponível em: <http://dx.doi.org/10.1186/2008-6970-4-19>. 111. JAY, J. M.; LOESSNER, M. J.; GOLDEN, D. A. Modern food microbiology. 7. ed. USA: Business Media, 2005. 112. JO, Y. J.; JUNG, K. H.; LEE, M. Y.; CHOI, M. J.; MIN, S. G.; HONG, G. P. Effect of high-pressure short-time processing on the physicochemical properties of abalone (Haliotis discus hannai) during refrigerated storage. Innovative Food Science and Emerging Technologies, v. 23, p. 33–38, 2014. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2014.02.011>. 113. JUNG, S.; GHOUL, M.; DE LAMBALLERIE-ANTON, M. Influence of high pressure on the color and microbial quality of beef meat. LWT - Food Science and Technology, v. 36, n. 6, p. 625–631, 2003. Disponível em: <http://dx.doi.org/ 10.1016/S0023- 6438(03)00082-3>. 114. KADAM, P. S.; JADHAV, B. A.; SALVE, R. V; MACHEWAD, G. M. Review on the high pressure technology (hpt) for food preservation. Journal of Food Processing & Technology, v. 3, n. 1, p. 1–5, 2011. Disponível em: <http://dx.doi.org/ 10.4172/2157- 7110.1000135>. 115. KAMALAKANTH, C. K.; GINSON, J.; BINDU, J.; VENKATESWARLU, R.; DAS, S.; CHAUHAN, O. P.; GOPAL, T. K. S. Effect of high pressure on K-value, microbial and sensory characteristics of yellowfin tuna (Thunnus albacares) chunks in EVOH films during chill storage. Innovative Food Science and Emerging Technologies, v. 12, n. 4, p. 451–455, 2011. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2011.06.001>. 116. KARAYANNAKIDIS, P. D.; ZOTOS, A.; PETRIDIS, D.; TAYLOR, K. D. A. Physicochemical changes of sardines (sardina pilchardus) at -18c and functional properties of kamaboko gels enhanced with Ca2+ ions and MTGase. Journal of Food Process Engineering, v. 31, n. 3, p. 372–397, 2008. Disponível em: <http://dx.doi.org/10.1111/j.1745- 107 4530.2007.00158.x 117. KARIM, N. U.; KENNEDY, T.; LINTON, M.; WATSON, S.; GAULT, N.; PATTERSON, M. F. Effect of high pressure processing on the quality of herring (Clupea harengus) and haddock (Melanogrammus aeglefinus) stored on ice. Food Control, v. 22, n. 3– 4, p. 476–484, 2011. Disponível em: <http://dx.doi.org/10.1016/j.foodcont.2010.09.030>. 118. KAUR, B. P.; KAUSHIK, N.; RAO, P. S.; CHAUHAN, O. P. Effect of high-pressure processing on physical, biochemical, and microbiological characteristics of black tiger shrimp (penaeus monodon): high-pressure processing of shrimp. Food and Bioprocess Technology, v. 6, n. 6, p. 1390–1400, 2013. Disponível em: <http://dx.doi.org/ 10.1007/s11947-012-0870- 1>. 119. KAUR, B. P.; SRINIVASA RAO, P.; NEMA, P. K. Effect of hydrostatic pressure and holding time on physicochemical quality and microbial inactivation kinetics of black tiger shrimp (penaeus monodon). Innovative Food Science & Emerging Technologies, v. 33, p. 47–55, 2016.. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2015.12.002>. 120. KILINC, B.; CAKLI, S.; TOLASA, S. Quality changes of sardine (Sardina pilchardus) patties during refrigerated storage. Journal Food Quality, v. 31, p. 366–381, 2008. Disponível em: <http://dx.doi.org/ 10.1111/j.1745-4557.2008.00205.x>. 121. KING, N. J.; WHYTE, R. Does it look cooked? A review of factors that influence cooked meat color. Journal of Food Science, v. 71, n. 4, p. 31–40, 2006. Disponível em: <http://dx.doi.org/10.1111/j.1750-3841.2006.00029.x>. 122. KJÆRSGÅRD, I. V. H.; NØRRELYKKE, M. R.; BARON, C. P. Identification of carbonylated protein in frozen rainbow trout (Oncorhynchus mykiss ) fillets and development of protein oxidation during frozen storage partners. Journal of Agricultural and Food Chemistry, v. 54, n. 25, p. 9437–9446, 2006. Disponível em: <http://dx.doi.org/ 10.1021/jf061885m>. 123. KO, W. C.; HSU, K. Changes in k value and microorganisms of tilapia fillet during storage at high-pressure , normal temperature. Journal of Food Protection, v. 64, n. 1, p. 94– 98, 2001. 124. KO, W. C.; JAO, C. L.; HSU, K. C. Effect of Hydrostatic Pressure on Molecular Conformation of Tilapia ( Orechromis niloticus ) Myosin. Food Chemistry and Toxicology, v. 68, n. 4, p. 2–5, 2003. Disponível em: <http://dx.doi.org/10.1111/j.1365- 2621.2003.tb09623.x>. 125. LAKSHMANAN, R.; MISKIN, D.; PIGGOTT, J. R. Quality of vacuum packed coldsmoked salmon during refrigerated storage as affected by high-pressure processing. Journal of the Science of Food and Agriculture, v. 85, n. 4, p. 655–661, 2005. Disponível em: <http://dx.doi.org/10.1002/jsfa.1972>. 126. LAKSHMANAN, R.; PARKINSON, J. A.; PIGGOTT, J. R. High-pressure processing and water-holding capacity of fresh and cold-smoked salmon (Salmo salar). LWT - Food Science and Technology, v. 40, n. 3, p. 544–551, 2007. Disponível em: <http://dx.doi.org/ 10.1016/j.foodchem.2004.05.015>. 127. LAKSHMANAN, R.; PATTERSON, M. F.; PIGGOTT, J. R. Effects of high-pressure processing on proteolytic enzymes and proteins in cold-smoked salmon during refrigerated storage. Food Chemistry, v. 90, n. 4, p. 541–548, 2005. Disponível em: <http://dx.doi.org/ 10.1016/j.foodchem.2004.05.015>. 128. LEE, E.; KIM, Y.; LEE, N.; HONG, S.; YAMAMOTO, K. Differences in properties of myofibrillar proteins from bovine semitendinosus muscle after hydrostatic pressure or heat treatment. Journal of the Science of Food and Agriculture, v. 46, p. 40–46, 2007. Disponível em: <http://dx.doi.org/10.1002/jsfa.2656>. 129. LEE, J.; PARK, J. W. Pacific whiting frozen fillets as affected by postharvest processing and storage conditions. Food Chemistry, v. 201, p. 177–184, 2016. Disponível em: <http://dx.doi.org/10.1016/j.foodchem.2016.01.083>. 130. LERFALL, J.; ROTH, B.; FLØNES, E.; HENRIKSEN, A.; BETTEN, T.; 108 DZIATKOWIAK-STEFANIAK, M. A.; TORE, B. Pre-mortem stress and the subsequent effect on flesh quality of pre-rigor filleted Atlantic salmon ( Salmo salar L .) during ice storage. Food Chemistry, v. 175, p. 157–165, 2015. Disponível em: <http://dx.doi.org/ 10.1016/j.foodchem.2014.11.111>. 131. LI, D.; ZHANG, L.; SONG, S.; WANG, Z.; KONG, C.; LUO, Y. The role of microorganisms in the degradation of adenosine triphosphate ( ATP ) in chill-stored common carp ( Cyprinus carpio ) fillets. Food Chemistry, v. 224, p. 347–352, 2017a. Disponível em: <http://dx.doi.org/10.1016/j.foodchem.2016.12.056>. 132. LI, Q.; ZHANG, L.; LU, H.; SONG, S.; LUO, Y. Comparison of postmortem changes in ATP-related compounds, protein degradation and endogenous enzyme activity of white muscle and dark muscle from common carp ( Cyprinus carpio ) stored at 4 C. LWT - Food Science and Technology, v. 78, p. 317–324, 2017b. Disponível em: <http://dx.doi.org/10.1016/j.lwt.2016.12.035>. 133. LISTRAT, A.; LEBRET, B.; LOUVEAU, I.; ASTRUC, T.; BONNET, M.; LEFAUCHEUR, L.; PICARD, B.; BUGEON, J.; PICARD, B.; BUGEON, J.; How Muscle Structure and Composition Influence Meat and Flesh Quality. The Scientific World Journal, v. 2016, p. 1–14, 2016. Disponível em: <http://dx.doi.org/10.1155/2016/3182746>. 134. LIU, D.; LIANG, L.; XIA, W.; REGENSTEIN, J. M.; ZHOU, P. Biochemical and physical changes of grass carp ( Ctenopharyngodon idella ) fillets stored at À 3 and 0 ° C. Food Chemistry, v. 140, n. 1–2, p. 105–114, 2013. Disponível em: <http://dx.doi.org/10.1016/j.foodchem.2013.02.034>. 135. LOPEZ-HUERTAS, E. Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacological Research, v. 61, n. 3, p. 200–207, 2010. Disponível em: <http://dx.doi.org/10.1016/j.phrs.2009.10.007>. 136. LOUGOVOIS, V. P.; KYRANA, V. R. Freshness quality and spoilage of chill-stored fish. in: arthur p. riley (Ed.). Food Policy, Control and Research. [s.l.] Nova Science Publishers, 2005. p. 35–86. 137. LULLIEN-PELLERIN, V.; BALNY, C. High-Pressure as a tool to study some proteins´ properties:conformational modifications, activity and oligomeric dissociation. Innovative Food Science and Emerging Technologies, v. 3, p. 209–221, 2002. Disponível em: <http://dx.doi.org/ 10.1016/S1466-8564(02)00045-0>. 138. LUZIA, L. A.; SAMPAIO, G. R.; CASTELLUCCI, C. M. N.; TORRES, E. A. F. S. The influence of season on the lipid profiles of five commercially important species of Brazilian fish. Food Chemistry, v. 83, n. 1, p. 93–97, 2003. Disponível em: <http://dx.doi.org/ 10.1016/S0308-8146(03)00054-2>. 139. M.F. PATTERSON. Microbiology of pressure-treated foods. Journal of Applied Microbiology, v. 98, p. 1400–1409, 2005. Disponível em: <http://dx.doi.org/ 10.1111/j.1365- 2672.2005.02564.x>. 140. MA, H. J.; LEDWARD, D. A. High pressure/thermal treatment effects on the texture of beef muscle. Meat Science, v. 68, n. 3, p. 347–355, 2004. Disponível em: <http://dx.doi.org/ 10.1016/j.meatsci.2004.04.001>. 141. MA, H. J.; LEDWARD, D. A.; ZAMRI, A. I.; FRAZIER, R. A.; ZHOU, G. H. Effects of high pressure/thermal treatment on lipid oxidation in beef and chicken muscle. Food Chemistry, v. 104, n. 4, p. 1575–1579, 2007. Disponível em: <http://dx.doi.org/ 10.1016/j.foodchem.2007.03.006>. 142. MACFARLANE, J. J.; MCKENZIE, I. J.; TURNER, R. H.; JONES, P. N. Binding of communited meat - Effect of high pressure. Meat Science, v. 10, n. 4, p. 307–320, 1984. Disponível em: <http://dx.doi.org/10.1016/0309-1740(84)90046-9>. 143. MALUENDA, D.; ROCO, T.; TABILO-MUNIZAGA, G.; PÉREZ-WON, M.; AUBOURG, S. P. Effect of a previous high hydrostatic pressure treatment on lipid damage in chilled Chilean jack mackerel (Trachurus murphyi). Grasas y Aceites, v. 64, n. 5, p. 472–481, 109 31 dez. 2013. Disponível em: <http://dx.doi.org/10.3989/gya.010913>. 144. MANJU, S.; GOPAL, T. K. S.; JOSE, L.; RAVISHANKAR, C. N.; KUMAR, K. A. Food Chemistry Nucleotide degradation of sodium acetate and potassium sorbate dip treated and vacuum packed Black Pomfret (Parastromateus niger) and Pearlspot (Etroplus suratensis) during chill storage. v. 102, p. 699–706, 2007. Disponível em: <http://dx.doi.org/10.1016/j.foodchem.2006.06.059>. 145. MARIUTTI, L. R. B.; ORLIEN, V.; BRAGAGNOLO, N.; SKIBSTED, L. H. Effect of sage and garlic on lipid oxidation in high-pressure processed chicken meat. European Food Research and Technology, v. 227, n. 2, p. 337–344, 2008. Disponível em: <http://dx.doi.org/10.1007/s00217-007-0726-5>. 146. MARSZAŁEK, K.; MITEK, M.; SKĄPSKA, S. The effect of thermal pasteurization and high pressure processing at cold and mild temperatures on the chemical composition, microbial and enzyme activity in strawberry purée. Innovative Food Science and Emerging Technologies, v. 27, p. 48–56, 2015. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2014.10.009>. 147. MCARDLE, R.; MARCOS, B.; KERRY, J. P.; MULLEN, A. Monitoring the effects of high pressure processing and temperature on selected beef quality attributes. Meat Science, v. 86, n. 3, p. 629–634, 2010. Disponível em: <http://dx.doi.org/10.1016/j.meatsci.2010.05.001>. 148. MEDINA-MEZA, I. G.; BARNABA, C.; BARBOSA-CÁNOVAS, G. V. Effects of high pressure processing on lipid oxidation: A review. Innovative Food Science & Emerging Technologies, v. 22, p. 1–10, 2014. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2013.10.012>. 149. MERCIER, Y.; GATELLIER, P.; RENERRE, M. Lipid and protein oxidation in vitro , and antioxidant potential in meat from Charolais cows finished on pasture or mixed diet. v. 66, p. 467–473, 2004. Disponível em: <http://dx.doi.org/10.1016/S0309-1740(03)00135-9>. 150. MESSENS, W.; VAN CAMP, J.; HUYGHEBAERT, A. The use of high pressure to modify the functionality of food proteins. Trends in Food Science and Technology, v. 8, n. 4, p. 107–112, 1997. Disponível em: <http://dx.doi.org/ 10.1016/S0924-2244(97)01015-7>. 151. MOHAN, C. O.; RAVISHANKAR, C. N.; LALITHA, K. V.; SRINIVASA GOPAL, T. K. Effect of chitosan edible coating on the quality of double filleted Indian oil sardine (Sardinella longiceps) during chilled storage. Food Hydrocolloids, v. 26, n. 1, p. 167–174, 2012. Disponível em: <http://dx.doi.org/10.1016/j.foodhyd.2011.05.005>. 152. MONTEIRO, M. L. G.; MARSICO, E. T.; CANTO, A. C. V. C. C.; COSTA-LIMA, B. R. C.; COSTA, M. P.; VIANA, F. M.; SILVA, T. J. P.; CONTE-JUNIOR, C. A. Impact of UV-C light on the fatty acid profile and oxidative stability of nile tilapia ( Oreochromis niloticus ) Fillets. v. 82, n. 4, 2017. Disponível em: <http://dx.doi.org/ 10.1111/1750- 3841.13685>. 153. MONTERO, P.; PÉREZ-MATEOS, M.; SOLAS, T. Comparison of Different Gelation Methods Using Washed Sardine ( Sardina pilchardus ) Mince : Effects of Temperature and Pressure. Journal of Agricultural and Food Chemistry, v. 1, n. 45, p. 4612–4618, 1997. Disponível em: <http://dx.doi.org/ 10.1021/jf970400e>. 154. MONTIEL, R.; DE ALBA, M.; BRAVO, D.; GAYA, P.; MEDINA, M. Effect of high pressure treatments on smoked cod quality during refrigerated storage. Food Control, v. 23, n. 2, p. 429–436, 2012. Disponível em: <http://dx.doi.org/10.1016/j.foodcont.2011.08.011>. 155. MOZHAEV, V. V; HEREMANS, K.; FRANK, J.; MASSON, P.; BALNY, C. High pressure effects on protein structure and function. Proteins, v. 24, n. 1, p. 81–91, 1996. Disponível em: <http://dx.doi.org/ 10.1002/(SICI)1097-0134(199601)24:1<81::AIDPROT6> 3.0.CO;2-R>. 156. MÚJICA-PAZ, H.; VALDEZ-FRAGOSO, A.; SAMSON, C. T.; WELTI-CHANES, J.; TORRES, A. High-pressure processing technologies for the pasteurization and sterilization of foods. Food and Bioprocess Technology, v. 4, n. 6, p. 969–985, 2011. Disponível em: 110 <http://dx.doi.org/ 10.1007/s11947-011-0543-5>. 157. MURCHIE, L. W.; CRUZ-ROMERO, M.; KERRY, J. P.; LINTON, M.; PATTERSON, M. F.; SMIDDY, M.; KELLY, A. L. High pressure processing of shellfish: A review of microbiological and other quality aspects. Innovative Food Science and Emerging Technologies, v. 6, n. 3, p. 257–270, 2005a. Disponível em: <http://dx. doi.org/10.1016/j.ifset.2005.04.001>. 158. MURCHIE, L. W.; CRUZ-ROMERO, M.; KERRY, J. P.; LINTON, M.; PATTERSON, M. F.; SMIDDY, M.; KELLY, A. L. High pressure processing of shellfish : A review of microbiological and other quality aspects. Innovative Food Science and Emerging Technologies v. 6, p. 257–270, 2005b. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2005.04.001>. 159. MURPHY, K. J.; MEYER, B. J.; MORI, T. A.; BURKE, V.; MANSOUR, J.; PATCH, C. S.; TAPSELL, L. C.; NOAKES, M.; CLIFTON, P. A.; BARDEN, A.; PUDDEY, I. B.; BEILIN, L. J.; HOWE, P. R. C. Impact of foods enriched with n-3 long-chain polyunsaturated fatty acids on erythrocyte n-3 levels and cardiovascular risk factors. British Journal of Nutrition, v. 97, n. 4, p. 749, 2007. Disponível em: <http://dx.doi.org/10.1017/S000711450747252X 160. NELSON, D. L.; COX, M. M. Lehninger Principles of Biochemistry. 6th. ed. [s.l.] W. H. Freeman, 2012. 161. NGUYEN, L. T.; BALASUBRAMANIAM, V. M.; RATPHITAGSANTI, W. Estimation of accumulated lethality under pressure-assisted thermal processing. Food and Bioprocess Technology, v. 7, n. 3, p. 633–644, 2014. Disponível em: <http://dx.doi.org/ 10.1007/s11947-013-1140-6>. 162. NUNES, M. L.; BATISTA, I.; CAMPOS, R. M. Physical, chemical and sensory analysis of sardine ( Sardina pilchardus ) stored in ice. Journal Science of Food and Agriculture, p. 37–43, 1992. Disponível em: <http://dx.doi.org/10.1002/jsfa.2740590106>. 163. NUWANTHI, S. G. L. I.; MADAGE, S. S. K.; HEWAJULIGE, I. G. N.; WIJESEKERA, R. G. S. Comparative study on organoleptic , microbiological and chemical qualities of dried fish , Goldstripe Sardinella ( Sardinella gibbosa ) with low salt levels and spices. v. 6, n. Icsusl 2015, p. 356–361, 2016. Disponível em: <http://dx.doi.org/ 10.1016/j.profoo.2016.02.072>. 164. OCAÑO-HIGUERA, V. M.; MAEDA-MARTINEZ, A. N.; MARQUEZ-RÍOS, E.; CANIZALES-RODRIGUEZ, D. F.; CASTILLO-YIEZ, F. J.; RUÍZ-BUSTOS, E.; GRACIANO-VERDUGO, A. Z.; PLASCENCIA-JATOMEA, M. Freshness assessment of ray fish stored in ice by biochemical, chemical and physical methods. Food Chemistry, v. 125, n. 1, p. 49–54, 2011. Disponível em: <http://dx.doi.org/ 10.1016/j.foodchem.2010.08.034>. 165. OCEANA INTERNACIONAL. A temporada de pesca da sardinha, a maior pescaria do Brasil, abre sem monitoramento oficial. Disponível em: <http://brasil.oceana.org/imprensa/comunicados-a-imprensa/temporada-de-pesca-da-sardinhamaior- pescaria-do-brasil-abre-sem>. Acesso em: 12 abr. 2017. 166. OHSHIMA, T.; USHIO, H.; KOIZUMI, C. High-pressure processing of fish and fish products. Trends in Food Science & Technology, v. 4, n. 11, p. 370–375, 1993. Disponível em: <http://dx.doi.org/10.1016/0924-2244(93)90019-7>. 167. OLIVEIRA, F. A.; CABRAL NETO, O.; MARCONDES RODRIGUES DOS SANTOS, L.; HELENA ROCHA FERREIRA, E.; ROSENTHAL, A.; DOS SANTOS, R.; FERREIRA, R. Effect of high pressure on fish meat quality – A review. Trends in Food Science & Technology, v. 66, 2017. Disponível em: <http://dx.doi.org/10.1016/j.tifs.2017.04.014>. 168. OLSSON, G. B.; OFSTAD, R.; LODEMEL, J. B.; OLSEN, R. L. Changes in waterholding capacity of halibut muscle during cold storage. v. 36, p. 771–778, 2003. Disponível em: <http://dx.doi.org/10.1016/S0023-6438(03)00098-7>. 169. ORLIEN, V.; HANSEN, E.; SKIBSTED, L. H. Lipid oxidation in high-pressure 111 processed chicken breast muscle during chill storage : critical working pressure in relation to oxidation mechanism. European Food Research and Technology, v. 211, p. 99–104, 2000. Disponível em: <http://dx.doi.org/ 10.1007/s002179900118>> 170. ORTEA, I.; RODRÍGUEZ, A.; TABILO-MUNIZAGA, G.; PÉREZ-WON, M.; AUBOURG, S. P. Effect of hydrostatic high-pressure treatment on proteins, lipids and nucleotides in chilled farmed salmon (Oncorhynchus kisutch) muscle. European Food Research and Technology, v. 230, n. 6, p. 925–934, 2010. Disponível em: <http://dx.doi.org/ 10.1007/s00217-010-1239-1>. 171. ÖZOGUL, F.; ÖZOGUL, Y. Biogenic amine content and biogenic amine quality indices of sardines (Sardina pilchardus) stored in modified atmosphere packaging and vacuum packaging. Food Chemistry, v. 99, n. 3, p. 574–578, 2006. Disponível em: <http://dx.doi.org/ 10.1016/j.foodchem.2005.08.029>. 172. ÖZOGUL, F.; POLAT, A.; ÖZOGUL, Y. The effects of modified atmosphere packaging and vacuum packaging on chemical, sensory and microbiological changes of sardines (Sardina pilchardus). Food Chemistry, v. 85, n. 1, p. 49–57, 2004. Disponível em: <http://dx.doi.org/ 10.1016/j.foodchem.2003.05.006>. 173. PACHECO-AGUILAR, R.; LUGO-SÁNCHEZ, M. E.; ROBLES-BURGUEÑO, M. R. Postmortem biochemical and functional characteristic of Monterey sardine muscle stored at 0 C. Food Chemistry and Toxicology Postmortem, v. 65, n. 1, p. 40–47, 2000. Disponível em: <http://dx.doi.org/ 10.1111/j.1365-2621.2000.tb15953.x>. 174. PAZOS, M.; MAESTRE, R.; GALLARDO, J. M.; MEDINA, I. Proteomic evaluation of myofibrillar carbonylation in chilled fish mince and its inhibition by catechin. Food Chemistry, v. 136, n. 1, p. 64–72, 2013. Disponível em: <http://dx.doi.org/10.1016/j.foodchem.2012.07.109>. 175. PEREIRA, Á. A. F.; TENUTA-FILHO, A. Avaliação de condições de consumo da sardinha Sardinella brasiliensis. Ciência e Tecnologia de Alimentos, v. 25, n. 4, p. 720–725, 2005. Disponível em: <http://dx.doi.org/ 10.1590/S0101-20612005000400015.>. 176. PEREZ-MATEOS, M.; MONTERO, P. High-Pressure-Induced Gel of Sardine (Sardina pilchardus) Washed Mince as Affected by Pressure-Time-Temperature. Journal of Food Science, v. 62, n. 6, p. 1183–1188, 1997. Disponível em: <http://dx.doi.org/10.1111/j.1365-2621.1997.tb12240.x 177. PEREZ-WON, M.; TABILO-MUNIZAGA, G.; BARBOSA-CÁNOVAS, G. V. Effects of Ultra High Pressure on Bay Scallop (Aequipecten irradians) Adductor Muscles. Food Science and Technology International, v. 11, n. 6, p. 477–484, 2005. Disponível em: <http://dx.doi.org/10.1177/1082013205060761>. 178. PINTO, A. E. de S. Sardinha avança entre consumidor mais rico ; atum, entre mais pobres. Disponível em: <http://www1.folha.uol.com.br/mercado/2016/09/1813685- sardinha-avanca-entre-consumidor-mais-rico-atum-entre-mais-pobres.shtml>. Acesso em: 13 abr. 2017. 179. RAMIREZ-SUAREZ, J. C.; MORRISSEY, M. T. Effect of high pressure processing (HPP) on shelf life of albacore tuna (Thunnus alalunga) minced muscle. Innovative Food Science and Emerging Technologies, v. 7, n. 1–2, p. 19–27, 2006. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2005.08.004>. 180. RASTOGI, N. K. Recent Developments in High Pressure Processing of Foods. Springer, 2013. 181. RAWDKUEN, S.; JAIMAKREU, M.; BENJAKUL, S. Physicochemical properties and tenderness of meat samples using proteolytic extract from Calotropis procera latex. Food Chemistry, v. 136, n. 2, p. 909–916, 2013. Disponível em: <http://dx.doi.org/10.1016/j.foodchem.2012.08.077>. 182. RAWSON, A.; PATRAS, A.; TIWARI, B. K.; NOCI, F.; KOUTCHMA, T.; BRUNTON, N. Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Research 112 International, v. 44, n. 7, p. 1875–1887, 2011. Disponível em: <http://dx.doi.org/ 10.1016/j.foodres.2011.02.053>. 183. REYES, J. E.; TABILO-MUNIZAGA, G.; PÉREZ-WON, M.; MALUENDA, D.; ROCO, T. Effect of high hydrostatic pressure (HHP) treatments on microbiological shelf-life of chilled Chilean jack mackerel (Trachurus murphyi). Innovative Food Science & Emerging Technologies, v. 29, p. 107–112, 2015. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2015.01.010>. 184. RIEDIGER, N. D.; OTHMAN, R. A.; SUH, M.; MOGHADASIAN, M. H. A Systemic Review of the Roles of n-3 Fatty Acids in Health and Disease. Journal of the American Dietetic Association, v. 109, n. 4, p. 668–679, 2009. Disponível em: <http://dx.doi.org/10.1016/j.jada.2008.12.022>. 185. RIVALAIN, N.; ROQUAIN, J.; DEMAZEAU, G. Development of high hydrostatic pressure in biosciences: Pressure effect on biological structures and potential applications in Biotechnologies. Biotechnology Advances, v. 28, n. 6, p. 659–672, 2010. Disponível em: <http://dx.doi.org/10.1016/j.biotechadv.2010.04.001>. 186. RODE, T. M.; HOVDA, M. B. High pressure processing extend the shelf life of fresh salmon , cod and mackerel. Food Control, v. 70, p. 242–248, 2016. Disponível em: <http://dx.doi.org/10.1016/j.foodcont.2016.05.045>. 187. RODRIGUES, B. L.; ALVARES, T. da S.; SAMPAIO, G. S. L.; CABRAL, C. C.; ARAUJO, J. V. A.; FRANCO, R. M.; MANO, S. B.; CONTE JUNIOR, C. A. Influence of vacuum and modified atmosphere packaging in combination with UV-C radiation on the shelf life of rainbow trout (Oncorhynchus mykiss) fillets. Food Control, v. 60, p. 596–605, 2016. Disponível em: <http://dx.doi.org/ 10.1016/j.foodcont.2015.09.004>. 188. RODRIGUEZ-CASADO, A.; CARMONA, P.; MORENO, P.; SÁNCHEZGONZÁLEZ, I.; MACAGNANO, A.; NATALE, C. Di; CARECHE, M. Structural changes in sardine (Sardina pilchardus) muscle during iced storage: Investigation by DRIFT spectroscopy. Food Chemistry, v. 103, n. 3, p. 1024–1030, 2007b. Disponível em: <http://dx.doi.org/10.1016/j.foodchem.2006.09.054>. 189. RUXTON, C. H. S.; CALDER, P. C.; REED, S. C.; SIMPSON, M. J. A. The impact of long-chain n-3 polyunsaturated fatty acids on human health. Nutrition Research Reviews, v. 18, n. 1, p. 113, 2005. Disponível em: <http://dx.doi.org/10.1079/NRR200497>. 190. SAITO, T.; ARAI, K.; MATSUYOSHI, M. A new method for estimating the freshness of fish. Bulletin of the Japanese Society of Scientific Fisheries, v. 24, n. 9, p. 749– 750, 1959. Disponível em: <http://dx.doi.org/ 10.2331/suisan.24.749>, 191. SALDANHA, T.; BENASSI, M. T.; BRAGAGNOLO, N. Fatty acid contents evolution and cholesterol oxides formation in Brazilian sardines (Sardinella brasiliensis) as a result of frozen storage followed by grilling. LWT - Food Science and Technology, v. 41, n. 7, p. 1301–1309, 2008. Disponível em: <http://dx.doi.org/10.1016/j.lwt.2007.08.023>. 192. SAMARANAYAKE, C. P.; SASTRY, S. K. In-situ pH measurement of selected liquid foods under high pressure. Innovative Food Science & Emerging Technologies, v. 17, p. 22–26, jan. 2013. Disponível em: <http://dx.doi.org/ 10.1016/j.ifset.2012.09.006>. 193. SANTOS, W. Sardinha. In: III Encontro da Cadeia Produtiva Sardinheira, Itajaí, SC. Anais... Itajaí, SC: Sindicato dos Armadores e das Industrias da Pesca de Itajaí e Região – SINDIPI, 2014. Disponível em: <http://www.sindipi.com.br/coordenadoriatecnica/ informacoes-tecnicas/apresentacoes>. 194. SARMA, J.; SRIKAR, L. N.; REDDY, G. V. Effect of ice storage on the functional properties of pink perch and oil sardine meat. Journal Science of Food and Agriculture v. 172, n. July 1996, p. 169–172, 1999. Disponível em: <http://dx.doi.org/10.1002/(SICI)1097- 0010(199902)79:2<169::AID-JSFA146>3.0.CO;2-J>. 195. SCHENKOVA, N.; SIKULOVA, M.; JELENIKOVA, J.; PIPEK, P.; HOUSKA, M.; MAREK, M. Influence of high isostatic pressure and papain treatment on the quality of beef meat. High Pressure Research, v. 27, n. 1, p. 163–168, 2007. Disponível em: 113 <http://dx.doi.org/10.1080/08957950601088869>. 196. SCHINDLER, S.; KRINGS, U.; BERGER, R. G.; ORLIEN, V. Aroma development in high pressure treated beef and chicken meat compared to raw and heat treated. Meat Science, v. 86, n. 2, p. 317–323, 2010. Disponível em: <http://dx.doi.org/10.1016/j.meatsci.2010.04.036>. 197. SCHUBRING, R. Characterizing protein changes caused by application of high hydrostatic pressure on muscle food by means of DSC. Journal of Thermal Analysis and Calorimetry, v. 82, n. 1, p. 229–237, 2005. Disponível em: <http://dx.doi.org/10.1007/s10973-005-0872-6>. 198. SCHUBRING, R.; MEYER, C.; SCHLÜTER, O.; BOGUSLAWSKI, S.; KNORR, D. Impact of high pressure assisted thawing on the quality of fillets from various fish species. Innovative Food Science and Emerging Technologies, v. 4, n. 3, p. 257–267, 2003. Disponível em: <http://dx.doi.org/ 10.1016/S1466-8564(03)00036-5>. 199. SCORZA, C. A.; ALMEIDA, A.-C. G.; SCORZA, F. A. Chew on this: sardines are still a healthy choice against SUDEP. Epilepsy & Behavior, v. 41, p. 21–22, 2014. Disponível em: <http://dx.doi.org/10.1016/j.yebeh.2014.08.019>. 200. SCORZA, C. A.; CAVALHEIRO, E. A.; CALDERAZZO, L.; DE ALMEIDA, A. C. G.; SCORZA, F. A. Chew on this: Sardines are still a healthy choice against SUDEP. Epilepsy and Behavior, v. 41, p. 21–22, 2014. Disponível em: <http://dx.doi.org/10.1016/j.yebeh.2014.08.019>. 201. SEQUEIRA-MUNOZ, A.; CHEVALIER, D.; LEBAIL, A.; RAMASWAMY, H. S.; SIMPSON, B. K. Physicochemical changes induced in carp (Cyprinus carpio) fillets by high pressure processing at low temperature. Innovative Food Science & Emerging Technologies, v. 7, n. 1–2, p. 13–18, 2006. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2005.06.006>. 202. SEVENICH, R.; BARK, F.; CREWS, C.; ANDERSON, W.; PYE, C.; RIDDELLOVA, K.; HRADECKY, J.; MORAVCOVA, E.; REINEKE, K.; KNORR, D. Effect of high pressure thermal sterilization on the formation of food processing contaminants. Innovative Food Science and Emerging Technologies, v. 20, p. 42–50, 2013. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2013.07.006>. 203. SILVA, J. L.; FOGUEL, D.; ROYER, C. A. Pressure provides new insights into protein folding, dynamics and structure. Trends in biochemical sciences, v. 26, n. 10, p. 612– 618, 2001. Disponível em: <http://dx.doi.org/10.1016/S0968-0004(01)01949-1>. 204. SILVA, M. K.; ROCHA, F. G.; AMARAL, F. M. Gastronomic use of fish in restaurants of the south of Brazil. Journal of Culinary Science & Technology, v. 13, n. 2, p. 159–174, 2015. Disponível em: <http://dx.doi.org/ 10.1080/15428052.2014.952483>. 205. SILVA, D. R. B. Da; MIRANDA JÚNIOR, P. F.; SOARES, E. D. A. A importância dos ácidos graxos poliinsaturados de cadeia longa na gestação e lactação. Revista Brasileira de Saúde Materno Infantil, v. 7, n. 2, p. 123–133, 2007. Disponível em: <http://dx.doi.org/10.1590/S1519-38292007000200002>. 206. SKIPNES, D.; LUND, M.; HENDRICKX, M. E. A method for characterising cook loss and water holding capacity in heat treated cod ( Gadus morhua ) muscle. Journal of Food Engineering, v. 80, p. 1078–1085, 2007. Disponível em: <http://dx.doi.org/ 10.1016/j.jfoodeng.2006.08.015>. 207. STAMATIS, N.; ARKOUDELOS, J. S. Effect of modified atmosphere and vacuum packaging on microbial , chemical and sensory quality indicators of fresh , filleted Sardina pilchardus at 3° C. Journal Science of Food and Agriculture, v. 1171, n. September 2006, p. 1164–1171, 2007. Disponível em: <http://dx.doi.org/10.1002/jsfa.2858>. 208. STIPPL, V. M.; DELGADO, A.; BECKER, T. M. Ionization equilibria at high pressure. European Food Research and Technology, v. 221, n. 1–2, p. 151–156, 2005. Disponível em: <http://dx.doi.org/ 10.1007/s00217-004-1130-z>. 209. SUZUKI, A.; WATANABE, M.; IWAMURA, K. Effect of High Pressure Treatment 114 on the Ultrastructure Muscle pressure to in food processing has attracted much. v. 54, n. 12, p. 3085–3091, 1990. Disponível em: <http://dx.doi.org/10.1080/00021369.1990.10870479>. 210. TANAKA, M.; XUEYI, Z.; NAGASHIMA, Y.; TAUCHI, T. Effect of high pressure on tlhe lipid oxidation in sardine meat. Nippon Suisan Gakkaishi, v. 57, n. 5, p. 957–963, 1991. Disponível em: <http://dx.doi.org/10.2331/suisan.57.957>. 211. TARLEY, C. R. T.; VISENTAINER, J. V.; MATSUSHITA, M.; DE SOUZA, N. E. Proximate composition, cholesterol and fatty acids profile of canned sardines (Sardinella brasiliensis) in soybean oil and tomato sauce. Food Chemistry, v. 88, n. 1, p. 1–6, 2004. Disponível em: <http://dx.doi.org/10.1016/j.foodchem.2004.01.016>. 212. TEIXEIRA, B.; FIDALGO, L.; COSTA, G.; CORDEIRO, C.; MARQUES, A.; SARAIVA, J. A.; NUNES, M. L. Changes of Enzymes Activity and Protein Pro fi les Caused by High-Pressure Processing in Sea Bass (Dicentrarchus labrax) Fillets. Journal of Agricultural and Food Chemistry, v. 61, n. 11, p. 2851–2860, 2013. Disponível em: <http://dx.doi.org/10.1021/jf3049643>. 213. TEIXEIRA, B.; FIDALGO, L.; MENDES, R.; COSTA, G.; CORDEIRO, C.; MARQUES, A.; SARAIVA, J. A.; NUNES, M. L. Effect of high pressure processing in the quality of sea bass (Dicentrarchus labrax) fillets: Pressurization rate, pressure level and holding time. Innovative Food Science & Emerging Technologies, v. 22, p. 31–39, 2014a. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2013.12.005>. 214. TEIXEIRA, B.; MARQUES, A.; MENDES, R.; GONÇALVES, A.; FIDALGO, L.; OLIVEIRA, M.; SARAIVA, J. A.; NUNES, M. L. Effects of high-pressure processing on the quality of sea bass (dicentrarchus labrax) fillets during refrigerated storage. Food and Bioprocess Technology, v. 7, n. 5, p. 1333–1343, 2014b. Disponível em: <http://dx.doi.org/ 10.1007/s11947-013-1170-0>. 215. TEODORO, J. A.; ANDRADE, C. B. De; MANO, S. B. Avaliação da utilização de embalagem em atmosfera modificada sobre a conservação de sardinhas ( Sardinella brasiliensis ). Ciênc. Tecnol. Aliment, v. 27, n. 1, p. 158–161, 2007. 216. TORNBERG, E. MEAT Effects of heat on meat proteins – Implications on structure and quality of meat products. Meat Science, v. 70, p. 493–508, 2005. Disponível em: <http://dx.doi.org/ /10.1016/j.meatsci.2004.11.021>. 217. TORRES, J. A.; VÁZQUEZ, M.; SARAIVA, J. A.; GALLARDO, J. M.; AUBOURG, S. P. Lipid damage inhibition by previous high pressure processing in white muscle of frozen horse mackerel. European Journal of Lipid Science and Technology, v. 115, n. 12, p. 1454–1461, 2013. Disponível em: <http://dx.doi.org/10.1002/ejlt.201300027>. 218. TRUONG, B. Q.; BUCKOW, R.; STATHOPOULOS, C. E.; NGUYEN, M. H. Advances in High-Pressure Processing of Fish Muscles. Food Engineering Reviews, v. 7, n. 2, p. 109–129, 2015. Disponível em: <http://dx.doi.org/ 10.1007/s12393-014-9084-9>. 219. TUBOLY, E.; LEBOVICS, V. K.; GAÁL, Ö.; MÉSZÁROS, L.; FARKAS, J. Microbiological and lipid oxidation studies on mechanically deboned turkey meat treated by high hydrostatic pressure. Journal of Food Engineering, v. 56, n. 2–3, p. 241–244, 2003. Disponível em: <http://dx.doi.org/10.1016/S0260-8774(02)00260-1>. 220. UENO, Y.; IKEUCHI, Y.; SUZUKI, A. Effects of high pressure treatments on intramuscular connective tissue. Meat Science, v. 52, n. 2, p. 143–150, 1999. Disponível em: <http://dx.doi.org/ 10.1016/S0309-1740(98)00161-2>. 221. VÁZQUEZ, M.; TORRES, J. A.; GALLARDO, J. M.; SARAIVA, J.; AUBOURG, S. P. Lipid hydrolysis and oxidation development in frozen mackerel (Scomber scombrus): Effect of a high hydrostatic pressure pre-treatment. Innovative Food Science and Emerging Technologies, v. 18, p. 24–30, 2013. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2012.12.005>. 222. WADA, S.; OGAWA, Y. High pressure effects on fish lipid degradation: myoglobin change and water holding capacity. In: HAYASHI, R.; BALNY, C. (Ed.). High Pressure Bioscience and Biotechonoly, v. 13, p. 351–356, 1996. Disponível em: 115 <http://dx.doi.org/10.1016/S0921-0423(06)80059-6>. 223. WANG, H.; LIU, X.; ZHANG, Y.; LU, H.; XU, Q.; SHI, C.; LUO, Y. Spoilage potential of three different bacteria isolated from spoiled grass carp (Ctenopharyngodon idellus) fillets during storage at 4 °C. LWT - Food Science and Technology, v. 81, p. 10–17, 2017. Disponível em: <http://dx.doi.org/10.1016/j.lwt.2016.11.010>. 224. WHITEHEAD, P. J. P. FAO species catalogue. Clupeoid fishes of the world. An annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings. Part 1. Chirocentridae, Clupeidae and Pristigasteridae. FAO Fisheries Synopsis 125, v. 7, n. 303, 1985. Disponível em: <http://www.fao.org/docrep/009/ac482e/ac482e00.htm>. 225. WINTER, R.; JEWORREK, C. Effect of pressure on membranes. Soft Matter, v. 5, n. 17, p. 3157, 2009. Disponível em: <http://xlink.rsc.org/?DOI=b901690b>. Disponível em: <http://dx.doi.org/10.1039/B901690B>. 226. WONGWICHIAN, C.; KLOMKLAO, S.; PANPIPAT, W.; BENJAKUL, S.; CHAIJAN, M. Interrelationship between myoglobin and lipid oxidations in oxeye scad (Selar boops) muscle during iced storage. Food Chemistry, v. 174, p. 279–285, 2015. Disponível em: <http://dx.doi.org/10.1016/j.foodchem.2014.11.071>. 227. YAGIZ, Y.; KRISTINSSON, H. G.; BALABAN, M. O.; MARSHALL, M. R. Effect of high pressure treatment on the quality of rainbow trout (Oncorhynchus mykiss) and mahi mahi (Coryphaena hippurus). Journal of Food Science, v. 72, n. 9, p. 509–515, 2007. Disponível em: <http://dx.doi.org/10.1111/j.1750-3841.2007.00560.x>. 228. YAGIZ, Y.; KRISTINSSON, H. G.; BALABAN, M. O.; WELT, B. a.; RALAT, M.; MARSHALL, M. R. Effect of high pressure processing and cooking treatment on the quality of Atlantic salmon. Food Chemistry, v. 116, n. 4, p. 828–835, 2009. Disponível em: <http://dx.doi.org/10.1016/j.foodchem.2009.03.029>. 229. YI, J.; XU, Q.; HU, X.; DONG, P.; LIAO, X.; ZHANG, Y. Shucking of bay scallop (Argopecten irradians) using high hydrostatic pressure and its effect on microbiological and physical quality of adductor muscle. Innovative Food Science & Emerging Technologies, v. 18, p. 57–64, 2013a. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2013.02.010>. 230. YI, J.; ZHANG, L.; DING, G.; HU, X.; LIAO, X.; ZHANG, Y. High hydrostatic pressure and thermal treatments for ready-to-eat wine-marinated shrimp: An evaluation of microbiological and physicochemical qualities. Innovative Food Science and Emerging Technologies, v. 20, p. 16–23, 2013b. Disponível em: <http://dx.doi.org/ 10.1016/j.ifset.2013.09.006>. 231. YIN, M. C.; FAUSTMAN, C.; RIESEN, J. W.; WILLIAMS, S. N. α-Tocopherol and ascorbate delay oxymyoglobin phospholipid oxidation in vitro. v. 58, n. 6, 1993. Disponível em: <http://dx.doi.org/10.1111/j.1365-2621.1993.tb06164.x>. 232. YOSHIOKA, K.; YAMADA, A.; MAKI, T. Application of high pressurization to fish meat: Changes in the physical properties of carp skeletal muscle resulting from high pressure thawing. Progress in Biotechnology, v. 13, n. C, p. 369–374, 1996. Disponível em: <http://dx.doi.org/ 10.1016/S0921-0423(06)80062-6>. 233. YOSHIOKA, K.; YAMAMOTO, T. Changes of Ultrastructure of Carp Muscle and the Physical Properties by High Pressurization. Fisheries Science, v. 64, n. 1, p. 89–94, 1998. Disponível em: <http://dx.doi.org/10.2331/fishsci.64.89>. 234. YU, Y.; LIN, Y.; ZHAN, Y.; HE, J.; ZHU, S. Effect of high pressure processing on the stability of anthocyanin, ascorbic acid and color of Chinese bayberry juice during storage. Journal of Food Engineering, v. 119, n. 3, p. 701–706, 2013. Disponível em: <http://dx.doi.org/10.1016/j.jfoodeng.2013.06.036>. 235. ZENG, Z.; LI, C.; ERTBJERG, P. Relationship between proteolysis and water-holding of myofibrils. Meat Science, v. 131, n. February, p. 48–55, 2017. Disponível em: <http://dx.doi.org/10.1016/j.meatsci.2017.04.232>. 236. ZHANG, Z.; YANG, Y.; TANG, X.; CHEN, Y.; YOU, Y. Chemical forces and water 116 holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure Abbreviated running title : Effects of high pressure on chemical forces and water holding capacity. Food Chemistry, n. 188, p. 111–118, 2015. Disponível em: <http://dx.doi.org/10.1016/j.foodchem.2015.04.129>. 237. ZHOU, C. L.; LIU, W.; ZHAO, J.; YUAN, C.; SONG, Y.; CHEN, D.; NI, Y. Y.; LI, Q. H. The effect of high hydrostatic pressure on the microbiological quality and physicalchemical characteristics of Pumpkin (Cucurbita maxima Duch.) during refrigerated storage. Innovative Food Science and Emerging Technologies, v. 21, p. 24–34, 2014. Disponível em: <http://dx.doi.org/10.1016/j.ifset.2013.03.004>. 238. ZUNIN, P.; BOGGIA, R.; EVANGELISTI, F. Identification and quantification of cholesterol oxidation products in canned tuna. Journal of the American Oil Chemists’ Society, v. 78, n. 10, p. 1037–1040, 2001. Disponível em: <http://dx.doi.org/ 10.1007/s11746- 001-0384-y>. | por |
dc.subject.cnpq | Ciência e Tecnologia de Alimentos | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/65423/2018%20-%20Fabiano%20Alves%20de%20Oliveira.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/4728 | |
dc.originais.provenance | Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-06-02T02:09:28Z No. of bitstreams: 1 2018 - Fabiano Alves de Oliveira.pdf: 8299784 bytes, checksum: 504ed4fc55f8820fe386753b5b7a3d22 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2021-06-02T02:09:28Z (GMT). No. of bitstreams: 1 2018 - Fabiano Alves de Oliveira.pdf: 8299784 bytes, checksum: 504ed4fc55f8820fe386753b5b7a3d22 (MD5) Previous issue date: 2018-01-16 | eng |
Appears in Collections: | Doutorado em Ciência e Tecnologia de Alimentos |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2018 - Fabiano Alves de Oliveira.pdf | 2.73 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.