Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9295
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuerra, André Fioravante
dc.date.accessioned2023-12-21T18:37:13Z-
dc.date.available2023-12-21T18:37:13Z-
dc.date.issued2018-01-31
dc.identifier.citationGuerra, André Fioravante. Efeito da pasteurização sobre proteínas bioativas do leite humano e identificação de lactobacilos de origem humana: Caracterização da atividade probiótica in vitro. 2018. [119 f.]. Tese( Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, [Seropédica-RJ] .por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9295-
dc.description.abstractO objetivo desta pesquisa foi avaliar o impacto do tratamento térmico praticado nos bancos de leite sobre proteínas bioativas do leite humano; identificar genotipicamente e selecionar cepas de lactobacilos de origem humana; determinar o efeito de fatores de estresse sobre a susceptibilidade de lactobacilos à agentes antibióticos; e avaliar suas propriedades tecnológicas, funcionais e de segurança, visando a utilização como probióticos. A atividade de glutationa peroxidase (GPx), lisozima (Lis) e perfil proteico do leite humano foi monitorado ao longo de 6 meses de lactação, antes e após a pasteurização lenta a 62,5 °C por 30 minutos (LTLT). Os lactobacilos foram identificados por sequenciamento da região 16S do rDNA e agrupados por clusters de similaridade genética através do RAPD-PCR. Foram avaliadas alterações na susceptibilidade de um representante de cada cluster de lactobacilos frente a 12 antibióticos de uso humano, assim como a sobrevivência em leite fermentado por até 45 dias de estocagem a 7 °C, antes e após passagem pelas condições gastrointestinais in vitro (CGI). No quadragésimo quinto dia de estocagem, também foi mensurado o pH, a acidez titulável e a produção de peróxido de hidrogênio. Uma cepa representativa das duas espécies mais comumente isoladas do intestino de lactentes (Lactobacillus rhamnosus DTA 79 e Lactobacillus paracasei DTA 83) foi selecionada para avaliação e utilização como potenciais probióticos. Para isso, testou-se as propriedades probióticas e de segurança como inibição da formação de biofilmes por patogênicos, ausência de hemólise alfa ou gama, sensibilidade à Lis, além da susceptibilidade aos agentes antibióticos e sobrevivência às CGI. O potencial tecnológico foi caracterizado através da determinação da capacidade de acidificação do leite em crescimento axênico ou em co-cultura com Streptococcus thermophilus (TH 895 e TH 1435), pelas propriedades cinéticas de coagulação do leite e pela capacidade de sobrevivência em sorbet e sherbet, em pastilhas probióticas e em leite fermentado adicionado ou não de mel de abelha (5 % p/v) pasteurizado (78 °C/6 min). LTLT reduziu o conteúdo de LF, Igs e a atividade de GPx do leite humano. Em adição, a atividade de GPx foi maior no colostro e no leite de transição e reduziu naturalmente ao longo de 6 meses de lactação. Em contraste, LTLT não afetou a atividade de Lis do leite humano. O estresse ocasionado pela passagem às CGI ou pela fermentação e estocagem do leite fermentado, alteraram a susceptibilidade de lactobacilos aos antibióticos que atuam sobre a parede celular ou sobre a síntese proteica e de ácidos nucleicos. Conclui-se que LTLT reduz o potencial antimicrobiano e antioxidante do leite humano por reduzir a atividade de GPx, imunoglobulinas e LF. Condições de estresse microbiano alteram a susceptibilidade de lactobacilos à antibióticos e podem induzir a transferência horizontal de genes de resistência. O leite de vaca constitui boa matriz para veicular lactobacilos probióticos (DTA 79 e DTA 83), mas redução na viabilidade foi observado ao longo da validade comercial em sorbet (base de água), mostrando não ser uma boa matriz para esta finalidade. Mel de abelha confere fatores de crescimento e proteção para a lactobacilos durante à passagem pelas CGI. Pastilhas probióticas possuem potencial para reduzir a candidíase oral em pessoas na terceira idade, efetividade foi observada in vitro, mas estudos in vivo ainda precisam ser conduzidos para comprovação da eficácia.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectprobióticospor
dc.subjectpotencialpor
dc.subjectmatrix alimentíciapor
dc.subjectprobioticeng
dc.subjectpotentialeng
dc.subjectfood matrixeng
dc.titleEfeito da pasteurização sobre proteínas bioativas do leite humano e identificação de lactobacilos de origem humana: caracterização da atividade probiótica in vitropor
dc.title.alternativeEffects of holder pasteurization on human milk bioactive proteins and identification of lactobacilli from human origin: In vitro probiotic activity characterizationeng
dc.typeTesepor
dc.description.abstractOtherThe aim of this research was to evaluate the impact of the heat treatment practiced in milk banks (MB) on bioactive molecules of human milk; isolate and identify genotypically and select lactobacilli strains from human origin; to evaluate the effect of microbial stress factors, milk fermentation, cold storage and in vitro gastrointestinal conditions (GIC) on the lactobacilli antibiotic susceptibility; besides to evaluate its technological, functional, and safety properties aiming its use as probiotics. The activity of glutathione peroxidase (GPx), lysozyme (Lys), and electrophoretic protein profile of human milk samples were monitored during six months of lactation before and after Holder Pasteurization (HoP). Lactobacilli were identified by Gram and catalase test, 16S rDNA sequencing, and grouped in 9 clusters of genetic similarity by RAPD-PCR method. Changes in the susceptibility of a representative of each cluster of lactobacilli against 12 antibiotic agents for human use, as well as their microbial survival in fermented milk, were investigate in three moments: inoculated milk (IM), fermented milk (FM), and after 45 days cold (7 °C) storage (CSM) before and after in vitro GIC. At 45 days of storage, the hydrogen potential (pH), and titratable acidity, and hydrogen peroxide (H2O2) production were also measured. A representative strain of each cluster of most commonly lactobacilli isolated from the intestines of infants (Lactobacillus rhamnosus DTA 79 and Lactobacillus paracasei DTA 83) were selected for evaluation and use as probiotics. For this, they were assessed for safety and probiotic properties such as inhibition of biofilm formation by pathogens, presence or absence of alpha or gamma hemolysis, sensitivity to Lys, as well as its susceptibility to antibiotics and GIC survival. Technological potential was assessed by milk acidification potential either in axenic growth or co-cultivation with Streptococcus thermophilus (TH 895 and TH 1435), by the kinetic properties of milk coagulation, and by microbial survivability in ice cream bar or ice-lolly, in probiotic tablets, and in fermented milk added or not of pasteurized (78 °C/6 min) honey bee (5% w/v). HoP reduced the content of lactoferrin (LF), immunoglobulin (Igs) and GPx of human milk. In addition, GPx was higher in colostrum and transitional milk, naturally reducing during 6 months of lactation. In contrast, HoP did not affect human milk Lys activity. Thirty-five lactobacilli were isolated from infant stools and 25 were naturally associated with bifidobacteria. In general, stressful conditions such fermentation and cold storage of the fermented milk increased antibiotic susceptibility over time while, GIC reduced their susceptibility HoP reduces antimicrobial and antioxidant potential of human milk by inactivating GPx, (Igs) and LF. Changes in the antibiotic susceptibility of lactobacilli was observed in this research and this can increase the risk of horizontal induction gene resistance transfer. Cow’s milk is a suitable matrix for delivering both DTA 79 or DTA 83 strains, but reduction in viability was observed over commercial shelf-life in sherbet and sorbet (water-based), showing that it will not be a good matrix for this purpose. Probiotic tablets have potential to reduce oral candidiasis in elderly, as shown by their effectiveness in vitro tests, but in vivo studies shall be further performedpor
dc.contributor.advisor1Luchese, Rosa Helena
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7341531211426066por
dc.contributor.referee1Luchese, Rosa Helena
dc.contributor.referee2Garcia, Silvia Couto
dc.contributor.referee3Santos, Karina Maria Olbrich dos
dc.contributor.referee4McIntosh, Douglas
dc.contributor.referee5Assis, Francisco Baroni de
dc.creator.ID064.179.236-06por
dc.creator.Latteshttp://lattes.cnpq.br/4426970348820801por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.referencesALMEIDA, J. A. G., et al. Normas técnicas para bancos de leite humano. Fiocruz/IFF-BHL. 2005. Disponível em: em. doi. AQUILANO, K., et al. Glutathione: new roles in redox signaling for an old antioxidant. Frontiers in Pharmacology, v.5, p.196. 2014. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144092/>. Acesso em. doi: 10.3389/fphar.2014.00196. ARROYO, G., et al. Effect of the Various Steps in the Processing of Human Milk in the Concentrations of IgA, IgM, and Lactoferrin. Breastfeed Med, v.12, n.7, p.443-445. 2017. Disponível em: em. doi: 10.1089/bfm.2016.0154. BALLARD, O.; A. L. MORROW. Human Milk Composition: Nutrients and Bioactive Factors. Pediatric clinics of North America, v.60, n.1, p.49-74. 2013. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586783/>. Acesso em. doi: 10.1016/j.pcl.2012.10.002. BLAKE, C. C. F., et al. Structure of Hen Egg-White Lysozyme: A Three-dimensional Fourier Synthesis at 2 [angst] Resolution. Nature, v.206, n.4986, p.757-761. 1965. Disponível em: <http://dx.doi.org/10.1038/206757a0>. Acesso em. doi. BMRB. Featured System: Lysozyme. Wordwide Protein Data Bank - WWPDB - National Institute of General Medical Sciences. 2017. Disponível em: <http://www.bmrb.wisc.edu/featuredSys/Lysozyme/lysozyme1.shtml>. Acesso em. doi. BRAZIL. Normas Gerais para Bancos de Leite Humano. M. D. S. I. N. D. a. E. N. S. D. P. E. P. N. D. I. a. A. Materno.: 20 p. 1995. BRAZIL. Portaria n. 2193, de 14 de setembro de 2006. Distrito Federal: Diário Oficial da União. 2193 2006. BUTTE, N. F., et al. Daily ingestion of immunologic components in human milk during the first four months of life. Acta Paediatr Scand, v.73, n.3, p.296-301. 1984. Disponível em: em. doi. CACHO, N. T.; R. M. LAWRENCE. Innate Immunity and Breast Milk. Frontiers in Immunology, v.8, p.584. 2017. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447027/>. Acesso em. doi: 10.3389/fimmu.2017.00584. CHAKRAVARTHI, S., et al. The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Reports, v.7, n.3, p.271-275. 2006. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456887/>. Acesso em. doi: 10.1038/sj.embor.7400645. 33 COSENTINO, C., et al. Effects of different heat treatments on lysozyme quantity and antimicrobial activity of jenny milk. Journal of Dairy Science, v.99, n.7, p.5173-5179. 2016. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0022030216302235>. Acesso em. doi: https://doi.org/10.3168/jds.2015-10702. ELLIS, L., et al. The Impact of Gestational Length on Human Milk Selenium Concentration and Glutathione Peroxidase Activity. Pediatr Res, v.27, n.1, p.32-35. 1990. Disponível em: <http://dx.doi.org/10.1203/00006450-199001000-00007>. Acesso em. doi. FISER, B., et al. Glutathione as a prebiotic answer to alpha-peptide based life. J Phys Chem B, v.119, n.10, p.3940-7. 2015. Disponível em: em. doi: 10.1021/jp511582m. HELD, J.; S. VAN SMAALEN. The active site of hen egg-white lysozyme: flexibility and chemical bonding. Acta Crystallogr D Biol Crystallogr, v.70, n.Pt 4, p.1136-46. 2014. Disponível em: em. doi: 10.1107/s1399004714001928. IMOTO, T. Lysozyme. In: (Ed.). eLS: John Wiley & Sons, Ltd, 2017. Lysozyme JÄRVINEN, K. M., et al. Role of maternal elimination diets and human milk IgA in development of cow’s milk allergy in the infants. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology, v.44, n.1, p.69-78. 2014. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038099/>. Acesso em. doi: 10.1111/cea.12228. KAISER, G. G., et al. Detection of recombinant human lactoferrin and lysozyme produced in a bitransgenic cow. Journal of Dairy Science, v.100, n.3, p.1605-1617. 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0022030217300358>. Acesso em. doi: http://dx.doi.org/10.3168/jds.2016-11173. KATKE, R., et al. Practicalities and benefits of human milk banks in India. International Journal of Gynecology & Obstetrics, v.129, n.1, p.83-84. 2015. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0020729214005943>. Acesso em. doi: http://dx.doi.org/10.1016/j.ijgo.2014.10.015. KIM, J. H.; S. UNGER. Human milk banking. Paediatrics & Child Health, v.15, n.9, p.595- 598. 2010. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3009567/>. Acesso em. doi. KLOTZ, D., et al. High-temperature short-time pasteurisation of human breastmilk is efficient in retaining protein and reducing the bacterial count. Acta Paediatr, v.106, n.5, p.763-767. 2017. Disponível em: em. doi: 10.1111/apa.13768. KRONBORG, H., et al. First time mothers' experiences of breastfeeding their newborn. Sexual & Reproductive Healthcare, v.6, n.2, p.82-87. 2015. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1877575614000536>. Acesso em. doi: http://dx.doi.org/10.1016/j.srhc.2014.08.004. LADERO, V.; B. SÁNCHEZ. Molecular and technological insights into the aerotolerance of anaerobic probiotics: examples from bifidobacteria. Current Opinion in Food Science, v.14, 34 n.Supplement C, p.110-115. 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S2214799317300449>. Acesso em. doi: https://doi.org/10.1016/j.cofs.2017.03.002. LAEMMLI, U. K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, v.227, n.5259, p.680-685. 1970. Disponível em: <http://dx.doi.org/10.1038/227680a0>. Acesso em. doi. LIMA, H. K., et al. Bacteria and bioactivity in Holder pasteurized and shelf-stable human milk products. Current Developments in Nutrition. 2017. Disponível em: em. doi: 10.3945/cdn.117.001438. LÖNNERDAL, B. Bioactive Proteins in Human Milk—Potential Benefits for Preterm Infants. Clinics in perinatology, v.44, n.1, p.179-191. 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0095510816301117>. Acesso em. doi: http://dx.doi.org/10.1016/j.clp.2016.11.013. LÖNNERDAL, B., et al. Longitudinal evolution of true protein, amino acids and bioactive proteins in breast milk: a developmental perspective. The Journal of Nutritional Biochemistry, v.41, n.Supplement C, p.1-11. 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0955286316301711>. Acesso em. doi: https://doi.org/10.1016/j.jnutbio.2016.06.001. MARINKOVIC, V., et al. Antioxidative Activity of Colostrum and Human Milk: Effects of Pasteurization and Storage. J Pediatr Gastroenterol Nutr, v.62, n.6, p.901-6. 2016. Disponível em: em. doi: 10.1097/mpg.0000000000001090. MOUKARZEL, S.; L. BODE. Human Milk Oligosaccharides and the Preterm Infant. Clinics in perinatology, v.44, n.1, p.193-207. 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0095510816301129>. Acesso em. doi: http://dx.doi.org/10.1016/j.clp.2016.11.014. MURPHY, K., et al. The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study. Nature/Scientificreports, v.7, p.40597. 2017. Disponível em: <http://dx.doi.org/10.1038/srep40597>. Acesso em. doi: 10.1038/srep40597 https://www.nature.com/articles/srep40597#supplementary-information. NCBI. PubChem Compound Database. 2017 2017a. NCBI. National Center for Biotechnology Information,. PubChem Compound Database, CID=124886. 2017b. Disponível em: <https://pubchem.ncbi.nlm.nih.gov/compound/124886>. Acesso em: Nov. 2, 2017. doi. ODA, H., et al. Lactoferrin and bifidobacteria. BioMetals, v.27, n.5, p.915-922. 2014. Disponível em: <https://doi.org/10.1007/s10534-014-9741-8>. Acesso em. doi: 10.1007/s10534-014-9741-8. 35 OGREN, G., et al. EC NUTRITION Review Article The Importance and Necessities of Human Milk Banking in Newborn Baby Feeding; A Review Article, v.95. 2017. 198-205 p. OGUNDELE, M. O. Techniques for the storage of human breast milk: implications for antimicrobial functions and safety of stored milk. Eur J Pediatr, v.159, n.11, p.793-7. 2000. Disponível em: em. doi. OLIVEIRA, S. C., et al. Impact of pasteurization of human milk on preterm newborn in vitro digestion: Gastrointestinal disintegration, lipolysis and proteolysis. Food Chemistry, v.211, p.171-179. 2016. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0308814616307075>. Acesso em. doi: http://dx.doi.org/10.1016/j.foodchem.2016.05.028. PEILA, C., et al. The Effect of Holder Pasteurization on Nutrients and Biologically-Active Components in Donor Human Milk: A Review. Nutrients, v.8, n.8, p.477. 2016. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997390/>. Acesso em. doi: 10.3390/nu8080477. RAOOF, N. A., et al. Comparison of lactoferrin activity in fresh and stored human milk. J Perinatol, v.36, n.3, p.207-209. 2016. Disponível em: <http://dx.doi.org/10.1038/jp.2015.186>. Acesso em. doi: 10.1038/jp.2015.186. REDE BRASILEIRA DE BANCOS DE LEITE HUMANO. Rio de Janeiro: Fundação Oswaldo Cruz - FIOCRUZ. 2017 2005. SALTON, M. R. J. Cell Wall of Micrococcus Lysodeikticus as the Substrate of Lysozyme. Nature, v.170, n.4331, p.746-747. 1952. Disponível em: <http://dx.doi.org/10.1038/170746a0>. Acesso em. doi. SOUSA, S. G., et al. Effect of thermal pasteurisation and high-pressure processing on immunoglobulin content and lysozyme and lactoperoxidase activity in human colostrum. Food Chem, v.151, p.79-85. 2014. Disponível em: em. doi: 10.1016/j.foodchem.2013.11.024. TALJA, I., et al. Antibodies to Lactobacilli and Bifidobacteria in young children with different propensity to develop islet autoimmunity. J Immunol Res, v.2014, p.325938. 2014. Disponível em: em. doi: 10.1155/2014/325938. THONGARAM, T., et al. Human milk oligosaccharide consumption by probiotic and humanassociated bifidobacteria and lactobacilli. Journal of Dairy Science. 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0022030217307300>. Acesso em. doi: http://dx.doi.org/10.3168/jds.2017-12753. TOBBACK, E., et al. Comparison of subjective sleep and fatigue in breast- and bottle-feeding mothers. Midwifery, v.47, p.22-27. 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0266613817300426>. Acesso em. doi: https://doi.org/10.1016/j.midw.2017.01.009. 36 TURIN, C. G., et al. Lactoferrin concentration in breast milk of mothers of low-birth-weight newborns. J Perinatol, v.37, n.5, p.507-512. 2017. Disponível em: em. doi: 10.1038/jp.2016.265. VARSI, K., et al. Impact of Maternal Selenium Status on Infant Outcome during the First 6 Months of Life. Nutrients, v.9, n.5, p.486. 2017. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452216/>. Acesso em. doi: 10.3390/nu9050486. VILLAVICENCIO, A., et al. Factors affecting lactoferrin concentration in human milk: how much do we know? Biochem Cell Biol, v.95, n.1, p.12-21. 2017. Disponível em: em. doi: 10.1139/bcb-2016-0060. WANG, B. Molecular Determinants of Milk Lactoferrin as a Bioactive Compound in Early Neurodevelopment and Cognition. The Journal of Pediatrics, v.173, p.S29-S36. 2016. Disponível em: <http://dx.doi.org/10.1016/j.jpeds.2016.02.073>. Acesso em: 2017/10/31. doi: 10.1016/j.jpeds.2016.02.073. WHO. Nutrition health topics - Exclusive breastfeeding. World Health Organization. 2017 2017. ŽIVKOVIĆ, J., et al. Antioxidants and Antioxidant Capacity of Human Milk / Antioksidansi i antioksidativni kapacitet humanog mleka. Acta Facultatis Medicae Naissensis. 32: 115 p. 2015. AIZAWA, E., et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder, v.202. 2016 ANDRIGHETTO, C., et al. RAPD-PCR characterization of lactobacilli isolated from artisanal meat plants and traditional fermented sausages of Veneto region (Italy). Letters in Applied Microbiology, v.33, n.1, p.26-30. 2001. Disponível em: <http://dx.doi.org/10.1046/j.1472- 765X.2001.00939.x>. Acesso em. doi: 10.1046/j.1472-765X.2001.00939.x. BRON, P. A., et al. Can probiotics modulate human disease by impacting intestinal barrier function? British Journal of Nutrition, v.117, n.1, p.93-107. 2017. Disponível em: <https://www.cambridge.org/core/article/can-probiotics-modulate-human-disease-byimpacting- intestinal-barrier-function/DEF63ACAC72D015CADD2E6EB35D4AD59>. Acesso em. doi: 10.1017/S0007114516004037. HARMSEN, H. J., et al. Comparison of viable cell counts and fluorescence in situ hybridization using specific rRNA-based probes for the quantification of human fecal bacteria. FEMS Microbiol Lett, v.183, n.1, p.125-9. 2000. HARTEMINK, R., et al. LAMVAB - A new selective medium for isolation of lactobacilli from faeces, v.29. 1997 MANDAL, H., et al. Isolation and characterization of lactobacilli from human faeces and indigenous fermented foods for their potential application as probiotics. Canadian Journal of Microbiology, v.62, n.4, p.349-359. 2015. Disponível em: <https://doi.org/10.1139/cjm- 2015-0576>. Acesso em: 2017/12/14. doi: 10.1139/cjm-2015-0576. MARKOVA IU, M.; S. A. SHEVELEVA. [Probiotics as functional food products: manufacture and approaches to evaluating of the effectiveness]. Vopr Pitan, v.83, n.4, p.4- 14. 2014. MARTIN, R., et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol, v.75, n.4, p.965-9. 2009. Disponível em: em. doi: 10.1128/aem.02063-08. MILANI, C., et al. Genomics of the Genus Bifidobacterium Reveals Species-Specific Adaptation to the Glycan-Rich Gut Environment. Appl Environ Microbiol, v.82, n.4, p.980- 91. 2015. Disponível em: em. doi: 10.1128/aem.03500-15. MUNOZ-QUEZADA, S., et al. Isolation, identification and characterisation of three novel probiotic strains (Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I- 4035 and Lactobacillus rhamnosus CNCM I-4036) from the faeces of exclusively breast-fed infants. Br J Nutr, v.109 Suppl 2, p.S51-62. 2013. Disponível em: em. doi: 10.1017/s0007114512005211. 54 MURPHY, K., et al. The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study. Nature/Scientificreports, v.7, p.40597. 2017. Disponível em: <http://dx.doi.org/10.1038/srep40597>. Acesso em. doi: 10.1038/srep40597 https://www.nature.com/articles/srep40597#supplementary-information. RAVISHANKAR, V. R.; A. B. RAI. Microbes in fermented and functional foods. New York: CRC Press, v.1. 2015. 511 p. SALAZAR, N., et al. Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin, and metabolic activity of the producing bacteria in milk, v.92. 2009. 4158-68 p. SOFU, A. Analyses of Dynamics in Dairy Products and Identification of Lactic Acid Bacteria Population by Molecular Methods. Turkish Journal of Agriculture - Food Science and Technological, v.5, n.1. 2017. Disponível em: em. doi: https://doi.org/10.24925/turjaf.v5i1.6- 13.738. SOLTAN DALLAL, M. M., et al. Identification and characterization of probiotic lactic acid bacteria isolated from traditional persian pickled vegetables. GMS Hygiene and Infection Control, v.12, p.Doc15. 2017. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627144/>. Acesso em. doi: 10.3205/dgkh000300. TSAFRAKIDOU, P., et al. Technological, phenotypic and genotypic characterization of lactobacilli from Graviera Kritis PDO Greek cheese, manufactured at two traditional dairies. LWT - Food Science and Technology, v.68, p.681-689. 2016. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0023643816300020>. Acesso em. doi: http://dx.doi.org/10.1016/j.lwt.2016.01.002. WGO. WGO Practice Guideline - Probiotics and Prebiotics. Milwaukee, Suice: WGO 2017.WHO. Probiotics in Food - Health and Nutrition Properties and guidelines for evaluation. Health and Nutrition Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. Fao. Rome: FAO and WHO 2006 2006 ABRIOUEL, H., et al. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Research International, v.78, p.465-481. 2015. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0963996915301903>. Acesso em. doi: http://dx.doi.org/10.1016/j.foodres.2015.09.016. ASAMA, T., et al. Oral administration of heat-killed Lactobacillus kunkeei YB38 improves murine influenza pneumonia by enhancing IgA production. Bioscience of Microbiota, Food and Health, v.36, n.1, p.1-9. 2017. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5301051/>. Acesso em. doi: 10.12938/bmfh.16-010. BAUER, A. W., et al. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol, v.45, n.4, p.493-6. 1966. Disponível em: em. doi. BOUSMAHA-MARROKI, L.; A. MARROKI. Antibiotic susceptibility and heterogeneity in technological traits of lactobacilli isolated from Algerian goat’s milk. J Food Sci Technol, v.52, n.8, p.4708-4723. 2015. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519446/>. Acesso em. doi: 10.1007/s13197-014-1556-7. CHAPOT-CHARTIER, M.-P. Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages. Frontiers in Microbiology, v.5. 2014. Disponível em: em. doi. DEC, M., et al. Assessment of antibiotic susceptibility in Lactobacillus isolates from chickens. Gut Pathogens, v.9, n.1, p.54. 2017. Disponível em: <https://doi.org/10.1186/s13099-017-0203-z>. Acesso em. doi: 10.1186/s13099-017-0203-z. DOMINGUES, S.; K. M. NIELSEN. Membrane vesicles and horizontal gene transfer in prokaryotes. Curr Opin Microbiol, v.38, p.16-21. 2017. Disponível em: em. doi: 10.1016/j.mib.2017.03.012. FAVARIN, L., et al. Survival of free and microencapsulated Bifidobacterium: effect of honey addition. Journal of Microencapsulation, v.32, n.4, p.329-335. 2015. Disponível em: <http://dx.doi.org/10.3109/02652048.2015.1017620>. Acesso em. doi: 10.3109/02652048.2015.1017620. GÄNZLE, M. G. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, v.2, p.106-117. 2015. Disponível em: <http://www.sciencedirect.com/science/article/pii/S2214799315000508>. Acesso em. doi: http://dx.doi.org/10.1016/j.cofs.2015.03.001. HUANG, R., et al. Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress. Journal of Dairy Science, v.99, n.2, p.1002-1010. 2016. Disponível em: 79 <http://www.sciencedirect.com/science/article/pii/S0022030215008577>. Acesso em. doi: http://dx.doi.org/10.3168/jds.2015-9993. JIANG, X., et al. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nature Communications, v.8, p.15784. 2017. Disponível em: <http://dx.doi.org/10.1038/ncomms15784>. Acesso em. doi: 10.1038/ncomms15784 https://www.nature.com/articles/ncomms15784#supplementary-information. LOPATKIN, A. J., et al. Persistence and reversal of plasmid-mediated antibiotic resistance. Nature Communications, v.8, n.1, p.1689. 2017. Disponível em: <https://doi.org/10.1038/s41467-017-01532-1>. Acesso em. doi: 10.1038/s41467-017-01532- 1. MARINO, M., et al. Viability of probiotic Lactobacillus rhamnosus in structured emulsions containing saturated monoglycerides. Journal of Functional Foods, v.35, p.51-59. 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1756464617302645>. Acesso em. doi: http://dx.doi.org/10.1016/j.jff.2017.05.012. MUNITA, J. M.; C. A. ARIAS. Mechanisms of Antibiotic Resistance. Microbiology spectrum, v.4, n.2, p.10.1128/microbiolspec.VMBF-0016-2015. 2016. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888801/>. Acesso em. doi: 10.1128/microbiolspec.VMBF-0016-2015. NCBI. PubChem Compound Database. 2017 2017. RAVISHANKAR, V. R.; A. B. RAI. Microbes in fermented and functional foods. New York: CRC Press, v.1. 2015. 511 p. RICHARDSON, L. A. Understanding and overcoming antibiotic resistance. PLOS Biology, v.15, n.8, p.e2003775. 2017. Disponível em: <https://doi.org/10.1371/journal.pbio.2003775>. Acesso em. doi: 10.1371/journal.pbio.2003775. ROBBINS, P. D.; A. E. MORELLI. Regulation of Immune Responses by Extracellular Vesicles. Nature reviews. Immunology, v.14, n.3, p.195-208. 2014. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4350779/>. Acesso em. doi: 10.1038/nri3622. SEBASTIÁN DOMINGO, J. J. Review of the role of probiotics in gastrointestinal diseases in adults. Gastroenterología y Hepatología (English Edition), v.40, n.6, p.417-429. 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S2444382417301062>. Acesso em. doi: http://dx.doi.org/10.1016/j.gastre.2016.12.001. SHARMA, P., et al. Antibiotic resistance among commercially available probiotics, v.57. 2014 SHARMA, P., et al. Antibiotic Resistance of Lactobacillus sp. Isolated from Commercial Probiotic Preparations. Journal of Food Safety, v.36, n.1, p.38-51. 2016. Disponível em: <http://dx.doi.org/10.1111/jfs.12211>. Acesso em. doi: 10.1111/jfs.12211. 80 SHORI, A. B. The potential applications of probiotics on dairy and non-dairy foods focusing on viability during storage. Biocatalysis and Agricultural Biotechnology, v.4, n.4, p.423- 431. 2015. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1878818115001309>. Acesso em. doi: http://dx.doi.org/10.1016/j.bcab.2015.09.010. SOMMER, M. O. A., et al. Prediction of antibiotic resistance: time for a new preclinical paradigm? Nat Rev Microbiol, v.15, n.11, p.689-696. 2017. Disponível em: em. doi: 10.1038/nrmicro.2017.75. TACHEDJIAN, G., et al. The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Research in Microbiology. 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0923250817300839>. Acesso em. doi: https://doi.org/10.1016/j.resmic.2017.04.001. VLKOVÁ, E., et al. Antimicrobial susceptibility of bifidobacteria isolated from gastrointestinal tract of calves. Livestock Science, v.105, n.1, p.253-259. 2006. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1871141306001429>. Acesso em. doi: http://dx.doi.org/10.1016/j.livsci.2006.04.011. WANG, S., et al. Antimicrobial Compounds Produced by Vaginal Lactobacillus crispatus Are Able to Strongly Inhibit Candida albicans Growth, Hyphal Formation and Regulate Virulence-related Gene Expressions. Frontiers in Microbiology, v.8, p.564. 2017. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378977/>. Acesso em. doi: 10.3389/fmicb.2017.00564. WILBURN, J. R.; E. P. RYAN. Chapter 1 - Fermented Foods in Health Promotion and Disease Prevention: An Overview A2 - Frias, Juana. In: C. Martinez-Villaluenga e E. Peñas (Ed.). Fermented Foods in Health and Disease Prevention. Boston: Academic Press, 2017. Chapter 1 - Fermented Foods in Health Promotion and Disease Prevention: An Overview A2 - Frias, Juana, p.3-19 XU, L., et al. Hydrogen peroxide induces oxidative stress and the mitochondrial pathway of apoptosis in RAT intestinal epithelial cells (IEC-6). Molecular Biology, v.50, n.2, p.270-277. 2016. Disponível em: <https://doi.org/10.1134/S0026893316020266>. Acesso em. doi: 10.1134/S0026893316020266. ZAMAN, S. B., et al. A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus, v.9, n.6, p.e1403. 2017. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5573035/>. Acesso em. doi: 10.7759/cureus.1403. ZHENG, M., et al. Assessing the Risk of Probiotic Dietary Supplements in the Context of Antibiotic Resistance. Frontiers in Microbiology, v.8, p.908. 2017. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5437161/>. Acesso em. doi: 10.3389/fmicb.2017.00908. AKALIN, A. S., et al. Enrichment of probiotic ice cream with different dietary fibers: Structural characteristics and culture viability. J Dairy Sci. 2017. Disponível em: em. doi: 10.3168/jds.2017-13468. BITTANTE, G. Modeling rennet coagulation time and curd firmness of milk. Journal of Dairy Science, v.94, n.12, p.5821-5832. 2011. Disponível em: <http://dx.doi.org/10.3168/jds.2011-4514>. Acesso em: 2017/11/25. doi: 10.3168/jds.2011- 4514. BITTANTE, G.; A. CECCHINATO. Genetic analysis of the Fourier-transform infrared spectra of bovine milk with emphasis on individual wavelengths related to specific chemical bonds. J Dairy Sci, v.96, n.9, p.5991-6006. 2013. Disponível em: em. doi: 10.3168/jds.2013- 6583. BITTANTE, G., et al. Invited review: Genetics and modeling of milk coagulation properties. Journal of Dairy Science, v.95, n.12, p.6843-6870. 2012. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0022030212007072>. Acesso em. doi: https://doi.org/10.3168/jds.2012-5507. BLAIOTTA, G., et al. Commercially standardized process for probiotic “Italico” cheese production. LWT - Food Science and Technology, v.79, n.Supplement C, p.601-608. 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S002364381630679X>. Acesso em. doi: https://doi.org/10.1016/j.lwt.2016.11.008. BRASIL. Instrução Normativa n°46 de, 23 de outubro de 2007. Brasília: Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Diário Oficial da União. Poder Executivo 2007. CÁRDENAS, N., et al. Development of a Potential Probiotic Fresh Cheese Using Two Lactobacillus salivarius Strains Isolated from Human Milk. Biomed Res Int, v.2014, p.801918. 2014. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4058156/>. Acesso em. doi: 10.1155/2014/801918. CHILTON, S. N., et al. Inclusion of Fermented Foods in Food Guides around the World. Nutrients, v.7, n.1, p.390-404. 2015. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303846/>. Acesso em. doi: 10.3390/nu7010390. DALIRI, E. B.-M.; B. H. LEE. New perspectives on probiotics in health and disease. Food Science and Human Wellness, v.4, n.2, p.56-65. 2015. Disponível em: 115 <http://www.sciencedirect.com/science/article/pii/S2213453015000300>. Acesso em. doi: https://doi.org/10.1016/j.fshw.2015.06.002. DE MARCHI, M., et al. Milk coagulation ability of five dairy cattle breeds. J Dairy Sci, v.90, n.8, p.3986-92. 2007. Disponível em: em. doi: 10.3168/jds.2006-627. DEOSARKAR, S. S., et al. Ice Cream: Uses and Method of Manufacture. In: (Ed.). Encyclopedia of Food and Health. Oxford: Academic Press, 2016. Ice Cream: Uses and Method of Manufacture, p.391-397 EVIVIE, S. E., et al. Some current applications, limitations and future perspectives of lactic acid bacteria as probiotics. Food & Nutrition Research, v.61, n.1, p.1318034. 2017. Disponível em: <http://dx.doi.org/10.1080/16546628.2017.1318034>. Acesso em. doi: 10.1080/16546628.2017.1318034. FARNWORTH, E. R.; C. P. CHAMPAGNE. Chapter 20 - Production of Probiotic Cultures and Their Incorporation into Foods A2 - Watson, Ronald Ross. In: V. R. Preedy (Ed.). Probiotics, Prebiotics, and Synbiotics: Academic Press, 2016. Chapter 20 - Production of Probiotic Cultures and Their Incorporation into Foods A2 - Watson, Ronald Ross, p.303-318 FAVARIN, L., et al. Survival of free and microencapsulated Bifidobacterium: effect of honey addition. Journal of Microencapsulation, v.32, n.4, p.329-335. 2015. Disponível em: <http://dx.doi.org/10.3109/02652048.2015.1017620>. Acesso em. doi: 10.3109/02652048.2015.1017620. FERNANDES, F. A. N., et al. Drying of Exotic Tropical Fruits: A Comprehensive Review. Food and Bioprocess Technology, v.4, n.2, p.163-185. 2011. Disponível em: <http://dx.doi.org/10.1007/s11947-010-0323-7>. Acesso em. doi: 10.1007/s11947-010-0323- 7. FLACH, J., et al. The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters. Critical Reviews in Food Science and Nutrition, p.1-15. 2017. Disponível em: <http://dx.doi.org/10.1080/10408398.2017.1334624>. Acesso em. doi: 10.1080/10408398.2017.1334624. GANGULY, N. K., et al. ICMR-DBT Guidelines for Evaluation of Probiotics in Food. The Indian Journal of Medical Research, v.134, n.1, p.22-25. 2011. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171912/>. Acesso em. doi. HAMOSH, M., et al. Protective function of human milk: the milk fat globule. Semin Perinatol, v.23, n.3, p.242-9. 1999. Disponível em: em. doi. 116 HAN, X., et al. Improvement of the Texture of Yogurt by Use of Exopolysaccharide Producing Lactic Acid Bacteria. v.2016, p.7945675. 2016. Disponível em: em. doi: 10.1155/2016/7945675. HEUNIS, T., et al. Proteomic Profiling of the Acid Stress Response in Lactobacillus plantarum 423. Journal of Proteome Research, v.13, n.9, p.4028-4039. 2014. Disponível em: <http://dx.doi.org/10.1021/pr500353x>. Acesso em. doi: 10.1021/pr500353x. KAWASAKI, S., et al. Chapter 7 - Stress Responses of Bifidobacteria: Oxygen and Bile Acid as the Stressors A2 - Mattarelli, Paola. In: B. Biavati, W. H. Holzapfel, et al (Ed.). The Bifidobacteria and Related Organisms: Academic Press, 2018. Chapter 7 - Stress Responses of Bifidobacteria: Oxygen and Bile Acid as the Stressors A2 - Mattarelli, Paola, p.131-143 LEBLANC, J. G., et al. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microbial Cell Factories, v.16, p.79. 2017. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423028/>. Acesso em. doi: 10.1186/s12934-017-0691-z. LEE, B., et al. Attenuation of Colitis by Lactobacillus casei BL23 Is Dependent on the Dairy Delivery Matrix. Applied and Environmental Microbiology, v.81, n.18, p.6425-6435. 2015. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542224/>. Acesso em. doi: 10.1128/AEM.01360-15. LINARES, D. M., et al. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods. Frontiers in Microbiology, v.8, p.846. 2017. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435742/>. Acesso em. doi: 10.3389/fmicb.2017.00846. LÓPEZ, D. N., et al. Physicochemical study of mixed systems composed by bovine caseinate and the galactomannan from Gleditsia amorphoides. Carbohydrate Polymers, v.173, n.Supplement C, p.1-6. 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0144861717305611>. Acesso em. doi: https://doi.org/10.1016/j.carbpol.2017.05.044. MALCHIODI, F., et al. Milk quality, coagulation properties, and curd firmness modeling of purebred Holsteins and first- and second-generation crossbred cows from Swedish Red, Montbeliarde, and Brown Swiss bulls. J Dairy Sci, v.97, n.7, p.4530-41. 2014. Disponível em: em. doi: 10.3168/jds.2013-7868. 117 MARKOVA IU, M.; S. A. SHEVELEVA. [Probiotics as functional food products: manufacture and approaches to evaluating of the effectiveness]. Vopr Pitan, v.83, n.4, p.4- 14. 2014. Disponível em: em. doi. MATHIPA, M. G.; M. S. THANTSHA. Probiotic engineering: towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens. Gut Pathogens, v.9, p.28. 2017. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5422995/>. Acesso em. doi: 10.1186/s13099-017-0178-9. MINAMI, J., et al. Lysozyme in breast milk is a selection factor for bifidobacterial colonisation in the infant intestine. Beneficial Microbes, v.7, n.1, p.53-60. 2016. Disponível em: <http://www.wageningenacademic.com/doi/abs/10.3920/BM2015.0041>. Acesso em. doi: 10.3920/bm2015.0041. MOHAMMADI, R., et al. Probiotic ice cream: viability of probiotic bacteria and sensory properties. Annals of Microbiology, v.61, n.3, p.411-424. 2011. Disponível em: <http://dx.doi.org/10.1007/s13213-010-0188-z>. Acesso em. doi: 10.1007/s13213-010-0188- z. MOKOENA, M. P., et al. Perspectives on the probiotic potential of lactic acid bacteria from African traditional fermented foods and beverages. Food & Nutrition Research, v.60, p.10.3402/fnr.v60.29630. 2016. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785221/>. Acesso em. doi: 10.3402/fnr.v60.29630. MOSCHOPOULOU, E., et al. Effect of milk kind and storage on the biochemical, textural and biofunctional characteristics of set-type yoghurt. International Dairy Journal, v.77, n.Supplement C, p.47-55. 2018. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0958694617302005>. Acesso em. doi: https://doi.org/10.1016/j.idairyj.2017.09.008. MULLAN, W. M. A. STARTER CULTURES | Importance of Selected Genera A2 - Batt, Carl A. In: M. L. Tortorello (Ed.). Encyclopedia of Food Microbiology (Second Edition). Oxford: Academic Press, 2014. STARTER CULTURES | Importance of Selected Genera A2 - Batt, Carl A, p.515-521 MEYBODI, NM; MORTAZAVIAM AM. Probiotic Supplements and Food Products: A Comparative Approach, v.06. 2017 OWUSU-KWARTENG, J., et al. Technological properties and probiotic potential of Lactobacillus fermentum strains isolated from West African fermented millet dough. BMC Microbiology, v.15, p.261. 2015. Disponível em: 118 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642623/>. Acesso em. doi: 10.1186/s12866-015-0602-6. PALMIRO POLTRONIERI. Microbiology in dairy processing: challenges and opportunities. India: Wiley. 2017 (Dairy microbiology. Dairy processing) PARK, S. H., et al. Effect of Frozen Storage Temperature on the Quality of Premium Ice Cream. Korean Journal for Food Science of Animal Resources, v.35, n.6, p.793-799. 2015. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726959/>. Acesso em. doi: 10.5851/kosfa.2015.35.6.793. PARKER, E. A., et al. Probiotics and gastrointestinal conditions: An overview of evidence from the Cochrane Collaboration. Nutrition, v.45, n.Supplement C, p.125-134.e11. 2018. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0899900717301351>. Acesso em. doi: https://doi.org/10.1016/j.nut.2017.06.024. PÉREZ MONTORO, B., et al. Proteomic analysis of Lactobacillus pentosus for the identification of potential markers involved in acid resistance and their influence on other probiotic features. Food Microbiol, v.72, n.Supplement C, p.31-38. 2018. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0740002017306755>. Acesso em. doi: https://doi.org/10.1016/j.fm.2017.11.006. SANDERS, M. E., et al. An update on the use and investigation of probiotics in health and disease. Gut, v.62, n.5, p.787-796. 2013. Disponível em: em. doi: 10.1136/gutjnl-2012- 302504. SHAHID RIAZ, M., et al. In-vitro Assessment of Probiotic Potential of Lactic acid Bacteria. Journal of Biology and Today's World, v.4, n.10, p.190-198. 2015. Disponível em: em. doi. SHEWALE, R. N., et al. Selection criteria for probiotics: A review, v.9. 2014. 17-22 p. STEFANOVIC, E., et al. Advances in the genomics and metabolomics of dairy lactobacilli: A review. Food Microbiol, v.61, p.33-49. 2017. Disponível em: em. doi: 10.1016/j.fm.2016.08.009. TAMANG, J. P., et al. Functional Properties of Microorganisms in Fermented Foods. Frontiers in Microbiology, v.7, p.578. 2016. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844621/>. Acesso em. doi: 10.3389/fmicb.2016.00578. THAKUR, N., et al. Probiotics: Selection criteria, safety and role in health and disease, v.3. 2016. 259-270 p. 119 VASIEE, A., et al. Diversity and Probiotic Potential of Lactic Acid Bacteria Isolated from Horreh, a Traditional Iranian Fermented Food. Probiotics and Antimicrobial Proteins. 2017. Disponível em: <https://doi.org/10.1007/s12602-017-9282-x>. Acesso em. doi: 10.1007/s12602-017-9282-x. VILLALVA, F. J., et al. Formulation of a peach ice cream as potential symbiotic food. Food Science and Technology, v.37, p.456-461. 2017. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101- 20612017000300456&nrm=iso>. Acesso em. doi. WILKINS, T.; J. SEQUOIA. Probiotics for Gastrointestinal Conditions: A Summary of the Evidence. Am Fam Physician, v.96, n.3, p.170-178. 2017. Disponível em: em. doi. WOO, J.; J. AHN. Probiotic-mediated competition, exclusion and displacement in biofilm formation by food-borne pathogens. Letters in Applied Microbiology, v.56, n.4, p.307-313. 2013. Disponível em: <http://dx.doi.org/10.1111/lam.12051>. Acesso em. doi: 10.1111/lam.12051. YADAV, R., et al. Probiotic Properties of Lactobacillus plantarum RYPR1 from an Indigenous Fermented Beverage Raabadi. Frontiers in Microbiology, v.7, p.1683. 2016. Disponível em: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073146/>. Acesso em. doi: 10.3389/fmicb.2016.01683. ZAFAR, S. B., et al. Bioprospecting of indigenous resources for the exploration of exopolysaccharide producing lactic acid bacteria. Journal of Genetic Engineering and Biotechnology. 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1687157X17300884>. Acesso em. doi: https://doi.org/10.1016/j.jgeb.2017.10.015por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/64515/2018%20-%20Andr%c3%a9%20Fioravante%20Guerra.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4507
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-04-06T12:52:59Z No. of bitstreams: 1 2018 - André Fioravante Guerra.pdf: 5256906 bytes, checksum: 35273b007facee2301aab150445c3184 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-04-06T12:52:59Z (GMT). No. of bitstreams: 1 2018 - André Fioravante Guerra.pdf: 5256906 bytes, checksum: 35273b007facee2301aab150445c3184 (MD5) Previous issue date: 2018-01-31eng
Appears in Collections:Doutorado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2018 - André Fioravante Guerra.pdfAndré Fioravante Guerra5.13 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.