Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/9298
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Martins, Amanda Mattos Dias | |
dc.date.accessioned | 2023-12-21T18:37:14Z | - |
dc.date.available | 2023-12-21T18:37:14Z | - |
dc.date.issued | 2019-02-21 | |
dc.identifier.citation | MARTINS, Amanda Mattos Dias. Efeitos de diferentes processamentos sobre a qualidade nutricional e funcional de grãos de milheto (Pennisetum glaucum (L). R. Br.). 2019. 105 f. Tese (Doutorado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/9298 | - |
dc.description.abstract | Milheto é o sexto cereal mais produzido no mundo. No Brasil, apesar desta cultura estar adaptada as nossas condições agrícolas com cerca de 5 milhões de hectares plantados, sua produção é destinada apenas para alimentação animal e para cobertura vegetal (plantio direto). Possivelmente, um dos motivos para o não consumo humano esteja relacionado à falta de conhecimento acerca dos benefícios nutricionais e dos tipos de produtos que podem ser elaborados com o grão. Desta forma, o objetivo deste trabalho foi promover conhecimento sobre o potencial tecnológico e nutricional dos grãos de milheto (Pennisetum glaucum L.R.Br) para consumo humano no Brasil e avaliar os efeitos de diferentes processamentos nas propriedades químicas, físicas e nutricionais deste cereal. A tese foi subdivida em 3 capítulos, no Capítulo I, foi elaborado um extensa revisão bibliográfica sobre os grãos de milheto em relação à segurança alimentar, composição nutricional, processos tecnológicos, benefícios a saúde e produtos à base do grão. No Capítulo II, foram estudados os efeitos de dois métodos de cocção, aquecimento ôhmico (OH) (método emergente) e em panela aberta (método convencional) no rendimento, textura (TPA), na cor (C∗ , h°, ΔE), índice de absorção de água (IAA), índice de solubilidade em água (ISA) e propriedades de pasta (RVA) de grãos integrais e decorticados. Os resultados da pesquisa mostraram que o tempo ótimo de cocção (OTC) dos grãos integrais e decorticados de milheto foram de 30 min e 20 min, respectivamente. O OH não promoveu mais rápida cocção dos grãos. A decorticação impactou mais nos atributos de qualidade que o método de aquecimento aplicado. No Capítulo III , os grãos integrais de milheto foram submetidos a cinco processamentos: decorticação (10 min), cocção em panela aberta (98 ºC/ 30 min), cocção por aquecimento ôhmico (98 ºC/30 min/ 60Hz), germinação (30 ºC/48 h) e extrusão (140ºC/600 rpm/parafuso duplo), sendo posteriormente transformados em farinhas. Foram avaliadas a composição nutricional (proteínas, lipídeos, fibra alimentar, minerais) e as propriedades funcionais (distribuição de tamanho de partículas, densidade absoluta, ISA, IAA, RVA). Os resultados mostraram que a farinha crua de milheto possui, em média em base úmida, 62,5% de carboidratos, 12,0% de proteína, 5,6% de lipídios, 8,2% de fibra alimentar e, os minerais como potássio, fósforo e magnésio são os que possuem em maior concentração. Os resultados mostraram que a farinhas processadas são nutritivas e que a decorticação impactou significativamente na redução nutricional deste alimento. Farinhas cruas integrais e decorticadas possuíram elevada viscosidade, podendo ser úteis para elaboração de mingaus. Farinhas germinadas e extrusadas apresentaram grandes vantagens nutricionais (retenção de proteínas e fibras alimentares) e tecnológicas (como alta solubilidade, reduzida viscosidade), sendo ingredientes potenciais para uso em bebidas e alimentos congelados. Farinhas cozidas por ambos métodos apresentaram mesmo teor nutricional que a farinha crua e apresentaram elevada capacidade de absorção de água, sendo ingredientes potenciais para elaboração de quibes sem glúten ou produtos panificáveis. No geral, os grãos de milheto, processados ou não, são considerados alimentos nutritivos e que, dependendo do processo utilizado, podem ter variadas aplicações no desenvolvimento de produtos. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Cereal | por |
dc.subject | Glúten | por |
dc.subject | Extrusão | por |
dc.subject | Aquecimento ôhmico | por |
dc.subject | Cereal | eng |
dc.subject | Gluten | eng |
dc.subject | Extrusion | eng |
dc.subject | Ohmic heating | eng |
dc.title | Efeitos de diferentes processamentos sobre a qualidade nutricional e funcional de grãos de milheto (Pennisetum glaucum (L.) R. Br.) | por |
dc.title.alternative | Effects of different processing on the nutritional and functional quality of millet grains (Pennisetum glaucum (L). R. Br.) | eng |
dc.type | Tese | por |
dc.description.abstractOther | Millet is the sixth most produced cereal in the world. In Brazil, although this crop is adapted to our agricultural conditions with about 5 million hectares planted, its production is destined only for animal feed and for plant cover (no-tillage). One reason for non-human consumption is possibly related to a lack of knowledge about the nutritional benefits and product types that can be made with the grain. Thus, the objective of this work was to promote knowledge about the technological and nutritional potential of millet grains (Pennisetum glaucum L.R.Br) to human consumption in Brazil and to evaluate the effects of different processing on the chemical, physical and nutritional properties of this cereal. The thesis was subdivided into three chapters, in Chapter I, an extensive bibliographical review was elaborated on millet grains in relation to food safety, nutritional composition, technological processes, health benefits and grain based products. In Chapter II, the effects of two methods of cooking, ohmic heating (OH) (emergent method) and open pan (conventional method) on yield, texture (TPA), color (C *, h °, ΔE), water absorption index (IAA), water solubility index (ISA) and pulp (RVA) properties of whole grains and decorticates. The results of the research showed that the optimal cooking time (OTC) of the whole grains and decorticated millet were 30 min and 20 min, respectively. OH did not promote faster grain cooking. Decortication impacted more on quality attributes than the applied heating method. In Chapter III, whole millet grains were submitted to five processing: decortication (10 min), cooking in open pan (98 ºC / 30 min), heating by oven heating (98 ºC / 30 min / 60 Hz), germination (30 ºC / 48 h) and extrusion (140 ºC / 600 rpm / double screw), and then processed into flours. The nutritional composition (proteins, lipids, dietary fiber, minerals) and functional properties (particle size distribution, absolute density, ISA, IAA, RVA) were evaluated. The results showed that crude millet flour has, on average in wet basis, 62.5% carbohydrates, 12.0% protein, 5.6% lipids, 8.2% dietary fiber, and minerals such as potassium, phosphorus and magnesium are the ones with the highest concentration. The results showed that the processed flours are nutritious and that decortication had a significant impact on the nutritional reduction of this food. Whole and decorticated raw flours have high viscosity and may be useful for making porridges. Germinated and extruded flours presented great nutritional advantages (retention of proteins and food fibers) and technological (such as high solubility, low viscosity), being potential ingredients for use in frozen foods and beverages. Flours cooked by both methods presented the same nutritional content as the raw flour and presented a high capacity of water absorption, being potential ingredients for the elaboration of gluten-free kibbeh or bread products. In general, millet grains, processed or unprocessed, can be considered as nutritious foods and depending on the process applied, may have varied applications in the development of products. | eng |
dc.contributor.advisor1 | Carvalho, Carlos Wanderlei Piler de | |
dc.contributor.advisor1ID | CPF: 009.412.587-26 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/3532473530387852 | por |
dc.contributor.advisor-co1 | Pacheco, Sidney | |
dc.contributor.advisor-co1ID | CPF: 820.443.339-53 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/1148865776679739 | por |
dc.contributor.referee1 | Trombete, Felipe Machado | |
dc.contributor.referee2 | Lima, Diana Clara Nunes de | |
dc.contributor.referee3 | Esmerino, Erick Almeida | |
dc.contributor.referee4 | Silva, Otniel Freitas | |
dc.creator.ID | CPF: 110.596.347-08 | por |
dc.creator.Lattes | http://lattes.cnpq.br/9622726153432817 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Tecnologia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos | por |
dc.relation.references | ADEBIYI, J., OBADINA, A., ADEBO, O., & KAYITESI, E. Fermented and malted millet products in Africa: Expedition from traditional/ethnic foods to industrial value added products. Critical reviews in Food Science and nutrition (just-accepted), 00-00. (2016). ADEBIYI, J. A., OBADINA, A. O., ADEBO, O. A., & KAYITESI, E. Comparison of nutritional quality and sensory acceptability of biscuits obtained from native, fermented, and malted pearl millet (Pennisetum glaucum) flour. Food Chemistry, 232(Supplement C), 210-217, 2017. ADEBIYI, J. A., OBADINA, A. O., MULABA-BAFUBIANDI, A. F., ADEBO, O. A., & KAYITESI, E. Effect of fermentation and malting on the microstructure and selected physicochemical properties of pearl millet (Pennisetum glaucum) flour and biscuit. Journal of Cereal Science, 70, 132-139, 2016 AKINGBALA, J. Effect of processing on flavonoids in millet (Pennisetum americanum) flour. Cereal Chemistry (USA), 1991. AKINOLA, S. A., BADEJO, A. A., OSUNDAHUNSI, O. F., & EDEMA, M. O. Effect of preprocessing techniques on pearl millet flour and changes in technological properties. International Journal of Food Science and Technology, 52(4), 992-999, 2017. AL-AMIN, A. Q., & AHMED, F. Food Security Challenge of Climate Change: An Analysis for Policy Selection. Futures, 83, 50-63, 2016 ALEXANDRATOS, N., & BRUINSMA, J. World agriculture towards 2030/2050: the 2012 revision(no. 12-03). (pp.32,80) Rome, FAO: ESA Working paper, 2012 Ali, M. A., El Tinay, A. H., & Abdalla, A. H. (2003). Effect of fermentation on the in vitro protein digestibility of pearl millet. Food Chemistry, 80(1), 51-54., 2003. ALMEIDA-DOMINGUEZ, H., GOMEZ, M., SERNA-SALDIVAR, S., WANISKA, R., ROONEY, L., & LUSAS, E. Extrusion cooking of pearl millet for production of millet-cowpea weaning foods. Cereal Chemistry, 70(2), 214-219, 1993. ALONSO, M. P., DE MORAES, E. H. B. K., PEREIRA, D. H., DOS SANTOS PINA, D., MOMBACH, M. A., HOFFMANN, A., . . . SANSON, R. M. M. Pearl millet grain for beef cattle in crop-livestock integration system: Intake and digestibility. Semina:Ciencias Agrarias, 38(3), 1461-1472, 2017. ALTAN, A. Effects of pretreatments and moisture content on microstructure and physical properties of microwave expanded hull-less barley. Food Research International, 56(Supplement C), 126-135, 2014. ANNOR, G. A., TYL, C., MARCONE, M., RAGAEE, S., & MARTI, A. Why do millets have slower starch and protein digestibility than other cereals? Trends in Food Science & Technology, 66(Supplement C), 73-83, 2017. 34 ANNOR, G. A., MARCONE, M., CORREDIG, M., BERTOFT, E., & SEETHARAMAN, K.. Effects of the amount and type of fatty acids present in millets on their in vitro starch digestibility and expected glycemic index (eGI). Journal of Cereal Science, 64, 76-81, 2015. AWOLU, O. O. Optimization of the functional characteristics, pasting and rheological properties of pearl millet-based composite flour. Heliyon, 3(2), e00240, 2017. BADAU, M. H., NKAMA, I., & JIDEANI, I. A. Phytic acid content and hydrochloric acid extractability of minerals in pearl millet as affected by germination time and cultivar. Food Chemistry, 92(3), 425-435, 2005. BALASUBRAMANIAN, S., KAUR, J., & SINGH, D. Optimization of weaning mix based on malted and extruded pearl millet and barley. Journal of Food Science and Technology, 51(4), 682-690, 2014. BALASUBRAMANIAN, S., SINGH, K., PATIL, R., & ONKAR, K. K.. Quality evaluation of millet-soy blended extrudates formulated through linear programming. Journal of Food Science and Technology, 49(4), 450-458, 2012. BANDYOPADHYAY, R., KUMAR, M., & LESLIE, J. F.. Relative severity of aflatoxin contamination of cereal crops in West Africa. Food Additives and Contaminants, 24(10), 1109-1114, 2007. BASTOS, A. O., FILHO, L. D. C. L., PASSIPIERI, M., & BASTOS, J. F. P. Diferentes Níveis de Grão de Milheto (Pennisetum glaucum (L.) R. Brown) na Alimentação de Suínos1, 2. Revista. Brasileira de Zootecnia, 31(4), 1753-1760, 2002. BELTON, P. S., & TAYLOR, J. R. (EDS.). Pseudocereals and less common cereals: grain properties and utilization potential. Springer Science & Business Media. 2002. BENÍTEZ-PÁEZ, A., DEL PULGAR, E. M. G., KJØLBÆK, L., BRAHE, L. K., ASTRUP, A., LARSEN, L., & SANZ, Y.. Impact of dietary fiber and fat on gut microbiota re-modeling and metabolic health. Trends in Food Science & Technology, 57, 201-212, 2016. BERGAMASCHINE, A. F., FREITAS, R. V. L., VALÉRIO FILHO, W. V., BASTOS, J. F. P., MELLO, S. Q. S., & CAMPOS, Z. R.. Substituição do milho e farelo de algodão pelo milheto no concentrado da dieta de novilhos em confinamento. Revista Brasileira de Zootecnia, 40(1), 154-159, 2011. BHATI, D., BHATNAGAR, V., & ACHARYA, V.. Effect of pre-milling processing techniques on pearl millet grains with special reference to in-vitro iron availability. Asian Journal of Dairy and Food Research, 35(1), 76-80, 2016. BRAHMBHATT, S. R., FEARNLEY, R., BRAHMBHATT, R. M., EASTMAN, C. J., & BOYAGES, S. C.. Study of biochemical prevalence indicators for the assessment of iodine deficiency disorders in adults at field conditions in Gujarat (India). Asia Pacific Journal of Clinical Nutrition, 10(1), 51-57, 2001. 35 Brasil, T. A., Capitani, C. D., Takeuchi, K. P., & Ferreira, T. A. P. d. C.. Physical, chemical and sensory properties of gluten-free kibbeh formulated with millet flour (Pennisetum glaucum (L.) R. Br.). Food Science and Technology (Campinas), 35(2), 361-367, 2015. BURTON, G. W.. Registration of Tiflate Pearl Millet (Reg. No. 25). Crop Science, 12(1), 128-128, 1972. BUTT, M. S., TAHIR-NADEEM, M., KHAN, M. K. I., SHABIR, R., & BUTT, M. S.. Oat: unique among the cereals. European Journal of Nutrition, 47(2), 68-79, 2008. Campelo, G. D. A., Teixeira Neto, M. L., & da Rocha, C. M. C. (1998). Validação de plantio direto de soja sobre residuo de milheto. Embrapa Meio-Norte-Documentos, 1998. CAO, H., & CHEN, X.. Structures required of flavonoids for inhibiting digestive enzymes. AntiCancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-AntiCancer Agents), 12(8), 929-939, 2012. CHANDRASEKARA, A., NACZK, M., & SHAHIDI, F.. Effect of processing on the antioxidant activity of millet grains. Food Chemistry, 133(1), 1-9, 2012. CHANDRASEKARA, A., & SHAHIDI, F.. Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millet grains. Journal of Functional Foods, 3(3), 159-170, 2011a. CHANDRASEKARA, A., & SHAHIDI, F.. Bioactivities and antiradical properties of millet grains and hulls. Journal of Agricultural and Food Chemistry, 59(17), 9563-9571, 2011b CHANDRASEKARA, A., & SHAHIDI, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLCDAD-ESI-MSn. Journal of Functional Foods, 3(3), 144-158., 2011c. CHEN, F., COLE, P., MI, Z., & XING, L. Y. Corn and wheat‐flour consumption and mortality from esophageal cancer in shanxi, China. International journal of cancer, 53(6), 902-906, 1993. CHUANG, S.-C., NORAT, T., MURPHY, N., OLSEN, A., TJØNNELAND, A., OVERVAD, K., . . . KAAKS, R. . Fiber intake and total and cause-specific mortality in the European Prospective Investigation into Cancer and Nutrition cohort. The American journal of clinical nutrition, 96(1), 164-174. 2012. COUNCIL, N. R.. Lost Crops of Africa: Volume I: Grains. Washington, DC: The National Academies Press, 1996. CZAJA-BULSA, G.. Non coeliac gluten sensitivity–A new disease with gluten intolerance. Clinical Nutrition, 34(2), 189-194, 2015. DARYANTO, S., WANG, L., & JACINTHE, P.-A. . Global Synthesis of Drought Effects on Maize and Wheat Production. PLoS ONE, 11(5), e0156362, 2016. 36 DEVI, P. B., VIJAYABHARATHI, R., SATHYABAMA, S., MALLESHI, N. G., & PRIYADARISINI, V. B. (2014). Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. Journal of food science and technology, 51(6), 1021-1040, 2014. DUNWELL, J. M.. Transgenic cereals: current status and future prospects. Journal of Cereal Science, 59(3), 419-434, 2014. DURÃES, F. O. M., MAGALHÃES, P. C., & DOS SANTOS, F. G.. Fisiologia da planta de milheto. Embrapa Milho e Sorgo-Circular Técnica, 2003. DYKES, L., & ROONEY, L.. Phenolic compounds in cereal grains and their health benefits. Cereal foods world, 52(3), 105-111, 2007. EL HAG, M. E., EL TINAY, A. H., & YOUSIF, N. E.. Effect of fermentation and dehulling on starch, total polyphenols, phytic acid content and in vitro protein digestibility of pearl millet. Food Chemistry, 77(2), 193-196, 2002. ELYAS, S. H., EL TINAY, A. H., YOUSIF, N. E., & ELSHEIKH, E. A.. Effect of natural fermentation on nutritive value and in vitro protein digestibility of pearl millet. Food Chemistry, 78(1), 75-79, 2002. FAO.Sorghum and millets in human nutrition. Food and Agricultural Organization of the United Nations- Agriculture and Consumer Protection. 1995. http://www.fao.org/docrep/T0818e/T0818E00.htm/ Accessed: 18.06.16 FAOSTAT. Agriculture Organization of the United Nations Statistics Division.Data–CropsProduction. 2017. http://www.fao.org/faostat/en/#data/QC/ Accessed 21.11.16. FAOSTAT . Agriculture Organization of the United Nations Statistics Division.Data–CropsYield, 2017b. http://www.fao.org/faostat/en/#data/QC Accessed 07.04.18 FAROOQ, U., MOHSIN, M., LIU, X., & ZHANG, H.. Enhancement of short chain fatty acid production from millet fibres by pure cultures of probiotic fermentation. Tropical Journal of Pharmaceutical Research, 12(2), 189-194, 2013 FEBRAPDP. Federação Brasileira de Plantio Direto e Irrigação. (2012). Área do Sistema Plantio Direto. 2012. http://febrapdp.org.br/area-de-pd/ Accessed: 14.09.16. FEBRAPDP. FEDERAÇÃO BRASILEIRA DE PLANTIO DIRETO E IRRIGAÇÃO. . Sistema Plantio Direto é o caminho para incrementar o desempenho da agricultura nacional. 2017. http://febrapdp.org.br/noticias/252/sistema-plantio-direto-E-o-caminho-paraincrementar-o-desempenho-da-agricultura-nacional / Accessed: 02.05.17. FILLI, K. B., NKAMA, I., JIDEANI, V. A., & IBOK, I. U.. Effect of process variables on the hydration properties and acceptability of extruded millet-soybean blends for fura manufacture. British Food Journal, 115(6), 884-898, 2013. FRANZ, C. M., HUCH, M., MATHARA, J. M., ABRIOUEL, H., BENOMAR, N., REID, G., . . . HOLZAPFEL, W. H.. African fermented foods and probiotics. International Journal of Food Microbiology, 190, 84-96, 2014. 37 GABAZA, M., SHUMOY, H., MUCHUWETI, M., VANDAMME, P., & RAES, K. . Iron and zinc bioaccessibility of fermented maize, sorghum and millets from five locations in Zimbabwe. Food Research International, 103, 361-370, 2017. GAITAN, E., LINDSAY, R. H., REICHERT, R. D., INGBAR, S. H., COOKSEY, R. C., LEGAN, J., . . . KUBOTA, K.. Antithyroid and goitrogenic effects of millet: role of C-glycosylflavones. The Journal of Clinical Endocrinology & Metabolism, 68(4), 707-714, 1989a. GAITAN, E., LINDSAY, R. H., REICHERT, R. D., INGBAR, S. H., COOKSEY, R. C., LEGAN, J., . . . KUBOTA, K.. Antithyroid and Goitrogenic Effects of Millet: Role of CGlycosylflavones*. The Journal of Clinical Endocrinology & Metabolism, 68(4), 707-714, 1989b. GA C A-ESTEPA, R. M., GUERRA-HERNÁNDEZ, E , GA C A-VILLANOVA, B.. Phytic acid content in milled cereal products and breads. Food Research International, 32(3), 217- 221, 1999. GONG, L., CAO, W., CHI, H., WANG, J., ZHANG, H., LIU, J., & SUN, B.. Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Research International, 103, 84-102, 2018. GUIMARÃES JUNIOR, R., GONÇALVES, L. C., & RODRIGUES, J. A. S.. Utilização do milheto para produção de silagem. Embrapa Cerrados-Documentos, 2009. GULL, A., PRASAD, K., & KUMAR, P. . Effect of millet flours and carrot pomace on cooking qualities, color and texture of developed pasta. LWT-Food Science and Technology, 63(1), 470-474, 2015. GUPTA, R. K., GANGOLIYA, S. S., & SINGH, N. K.. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of food science and technology, 52(2), 676-684, 2015. HADIMANI, N., MURALIKRISHNA, G., THARANATHAN, R., & MALLESHI, N. . Nature of carbohydrates and proteins in three pearl millet varieties varying in processing characteristics and kernel texture. Journal of Cereal Science, 33(1), 17-25, 2001. HAMA, F., ICARD-VERNIÈRE, C., GUYOT, J.-P., PICQ, C., DIAWARA, B., & MOUQUETRIVIER, C. . Changes in micro- and macronutrient composition of pearl millet and white sorghum during in field versus laboratory decortication. Journal of Cereal Science, 54(3), 425-433, 2011. MACAULEY, H., RAMADJITA, T.,. Cereal crops: Rice, maize, millet, sorghum, wheat. U.N.E.C.f. (Ed.), Feeding Africa, 36. Abdou Diouf International Conference Center, 2015. HAN, N.-R., KIM, H.-Y., YANG, W. M., JEONG, H.-J., & KIM, H.-M.. Glutamic acid ameliorates estrogen deficiency–induced menopausal-like symptoms in ovariectomized mice. Nutrition Research, 35(9), 774-783, 2015. 38 HEGDE, P. S., RAJASEKARAN, N. S., & CHANDRA, T. . Effects of the antioxidant properties of millet species on oxidative stress and glycemic status in alloxan-induced rats. Nutrition Research, 25(12), 1109-1120, 2005. HITHAMANI, G., & SRINIVASAN, K.. Effect of domestic processing on the polyphenol content and bioaccessibility in finger millet (Eleusine coracana) and pearl millet (Pennisetum glaucum). Food chemistry, 164, 55-62, 2014. HOLLON, J., PUPPA, E. L., GREENWALD, B., GOLDBERG, E., GUERRERIO, A., & FASANO, A. . Effect of gliadin on permeability of intestinal biopsy explants from celiac disease patients and patients with non-celiac gluten sensitivity. Nutrients, 7(3), 1565-1576, 2015. ISLAM, T., MANNA, M., & REDDY, M. K. . Glutathione Peroxidase of Pennisetum glaucum (PgGPx) is a functional Cd 2+ dependent peroxiredoxin that enhances tolerance against salinity and drought stress. PloS one, 10(11), e0143344, 2015. JALGAONKAR, K., & JHA, S.. Influence of particle size and blend composition on quality of wheat semolina-pearl millet pasta. Journal of Cereal Science, 71, 239-245, 2016. JALGAONKAR, K., JHA, S. K., & SHARMA, D. K.. Effect of thermal treatments on the storage life of pearl millet (Pennisetum glaucum) flour. Indian Journal of Agricultural Sciences, 86(6), 762-767, 2016. JHA, N., KRISHNAN, R., & MEERA, M. . Effect of different soaking conditions on inhibitory factors and bioaccessibility of iron and zinc in pearl millet. Journal of Cereal Science, 66, 46-52, 2015. JURJEVIC, Z., WILSON, J. P., WILSON, D. M., & CASPER, H. H.. Changes in fungi and mycotoxins in pearl millet under controlled storage conditions. Mycopathologia, 164(5), 229-239, 2007. KADLAG, R., CHAVAN, J., & KACHARE, D.. Effects of seed treatments and storage on the changes in lipids of pearl millet meal. Plant foods for human nutrition, 47(4), 279-285, 1995. KAJUNA, S. T. A. R.. MILLET: Post-harvest operations. Food and Agricultural Organization, 5, 1-49. 2001. http://www.fao.org/3/a-av009e.pdf / Accessed: 05.09.16 KHANAL, A. R., & MISHRA, A. K.. Enhancing food security: Food crop portfolio choice in response to climatic risk in India. Global Food Security, 12, 22-30, 2017. KHETARPAUL, N., & CHAUHAN, B. . Effect of Germination and Fermentation on Available Carhohydrate content of Pearl millet. Food Chemistry, 38(1), 21-26, 1990a. KHETARPAUL, N., & CHAUHAN, B. M. . Effect of Germination and Fermentation on in vitro Starch and Protein Digestibility of Pearl Millet. Journal of Food Science, 55(3), 883-884, 1990b. KIILL, L. C. H. P. . Espécies vegetais exóticas com potencialidades para o semi-árido brasileiro: Brasília: Embrapa semi-árido/Embrapa Informação Tecnológica, 2005. 39 KIM, J.-S., HYUN, T. K., & KIM, M.J.. The inhibitory effects of ethanol extracts from sorghum, foxtail millet and proso millet on α-glucosidase and α-amylase activities. Food Chemistry, 124(4), 1647-1651, 2011. KIM, Y., & JE, Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: A meta-analysis of prospective cohort studies. Archives of cardiovascular diseases, 109(1), 39-54, 2016. KUMAR, V., BASU, M., & RAJENDRAN, T. (2008). Mycotoxin research and mycoflora in some commercially important agricultural commodities. Crop Protection, 27(6), 891-905, 2008. KUMARI, J., CHAUHAN, S., JHA, S., PANDEY, S., SATYAVATHI, C. T., & DUTTA, M.. Identification of pearl millet (Pennisetum glaucum (L.) R. Br.) germplasm with unique popping quality in the national genebank collections of India. The Indian Journal of Genetics and Plant Breeding, 75(1), 2015. LIU, X., WU, Y., LI, F., & ZHANG, D.. Dietary fiber intake reduces risk of inflammatory bowel disease: result from a meta-analysis. Nutrition Research, 35(9), 753-758, 2015. LU, H., YANG, X., YE, M., LIU, K.-B., XIA, Z., REN, X., . . . LIU, T.-S.. Culinary archaeology: millet noodles in late Neolithic China. Nature, 437(7061), 967-968, 2005. LU, H., ZHANG, J., LIU, K.-B., WU, N., LI, Y., ZHOU, K., . . . YANG, X.. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proceedings of the National Academy of Sciences, 106(18), 7367-7372, 2009. MAKTOUF, S., JEDDOU, K. B., MOULIS, C., HAJJI, H., REMAUD-SIMEON, M., & ELLOUZGHORBEL, R. . Evaluation of dough rheological properties and bread texture of pearl milletwheat flour mix. Journal of food science and technology, 53(4), 2061-2066, 2016. MÉNERA-LÓPEZ, I., GAYTÁN-MARTÍNEZ, M., REYES-VEGA, M., MORALES-SANCHEZ, E., & FIGUEROA, J. Physico-chemical properties and quality assessment of corn flour processed by a continuous ohmic heating system and traditional nixtamalization. CyTAJournal of Food, 11(sup1), 8-14, 2013. MEZZOMO, T. R., & NADAL, J. Efeito dos nutrientes e substâncias alimentares na função tireoidiana e no hipotireoidismo. DEMETRA: Alimentação, Nutrição & Saúde, 11(2), 427- 443, 2016. MIKI, T., EGUCHI, M., KUROTANI, K., KOCHI, T., KUWAHARA, K., ITO, R., . . . MIZOUE, T.. Dietary fiber intake and depressive symptoms in Japanese employees: The Furukawa Nutrition and Health Study. Nutrition, 32(5), 584-589, 2016. MISHRA, G., JOSHI, D., & PANDA, B. K. . Popping and puffing of cereal grains: a review. J. grain processing storage, 1(2), 34-46, 2014. MOHAMED, E. A., ALI, N. A., AHMED, S. H., AHMED, I. A. M., & BABIKER, E. E. . Effect of radiation process on antinutrients and HCl extractability of calcium, phosphorus and iron during processing and storage. Radiation Physics and Chemistry, 79(7), 791-796, 2010. 40 MRIDULA, D., SHARMA, M., & GUPTA, R.. Development of quick cooking multi-grain dalia utilizing sprouted grains. Journal of food science and technology, 52(9), 5826-5833, 2015. MURALIKRISHNA, G., MALLESHI, N., DESIKACHAR, H., & THARANATHAN, R.. Effect of popping on the properties of some millet starches. Starch‐Stärke, 38(2), 48-51, 1986. N'DRI, D., MAZZEO, T., ZAUPA, M., FERRACANE, R., FOGLIANO, V., & PELLEGRINI, N.. Effect of cooking on the total antioxidant capacity and phenolic profile of some whole‐meal African cereals. Journal of the Science of Food and Agriculture, 93(1), 29-36, 2013. NANI, A., BELARBI, M., KSOURI-MEGDICHE, W., ABDOUL-AZIZE, S., BENAMMAR, C., GHIRINGHELLI, F., . . . KHAN, N. A.. Effects of polyphenols and lipids from Pennisetum glaucum grains on T-cell activation: modulation of Ca 2+ and ERK1/ERK2 signaling. BMC complementary and alternative medicine, 15(1), 426, 2015. NANI, A., BRIXI-GORMAT, N., BENDIMRED-HMIMED, S., BENAMMAR, C., & BELARBI, M.. Study of the impact of millet (Pennisetum glaucum) on the glucidic and lipidic metabolism in diabetic rats. Fundamental and Clinical Pharmacology, 26, 53, 2012. NANTANGA, K. K., SEETHARAMAN, K., DE KOCK, H. L., & TAYLOR, J. . Thermal treatments to partially pre-cook and improve the shelf-life of whole pearl millet flour. Journal of the Science of Food and Agriculture,88(11), 1892-1899, 2008. NATIONAL CANCER INSTITUTE. Risk Factors for Cancer.. 2015. https://www.cancer.gov/about-cancer/causes-prevention/risk / Accessed 15.07.17 NDUTI, N., MCMILLAN, A., SENEY, S., SUMARAH, M., NJERU, P., MWANIKI, M., & REID, G.. Investigating probiotic yoghurt to reduce an aflatoxin B1 biomarker among school children in eastern Kenya: Preliminary study. International Dairy Journal, 63, 124-129, 2016. NETTO, D. A. M., & DURÃES, F. O. M.. Milheto: tecnologias de produção e agronegócio (1th ed.). Brasília, DF: Empresa Brasileira de Pesquisa Agropecuária, 2005. NISHIZAWA, N., SATO, D., ITO, Y., NAGASAWA, T., HATAKEYAMA, Y., CHOI, M. R., ... & WEI, Y. M.. Effects of dietary protein of proso millet on liver injury induced by Dgalactosamine in rats. Bioscience, biotechnology, and biochemistry,66(1), 92-96, 2002. NKAMA, I., GBENYI, D., & HAMAKER, B. . Effects of Malting and Roasting of Millet and Sorghum on Protein Digestibility, Mineral Availability, Soluble Sugar Composition and Consumer Acceptability of Dakuwa. Indian Journal of Nutrition, 2(1), 1-6, 2015. OBADINA, A., ISHOLA, I. O., ADEKOYA, I. O., SOARES, A. G., DE CARVALHO, C. W. P., & BARBOZA, H. T. (2016). Nutritional and physico-chemical properties of flour from native and roasted whole grain pearl millet (Pennisetum glaucum [L.] R. Br.). Journal of Cereal Science, 70, 247-252, 2016. OMOBA, O. S., TAYLOR, J., & KOCK, H. L.. Sensory and nutritive profiles of biscuits from whole grain sorghum and pearl millet plus soya flour with and without sourdough fermentation. International Journal of Food Science & Technology, 50(12), 2554-2561, 2015. 41 OSMAN, M. A. . Effect of traditional fermentation process on the nutrient and antinutrient contents of pearl millet during preparation of Lohoh. Journal of the Saudi Society of Agricultural Sciences, 10(1), 1-6, 2011. OWUSU-KWARTENG, J., TANO-DEBRAH, K., AKABANDA, F., & JESPERSEN, L.. Technological properties and probiotic potential of Lactobacillus fermentum strains isolated from West African fermented millet dough. BMC microbiology, 15(1), 261, 2015. PALANISWAMY, S. K., & GOVINDASWAMY, V.. In-vitro probiotic characteristics assessment of feruloyl esterase and glutamate decarboxylase producing Lactobacillus spp. isolated from traditional fermented millet porridge (kambu koozh). LWT-Food Science and Technology, 68, 208-216, 2016. PATEL, S.. Cereal bran fortified-functional foods for obesity and diabetes management: Triumphs, hurdles and possibilities. Journal of Functional Foods, 14, 255-269, 2015. PEDERSEN, L. L., OWUSU-KWARTENG, J., THORSEN, L., & JESPERSEN, L.. Biodiversity and probiotic potential of yeasts isolated from Fura, a West African spontaneously fermented cereal. International Journal of Food Microbiology, 159(2), 144-151, 2012. PRAJAPATI, M. R., PATEL, V., PAREKH, T., & SUBHASH, R.. Effect of in bio-processing on antioxidant activity of selected cereals. Asian J Plant Sci , 3(2), 66-72, 2013. PRASAD, V. S. S., HYMAVATHI, A., BABU, V. R., & LONGVAH, T.. Nutritional composition in relation to glycemic potential of popular Indian rice varieties. Food Chemistry, 238(Supplement C), 29-34, 2018. PORTAL BRASIL SAÚDE. 2015. http://www.brasil.gov.br/saude/2015/07/diabetes-atinge-9- milhoes-de-brasileiros / Accessed 14.04.17. QIAN, J.-Y., GU, Y.-P., JIANG, W., & CHEN, W.. Inactivating effect of pulsed electric field on lipase in brown rice. Innovative Food Science & Emerging Technologies, 22, 89-94, 2014. RAGAEE, S., ABDEL-AAL, E.-S. M., & NOAMAN, M.. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chemistry, 98(1), 32-38, 2006. RAI, K., GOWDA, C., REDDY, B., & SEHGAL, S.. Adaptation and potential uses of sorghum and pearl millet in alternative and health foods. Comprehensive Reviews in Food Science and Food Safety, 7(4), 320-396, 2008. RATHI, A., KAWATRA, A., & SEHGAL, S.. Influence of depigmentation of pearl millet (Pennisetum glaucum L.) on sensory attributes, nutrient composition, in vitro protein and starch digestibility of pasta. Food Chemistry, 85(2), 275-280, 2004. REICHERT. The pH-sensitive pigments in pearl millet. Cereal Chemistry, 56, 291-294, 1979. RODRIGUES, P. B., ROSTAGNO, H. S., ALBINO, L. F. T., GOMES, P. C., BARBOZA, W. A., & NUNES, R. V. . Aminoácidos digestíveis verdadeiros do milheto, do milho e subprodutos do milho, determinados com galos adultos cecectomizados. Revista Brasileira de Zootecnia, 30(6), 2046-2058, 2001. 42 ROMIER, B., SCHNEIDER, Y.-J., LARONDELLE, Y., & DURING, A. . Dietary polyphenols can modulate the intestinal inflammatory response. Nutrition reviews, 67(7), 363-378, 2009. RONA, R. J., KEIL, T., SUMMERS, C., GISLASON, D., ZUIDMEER, L., SODERGREN, E., . . . MADSEN, C.. The prevalence of food allergy: A meta-analysis. Journal of Allergy and Clinical Immunology, 120(3), 638-646, 2007. SALAR, R. K., PUREWAL, S. S., & SANDHU, K. S.. Fermented pearl millet (Pennisetum glaucum) with in vitro DNA damage protection activity, bioactive compounds and antioxidant potential. Food Research International, 100, 204-210, 2017. SALDIVAR, S.. Cereals: dietary importance. Encyclopedia of Food Sciences and Nutrition, Reino Unido: Academic Press, Agosto, London, 1027-1033, 2003. SALEH, A. S., ZHANG, Q., CHEN, J., & SHEN, Q.. Millet grains: nutritional quality, processing, and potential health benefits. Comprehensive reviews in food science and food safety, 12(3), 281-295, 2013. SANDHU, K. V., SHERWIN, E., SCHELLEKENS, H., STANTON, C., DINAN, T. G., & CRYAN, J. F.. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Translational Research, 179, 223-244, 2017. Santos, R., Neves, A. L., Pereira, L. G., Verneque, R., Costa, C. T., Tabosa, J., . . . Gonçalves, L. ). Divergence in agronomic traits and performance of pearl millet cultivars in Brazilian semiarid region. Grassland Science, 63(2), 118-127, 2017. SERNA-SALDIVAR, S., CLEGG, C., & ROONEY, L.. Effects of parboiling and decortication on the nutritional value of sorghum (Sorghum bicolor L. Moench) and pearl millet (Pennisetum glaucum L.). Journal of Cereal Science, 19(1), 83-89, 1994. SCOPUS®(DATABASE), 2018. Search Pearl millet. http://www.scopus.com/. Acessed: 22.02.2018 Shan, S., Li, Z., Guo, S., Li, Z., Shi, T., & Shi, J.. A millet bran-derived peroxidase inhibits cell migration by antagonizing STAT3-mediated epithelial-mesenchymal transition in human colon cancer. Journal of Functional Foods, 10, 444-455, 2014. SHAN, S., SHI, J., LI, Z., GAO, H., SHI, T., LI, Z., & LI, Z.. Targeted anti-colon cancer activities of a millet bran-derived peroxidase were mediated by elevated ROS generation. Food & function, 6(7), 2331-2338., 2015. SHARMA, S., SAXENA, D. C., & RIAR, C. S.. Analysing the effect of germination on phenolics, dietary fibres, minerals and γ-amino butyric acid contents of barnyard millet (Echinochloa frumentaceae). Food Bioscience, 13, 60-68, 2016. SHARMA, S., SAXENA, D. C., & RIAR, C. S. . Changes in the GABA and polyphenols contents of foxtail millet on germination and their relationship with in vitro antioxidant activity. Food Chemistry, 2017. 43 SHOBANA, S., SREERAMA, Y., & MALLESHI, N.. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L ) seed coat phenolics: Mode of inhibition of αglucosidase and pancreatic amylase. Food Chemistry, 115(4), 1268-1273, 2009. SHUKLA, K., & SRIVASTAVA, S.. Evaluation of finger millet incorporated noodles for nutritive value and glycemic index. Journal of Food Science and Technology, 51(3), 527-534, 2014. SIHAG, M. K., SHARMA, V., GOYAL, A., ARORA, S., & SINGH, A. K.. Effect of domestic processing treatments on iron, β-carotene, phytic acid and polyphenols of pearl millet. Cogent Food & Agriculture, 1(1), 1109171, 2015. SINGH, G., & SEHGAL, S.. Nutritional evaluation of ladoo prepared from popped pearl millet. Nutrition & Food Science, 38(4), 310-315, 2008. SIROHA, A. K., SANDHU, K. S., & KAUR, M. Physicochemical, functional and antioxidant properties of flour from pearl millet varieties grown in India. Journal of Food Measurement and Characterization, 10(2), 311-318, 2016. SRIKANTH, S., & CHEN, Z.. Plant Protease Inhibitors in Therapeutics-Focus on Cancer Therapy. Frontiers in Pharmacology, 7, 2016. TACO. Tabela brasileira de composição de alimentos. Universidade Estadual de Campinas (UNICAMP). 2011. 4ª ed. Campinas: NEPA – UNICAMP.<http://www.unicamp.br/nepa/taco/tabela.php?ativo=tabela>.Accessed: 21.02.2018. TAYLOR, J., BARRION, S., & ROONEY, L.. Pearl millet—new developments in ancient food grain. Cereal Foods World (CFW), 55(1), 16. 2010. TAYLOR, J., & DUODU, K. G.. Effects of processing sorghum and millets on their phenolic phytochemicals and the implications of this to the health enhancing properties of sorghum and millet food and beverage products. Journal of the Science of Food and Agriculture, 95(2), 225-237, 2015. TAYLOR, J. R., & EMMAMBUX, M. N. Gluten-free foods and beverages from millets (pp. 119- 141). Elsevier, Academic Press: San Diego, CA, 2008. TAYLOR, J. R. N.. Millet Pearl: Overview Encyclopedia of Food Grains (Second Edition) (pp. 190-198). Oxford: Academic Press, 2016. TBCA. TABELA BRASILEIRA DE COMPOSIÇÃO DE ALIMENTOS. Universidade de São Paulo (USP). Food Research Center (FoRC). 2017.Versão 6.0. http://www.fcf.usp.br/tbca/ Accessed: 21.02.2018. TIWARI, A., JHA, S., PAL, R., SETHI, S., & KRISHAN, L.. Effect of Pre-Milling Treatments on Storage Stability of Pearl Millet Flour. Journal of Food Processing and Preservation, 38(3), 1215-1223, 2014. 44 THIRUMDAS, R., SARAGAPANI, C., AJINKYA, M. T., DESHMUKH, R. R., & ANNAPURE, U. S.. Influence of low pressure cold plasma on cooking and textural properties of brown rice. Innovative Food Science & Emerging Technologies, 37(Part A), 53-60, 2016 TOU, E. H., GUYOT, J. P., MOUQUET-RIVIER, C., ROCHETTE, I., COUNIL, E., TRAORÉ, A. S., & TRÈCHE, S.. Study through surveys and fermentation kinetics of the traditional processing of pearl millet (Pennisetum glaucum) into ben-saalga, a fermented gruel from Burkina Faso. International Journal of Food Microbiology, 106(1), 52-60, 2006. UGARE, R., CHIMMAD, B., NAIK, R., BHARATI, P., & ITAGI, S.. Glycemic index and significance of barnyard millet (Echinochloa frumentacae) in type II diabetics. Journal of Food Science and Technology, 51(2), 392-395, 2014. ULLAH, T. S., SAEED, F., BHATTY, N., ARSHAD, M. U., ANJUM, F. M., AFZAAL, M., . . . AAMIR, M.. Assessment of Therapeutic Potential of Pearl Millet Iron Fortified Cookies through Animal Modeling. Asian Journal of Chemistry, 28(11), 2545, 2016. USDA. United States Department of Agriculture Agricultural. Natural Resources Conservation Service. 2016. Plants Datebase. https://plants.usda.gov/java/ Accessed: 21.02.2018. USDA. United States Department of Agriculture Agricultural Research Service.National Nutrient Database for Standard Reference Release 28 slightly revised May, 2016. https://ndb.nal.usda.gov/ndb/ Accessed: 21.02.2018. VAN RENSBURG, S. J. (1981). Epidemiologic and dietary evidence for a specific nutritional predisposition to esophageal cancer. Journal of the National Cancer Institute, 67(2), 243- 251, 1981. WARE, L. Y., DURAND, N., NIKIEMA, P. A., ALTER, P., FONTANA, A., MONTET, D., & BARRO, N.. Occurrence of mycotoxins in commercial infant formulas locally produced in Ouagadougou (Burkina Faso). Food Control, 73, 518-523, 2017. WHO. World Health Organization. Media centre-Diabetes. 2017a. http://www.who.int/mediacentre/factsheets/fs312/en/ Accessed 20.11.17 WHO. World Health Organization. Media centre-Cancer. 2017b. http://www.who.int/mediacentre/factsheets/fs297/en/ Accessed 14.04.17 WHO & UNPARTNERS . Country Statistics and Global Health Estimates. World Health Organization. http://www.who.int/gho/countries/bra.pdf/ ; 2015. http://www.who.int/gho/countries/ind/en/ Accessed 14.07.17 WILSON, J., JURJEVIC, Z., HANNA, W., WILSON, D., POTTER, T., & COY, A. Host-specific variation in infection by toxigenic fungi and contamination by mycotoxins in pearl millet and corn. Mycopathologia, 161(2), 101-107, 2006. ZHANG, L., LIU, R., & NIU, W. Phytochemical and antiproliferative activity of proso millet. PloS one, 9(8), e104058. 2014. ABDALLA, A., MUSTAFA, G.,. Some Physical and Functional Properties of Grain and Products of Pearl MilSome Physical and Functional Properties of Grain and Products of Pearl Millet (Pennisetum glaucum L.). University of Kordofan Journal of Natural Resources and Environmental Studies 1, 47-53, 2014. AACC., 2000. Approved methods of the AACC (10th ed.). St. Paul, MN, USA: American Association of Cereal Chemists, 2000. AKINOLA, S.A., BADEJO, A.A., OSUNDAHUNSI, O.F., EDEMA, M.O.,. Effect of preprocessing techniques on pearl millet flour and changes in technological properties. Int. J. food Sci. Tech. 52, 992-999, 2017. ANDERSON, R., CONWAY, H., PEPLINSKI, A.,. Gelatinization of corn grits by roll cooking, extrusion cooking and steaming. Starch‐Stärke 22, 130-135, 2970, 1970. BECKER, A.; HILL, S.E.; MITCHELL, J.R.,. Milling - A further parameter affecting the rapid visco analyser (RVA) profile. Cereal Chemistry. 78 (2), 166-172, 2001. BOURNE, M., 2002. Food texture and viscosity: concept and measurement. Elsevier. CAPPATO, L. P., FERREIRA, M. V. S., GUIMARAES, J. B., COSTA, M. Q., CUNHA, R. L., OLIVEIRA, C. A. F., MERCALI, G. D., MARZACK, L. D. F., & CRUZ, A. G.. Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends Food Science Technology..62, 104-112, 2017. CHANDRASEKARA, A., NACZK, M., SHAHIDI, F.,. Effect of processing on the antioxidant activity of millet grains. Food Chem. 133, 1-9, 2012. CHEN, F., YANG, C., LIU, L., LIU, T., WANG, Y., WANG, L., SHI, Y., CAMPANELLA, O.. Differences, Correlation of Compositions, Taste and Texture Characteristics of Rice from Heilongjiang China. Journal Rice Research. 5, 2017. CIE Commission International de l’Eclairage (CIE) Color Spaces, Color Difference Equations, Psychometric Color Terms, 3º edition, Publication nº15.3. 2004. Pages 17 -18. Central Bureau of the CIE, Paris, 2004. CODEX ALIMENTARIUS COMMISSION, J.F.W.C.A., Organization, W.H., Programme, J.F.W.F.S., 2007. Cereals, Pulses, Legumes and Vegetable Proteins. Food & Agriculture Org.CODEX Standart 169-1989.Standard for whole and decorticated pearl millet grains. COSTA, N. R., CAPPATO, L. P., FERREIRA, M. V. S., PIRES, R. P. S., MORAES, J., ESMERINO, E. A., CRUZ, A. G.. Ohmic Heating: A potential technology for sweet whey processing. Food Research International. 106, 771-779, 2018. DHARMARAJ, U., RAVI, R., MALLESHI, N.. Cooking Characteristics and Sensory Qualities of Decorticated Finger Millet (Eleusine coracana). Journal of culinary science & technology 12, 215-228, 2014. 72 DIAS-MARTINS, A.M., PESSANHA, K.L., PACHECO, S., RODRIGUES, J.A. S., & CARVALHO, C.W. P.. Potential use of pearl millet (Pennisetum glaucum (L.) R. Br.) In Brazil: Food security, processing, health benefits and nutritional products. Food Research International.109, 175-186, 2018. EYZAGUIRRE, R.Z., NIENALTOWSKA, K., DE JONG, L.E., HASENACK, B.B., NOUT, M.,.. Effect of food processing of pearl millet (Pennisetum glaucum) IKMP‐5 on the level of phenolics, phytate, iron and zinc. Journal of the Science of Food and Agriculture. 86, 1391- 1398, 2006. FARAHNAKY, A., KAMALI, E., GOLMAKANI, M. T., GAVAHIAN, M., MESBAHI, G., & MAJZOOBI, M.,. Effect of ohmic and microwave cooking on some bioactive compounds of kohlrabi, turnip, potato, and radish. Journal of Food Measurement and Characterization, 1-9, 2018. FARAHNAKY, A., AZIZI, R., GAVAHIAN, M.,. Accelerated texture softening of some rootvegetables by ohmic heating. Journal Food Engineering,113(2), 275-280, 2012. FRANCIS, F.J., CLYDESDALE, F.M.. Food colorimetry: theory and applications. 1975. AVI Publishing Co. Inc. GAYTÁN-MARTÍNEZ, M., FIGUEROA, J., MORALES-SANCHEZ, E., VAZQUEZLANDAVERDE, P.A., MARTÍNEZ-FLORES, H.,. Physicochemical properties of masa and corn tortilla made by ohmic heating. Afr. J. Biotechnol. 10, 16028-16036, 2011. GAVAHIAN, M., CHU, Y.-H., FARAHNAKY, A., Effects of ohmic and microwave cooking on textural softening and physical properties of rice. Journal of Food Engineering. 243, 114- 124, 2019. GAVAHIAN, M., CHU, Y.H., SASTRY, S.,. Extraction from Food and Natural Products by Moderate Electric Field: Mechanisms, Benefits, and Potential Industrial Applications. Comprehensive Reviews in Food Science and Food Safety.18, 1041-1052, 2018a. GAVAHIAN, M., FARAHNAKY, A.,. Ohmic-assisted hydrodistillation technology: A review. Trends in Food Science & Technology.72, 153–161, 2018b. GAVAHIAN, M., FARAHNAKY, A., JAVIDNIA, K., MAJZOOBI, M.,. Comparison of ohmicassisted hydrodistillation with traditional hydrodistillation for the extraction of essential oils from Thymus vulgaris L. Innovative Food Science & Emerging Technologies. 14, 85-91, 2012. GAVAHIAN, M., LEE, Y.-T., CHU, Y.-H.,. Ohmic-assisted hydrodistillation of citronella oil from Taiwanese citronella grass: Impacts on the essential oil and extraction medium. Innovative Food Science & Emerging Technologies. 48, 33-41, 2018c. GULL, A., PRASAD, K., KUMAR, P.,. Effect of millet flours and carrot pomace on cooking qualities, color and texture of developed pasta. Food Science and Technology.63, 470-474, 2015. 73 HAMA, F., ICARD-VERNIÈRE, C., GUYOT, J.-P., PICQ, C., DIAWARA, B., MOUQUETRIVIER, C.,. Changes in micro- and macronutrient composition of pearl millet and white sorghum during in field versus laboratory decorticated. Journal of Cereal Science . 54, 425- 433, 2011. HITHAMANI, G., SRINIVASAN, K.,. Effect of domestic processing on the polyphenol content and bioaccessibility in finger millet (Eleusine coracana) and pearl millet (Pennisetum glaucum). Food Chemistry. 164, 55-62, 2014. JITTANIT, W., KHUENPET, K., KAEWSRI, P., DUMRONGPONGPAIBOON, N., HAYAMIN, P., JANTARANGSRI, K.,. Ohmic heating for cooking rice: Electrical conductivity measurements, textural quality determination and energy analysis. Innov.Food SciEmerg .42, 16-24, 2017. KAUR, N., SINGH, A.K.. Ohmic Heating: Concept and Applications—A Review. Crit. Rev. Food Sci. Nutr. 56, 2338-2351, 2016. KRISHNAN, R., DHARMARAJ, U., SAI MANOHAR, R., MALLESHI, N.G.,. Quality characteristics of biscuits prepared from finger millet seed coat based composite flour. Food Chemistry. 129, 499-506, 2011. LESTIENNE, I., BUISSON, M., LULLIEN-PELLERIN, V., PICQ, C., TRÈCHE, S.,. Losses of nutrients and anti-nutritional factors during abrasive decorticated of two pearl millet cultivars (Pennisetum glaucum). Food Chem. 100, 1316-1323, 2007. MOHAPATRA, D., BAL, S.,. Cooking quality and instrumental textural attributes of cooked rice for different milling fractions. J. Food Eng. 73, 253-259, 2006. MONTEIRO, M.A.M., MONTEIRO, A.J.A., COSTA, E.M..D., GARCIA, M.A.V.T.,. Classification of the rice (Orysa sativa L.) used in restaurants in Belo Horizonte-MG. Brazilian Journal Food Technology.19, 2016. N'DRI, D., MAZZEO, T., ZAUPA, M., FERRACANE, R., FOGLIANO, V., PELLEGRINI, N., . Effect of cooking on the total antioxidant capacity and phenolic profile of some whole‐meal African cereals. Journal of the Science of Food and Agriculture 93, 29-36, 2013. PARAGINSKI, R.T., ZIEGLER, V., TALHAMENTO, A., ELIAS, M.C., DE OLIVEIRA, M., . Propriedades tecnológicas e de cocção em grãos de arroz condicionados em diferentes temperaturas antes da parboilização/Technological properties and cooking of rice grains conditioned at different temperatures before parboiling. Braz JournalFood Technology. 17, 146, 2014. PUSHPARAJ, F.S., UROOJ, A.,. Antioxidant activity in two pearl millet (Pennisetum typhoideum) cultivars as influenced by processing. Antioxidants 3, 55-66, 2014. ROBIN, F., THÉODULOZ, C., SRICHUWONG, S., Properties of extruded whole grain cereals and pseudocereals flours. International Journal of Food Science & Technology.50, 2152- 2159, 2015. ADEBIYI, J.A., OBADINA, A.O., MULABA-BAFUBIANDI, A.F., ADEBO, O.A., KAYITESI, E., 2016. Effect of fermentation and malting on the microstructure and selected physicochemical properties of pearl millet (Pennisetum glaucum) flour and biscuit. Journal of Cereal Science 70, 132-139, 2016. AGTE, V.V.,. Effect of Traditional Food Processing on Phytate Degradation in Wheat and Millets. J Agric Food Chem 45, 1659-1661, 1997. AKINOLA, S.A., BADEJO, A.A., OSUNDAHUNSI, O.F., EDEMA, M.O.,. Effect of preprocessing techniques on pearl millet flour and changes in technological properties. International Journal of Food Science & Technology 52, 992-999, 2017. ANDERSON, R., CONWAY, H., PEPLINSKI, A.,. Gelatinization of corn grits by roll cooking, extrusion cooking and steaming. Starch‐Stärke 22, 130-135, 1970. AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA (ANVISA). Resolução RDC nº 54, de 12 de novembro de 2012. Dispõe sobre regulamento técnico sobre informação nutricional complementar. Diário Oficial da República do Brasil, Brasília, 13 nov. 2012. AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA (ANVISA). Resolução de Diretoria Colegiada. RDC nº 359, de 23 de dezembro de 2003. Aprova Regulamento Técnicode Porções de Alimentos Embalados para Fins de RotulagemNutricional. Diário Oficial da União; Poder Executivo, de 26 de dezembrode 2003. 2003a. AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA (ANVISA). Resolução de Diretoria Colegiada RDC nº 360, de 23 de dezembro de 2003. Aprova Regulamento Técnico sobre Rotulagem Nutricional de Alimentos Embalados, tornando obrigatória a rotulagem nutricional. Diário Oficial da União; Poder Executivo, de 26 de dezembro de 2003. 2003b. ARES, G., VIDAL, L., ALLEGUE, G., GIMÉNEZ, A., BANDEIRA, E., MORATORIO, X., MOLINA, V., CURUTCHET, M.R.,. Consumers’ conceptualization of ultra-processed foods. Appetite 105, 611-617, 2016. BORA, P., RAGAEE, S., MARCONE, M.,. Effect of parboiling on decortication yield of millet grains and phenolic acids and in vitro digestibility of selected millet products. Food Chemistry 274, 718-725, 2019. CHANDRA, S., SINGH, S., KUMARI, D.,. Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. Journal of Food Science and Technology 52, 3681-3688, 2015. CODEX ALIMENTARIUS COMMISSION, J.F.W.C.A., Organization, W.H., Programme, J.F.W.F.S., 2007. Cereals, Pulses, Legumes and Vegetable Proteins. Food & Agriculture Org. CODEX Standard 170-1989.Standard for pearl millet flours, 2007. 101 COULIBALY, A., KOUAKOU, B., CHEN, J.,. Extruded adult breakfast based on millet and soybean: Nutritional and functional qualities, source of low glycemic food. Nutrition & Food Sciences, 2012. DEVISETTI, R., YADAHALLY, S.N., BHATTACHARYA, S.,. Nutrients and antinutrients in foxtail and proso millet milled fractions: Evaluation of their flour functionality. LWT - Food Science and Technology 59, 889-895, 2014. DIAS-MARTINS, A. M., CAPPATO, L. P., DA COSTA MATTOS, M., RODRIGUES, F. N., PACHECO, S., & CARVALHO, C. W.. Impacts of ohmic heating on decorticated and whole pearl millet grains compared to open-pan cooking. Journal of Cereal Science, 85, 120-129, 2019. DIAS-MARTINS, A.M., PESSANHA, K.L.F., PACHECO, S., RODRIGUES, J.A.S., CARVALHO, C.W.P.,. Potential use of pearl millet (Pennisetum glaucum (L.) R. Br.) in Brazil: Food security, processing, health benefits and nutritional products. Food Research International 109, 175-186, 2018. DU, S.-K., JIANG, H., YU, X., JANE, J.-L., Physicochemical and functional properties of whole legume flour. LWT - Food Science and Technology 55, 308-313, 2014. EUROMONITOR INTERNATIONAL, 2018 .https://www.euromonitor.com/health-andwellness-in-brazil/report FAROOQ, A.M., LI, C., CHEN, S., FU, X., ZHANG, B., HUANG, Q.,. Particle size affects structural and in vitro digestion properties of cooked rice flours. International Journal of Biological Macromolecules 118, 160-167, 2018. FDA. Labeling Nutrition. https://www.fda.gov/Food/LabelingNutrition/ucm20026097.htm GONG, K., CHEN, L., LI, X., SUN, L., LIU, K.,. Effects of germination combined with extrusion on the nutritional composition, functional properties and polyphenol profile and related in vitro hypoglycemic effect of whole grain corn. Journal of Cereal Science 83, 1-8, 2018. GULATI, P., WEIER, S.A., SANTRA, D., SUBBIAH, J., ROSE, D.J.,. Effects of feed moisture and extruder screw speed and temperature on physical characteristics and antioxidant activity of extruded proso millet (P anicum miliaceum) flour. International Journal of Food Science & Technology 51, 114-122, 2016. GULL, A., PRASAD, K., KUMAR, P.,. Evaluation of functional, antinutritional, pasting and microstructural properties of Millet flours. Journal of Food Measurement and Characterization 10, 96-102, 2016. HAMA, F., ICARD-VERNIÈRE, C., GUYOT, J.-P., PICQ, C., DIAWARA, B., MOUQUETRIVIER, C.,. Changes in micro-and macronutrient composition of pearl millet and white sorghum during in field versus laboratory decortication. Journal of Cereal Science 54, 425- 433, 2011. 102 HIDALGO, A., FONGARO, L., BRANDOLINI, A.,. Wheat flour granulometry determines colour perception. Food Research International 64, 363-370, 2014. ITAL. Institute of Food Technology, 2016. Alimentos processados. http://www.alimentosprocessados.com.br/´. Accessed 14.09.18, 2016. JAFARI, M., KOOCHEKI, A., MILANI, E.,. Effect of extrusion cooking on chemical structure, morphology, crystallinity and thermal properties of sorghum flour extrudates. Journal of Cereal Science 75, 324-331, 2017. JAMES, S., AKOSU, N.I., MAINA, Y.C., BABA, A.I., NWOKOCHA, L., AMUGA, S.J., AUDU, Y., OMEIZA, M.Y.M.,. Effect of addition of processed bambara nut on the functional and sensory acceptability of millet-based infant formula. Food science & nutrition 6, 783-790, 2018. JHA, N., KRISHNAN, R., MEERA, M.S.,. Effect of different soaking conditions on inhibitory factors and bioaccessibility of iron and zinc in pearl millet. Journal of Cereal Science 66, 46-52, 2015. KERR, W.L., WARD, C.D.W., MCWATTERS, K.H., RESURRECCION, A.V.A.,. Milling and particle size of cowpea flour and snack chip quality. Food Research International 34, 39-45, 2001. KHARAT, S., MEDINA-MEZA, I.G., KOWALSKI, R.J., HOSAMANI, A., C.T, R., HIREGOUDAR, S., GANJYAL, G.M.,. Extrusion processing characteristics of whole grain flours of select major millets (Foxtail, Finger, and Pearl). Food and Bioproducts Processing, 2018. KRAITHONG, S., LEE, S., RAWDKUEN, S.,. Physicochemical and functional properties of Thai organic rice flour. Journal of Cereal Science 79, 259-266, 2018. KRISHNAN, R., DHARMARAJ, U., MANOHAR, R.S., MALLESHI, N.,. Quality characteristics of biscuits prepared from finger millet seed coat based composite flour. Food Chemistry 129, 499-506, 2011. NAQASH, F., GANI, A., GANI, A., MASOODI, F.A., . Gluten-free baking: Combating the challenges - A review. Trends in Food Science & Technology 66, 98-107, 2017. NKAMA, I., GBENYI, D., HAMAKER, B., . Effects of malting and roasting of millet and sorghum on protein digestibility, mineral availability, soluble sugar composition and consumer acceptability of Dakuwa. Indian Journal of Nutrition 2, 1-6, 2015. N'Dri, D., Mazzeo, T., Zaupa, M., Ferracane, R., Fogliano, V., Pellegrini, N., 2013. Effect of cooking on the total antioxidant capacity and phenolic profile of some whole‐meal African cereals. Journal of the Science of Food and Agriculture 93, 29-36, 2013. OBADINA, A., ISHOLA, I.O., ADEKOYA, I.O., SOARES, A.G., DE CARVALHO, C.W.P., BARBOZA, H.T., . Nutritional and physico-chemical properties of flour from native and roasted whole grain pearl millet (Pennisetum glaucum [L.]R. Br.). Journal of Cereal Science 70, 247-252, 2016. 103 OMOBA, O.S., TAYLOR, J.R., DE KOCK, H.L.,. Sensory and nutritive profiles of biscuits from whole grain sorghum and pearl millet plus soya flour with and without sourdough fermentation. International Journal of Food Science & Technology 50, 2554-2561, 2015. OSHODI, H.O., MO OLADIMEJI, AA,. Chemical composition, nutritionally valuable minerals and functional properties of benniseed (Sesamum radiatum), pearl millet (Pennisetum typhoides) and quinoa (Chenopodium quinoa) flours. Int J Food Sci Nutr 50, 325-331, 1999. PATEL, S.,. Functional food relevance of whey protein: A review of recent findings and scopes ahead. Journal of Functional Foods 19, Part A, 308-319, 2015. PATIL, S.S., RUDRA, S.G., VARGHESE, E., KAUR, C.,. Effect of extruded finger millet (Eleusine coracan L.) on textural properties and sensory acceptability of composite bread. Food Bioscience 14, 62-69, 2016. PUSHPARAJ, F.S., UROOJ, A.,. Influence of processing on dietary fiber, tannin and in vitro protein digestibility of pearl millet. Food and Nutrition Sciences 2, 895-900, 2011. Rai, S., Kaur, A., Singh, B., 2014. Quality characteristics of gluten free cookies prepared from different flour combinations. Journal of Food Science and Technology 51, 785-789, 2014. SHARMA, N., GOYAL, S., ALAM, T., FATMA, S., NIRANJAN, K.,. Effect of Germination on the Functional and Moisture Sorption Properties of High–Pressure-Processed Foxtail Millet Grain Flour. Food and bioprocess technology 11, 209-222, 2018. SUMATHI, A., USHAKUMARI, S., MALLESHI, N., . Physico-chemical characteristics, nutritional quality and shelf-life of pearl millet based extrusion cooked supplementary foods. Int J Food Sci Nutr 58, 350-362, 2007. THILAGAVATHI, T., KANCHANA, S., BANUMATHI, P., HEMALATHA, G., VANNIARAJAN, C., SUNDAR, M., ILAMARAN, M.,. Physico-chemical and functional characteristics of selected millets and pulses. Indian Journal of Science and Technology 8, 147-155, 2015. TAYLOR, J.R.N.,. Millet Pearl: Overview, Encyclopedia of Food Grains (Second Edition). Academic Press, Oxford, pp. 190-198, 2016. TIWARI, A., JHA, S., PAL, R., SETHI, S., KRISHAN, L.,. Effect of Pre‐Milling Treatments on Storage Stability of Pearl Millet Flour. Journal of Food Processing and Preservation 38, 1215-1223, 2014. VARGAS-SOLÓRZANO, J.W., CARVALHO, C.W.P., TAKEITI, C.Y., ASCHERI, J.L.R., QUEIROZ, V.A.V.,. Physicochemical properties of expanded extrudates from colored sorghum genotypes. Food Research International 55, 37-44, 2014. ZAREIFARD, M. REZA et al. Factors influencing electrical conductivity. Ohmic heating in food processing, p. 53, 2014. | por |
dc.subject.cnpq | Ciência e Tecnologia de Alimentos | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/66699/2019%20-%20Amanda%20Mattos%20Dias%20Martins.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/5028 | |
dc.originais.provenance | Submitted by Leticia Schettini (leticia@ufrrj.br) on 2021-09-13T20:23:04Z No. of bitstreams: 1 2019 - Amanda Mattos Dias Martins.pdf: 2042097 bytes, checksum: 76da5a6c879ec2222d9ef20addb23748 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2021-09-13T20:23:04Z (GMT). No. of bitstreams: 1 2019 - Amanda Mattos Dias Martins.pdf: 2042097 bytes, checksum: 76da5a6c879ec2222d9ef20addb23748 (MD5) Previous issue date: 2019-02-21 | eng |
Appears in Collections: | Doutorado em Ciência e Tecnologia de Alimentos |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2019 - Amanda Mattos Dias Martins.pdf | 2019 - Amanda Mattos Dias Martins | 1.99 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.