Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9407
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaptista, Marcelle Nardelli
dc.date.accessioned2023-12-21T18:38:30Z-
dc.date.available2023-12-21T18:38:30Z-
dc.date.issued2020-12-19
dc.identifier.citationBAPTISTA, Marcelle Nardelli. Planícies de inundação: onde e como renaturalizar funções hídricas. 2020. 95 f. Tese (Doutorado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9407-
dc.description.abstractAs planícies de inundação são constituídas por ambientes biodiversos e multifuncionais que interagem entre si e desempenham importante papel na regulação hídrica das grandes bacias hidrográficas. Este estudo objetivou estabelecer bases teóricas para uma nova forma de manejo, usando o conceito de renaturalização de funções hídricas em partes de uma planície de inundação antropizada como estratégia para aumentar a oferta de serviços ecossistêmicos relacionados à regularização hídrica de bacias hidrográficas. Ele foi subdividido nos seguintes objetivos específicos: i) Avaliar alternativas para disciplinamento de enchentes, promovido através de medidas de renaturalização; ii) Caracterizar a hidrodinâmica da planície de inundação em solos urbanizado e não urbanizado; iii) Levantar dinâmica espaço-temporal do nível de lençol freático na produção de serviços ecossistêmicos na zona de conectividade; e iv) Espacializar setores com habilidades hidrológicas de prestar serviços ecossistêmicos distintos via o conceito de medidas de renaturalização. A planície de inundação estudada tem 217,84 km² (0,38% da bacia) e está no terço superior. Ela é regulada artificialmente pela Represa Hidrelétrica de Funil e vem perdendo suas funções hídricas no tempo, tanto pelas intervenções antrópicas, como pelas mudanças climáticas. É a segunda maior planície do Rio Paraíba do Sul e possui o maior potencial de manejo via renaturalização de funções hidrológicas. Foram instalados medidores de nível de água do lençol freático em pontos com diferentes distâncias do controle litoestrutural, tanto no interior da planície como na zona de conectividade. Apesar dos aspectos fisionômicos de paisagem serem similares no trecho hidrológico de 50 km de extensão, encontrou-se diferença significativa entre o nível do lençol freático em áreas com diferentes graus de urbanização e características geo-ambientais. Os resultados indicaram que a urbanização alterou a profundidade do lençol freático em mais de 2,5 m. Setores mais próximos ao controle litoestrutural têm uma frequência de saturação mais alta que os setores mais afastados situados a montante, sendo mais aptos a receberem medidas de renaturalização de funções hídricas e terem regulação do crescimento urbano. Nestes setores se observou maior conectividade entre planície e calha e, com isto, maior saturação durante as cheias e umidade nas estiagens. Como principal resultado, se encontrou que a planície, subdividida em 09 setores com habilidades funcionais similares, pode viabilizar o processo de planejamento e aumentar a oferta de serviços ecossistêmicos oferecidos através de medidas de renaturalização. Áreas mais distantes ao controle litoestrutural apresentam maior importância para o armazenamento das chuvas durante as estiagens, enquanto áreas mais próximas oferecem regularização hídrica nas cheias durante período chuvoso. Ambas operam de forma integrada entre si, aperfeiçoando a gestão dos recursos hídricos dentro da planície e beneficiando a população que vive a jusante. A setorização da planície de inundação baseada na funcionalidade hídrica e sua divisão em subsetores facilita a percepção dos processos hidrológicos e permite gestão do território, tomando em consideração as interligações hídricas entre calha e planície de inundação nos espaços menos antropizados, base imprescindível para se estabelecer as medidas de renaturalização de suas funções hídricaspor
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectLençol freáticopor
dc.subjectRegularização hídricapor
dc.subjectServiços ecossistêmicospor
dc.subjectWater tableeng
dc.subjectWater regulationeng
dc.subjectEcosystem serviceseng
dc.titlePlanícies de inundação: onde e como renaturalizar funções hídricaspor
dc.title.alternativeFloodplains: where and how renaturalization water functionseng
dc.typeTesepor
dc.description.abstractOtherThe floodplains are made up of biodiverse and multifunctional environments that interact with each other and play an important role in the water regulation of large hydrographic basins. This study aimed to establish theoretical bases for a new form of management, using the concept of renaturalization of water functions in parts of an anthropized floodplain as a strategy to increase the supply of ecosystem services related to water regularization of hydrographic basins. It was subdivided into the following specific objectives: i) To choose alternatives for disciplining floods promoted through renaturalization measures; ii) Characterize the hydrodynamics of the floodplain in urbanized and non-urbanized soils; iii) To raise the spatio-temporal dynamics of the water table level in the production of ecosystem services in the connectivity zone; and iv) Spatialize sectors with hydrological expertise to provide distinct ecosystem services via the concept of renaturalization measures. The studied floodplain is 217.84 km² (0.38% of the basin) and is in the upper third. It is artificially regulated by the Funil Hydroelectric Power Plant and has been losing its water functions over time, both due to human interferences and climate change. It is the second largest plain on the Paraíba do Sul River and has the greatest potential for management via the renaturalization of hydrological functions. Water level meters were installed in groundwater at points with different distances from the lithostructural control point, both inside the plain and in the connectivity zone. Although the physiognomic aspects of the landscape are similar in the 50 km long hydrological section, a difference was found between the water table level in areas with different degrees of urbanization. The results indicated that urbanization changed the depth of the water table by more than 2.5 m. Sectors closer to the lithostructural control point have a higher saturation frequency than the more distant sectors located in the upstream, being more apt to receive measures for the renaturalization of water functions and having regulated urban growth. In these sectors, greater connectivity between the plain and the river was observed, and with this, greater saturation during floods and humidity in the droughts. As a main result, it was found that the plain subdivided into 09 sectors with similar expertise can make the planning process feasible and increase the offer of ecosystem services through renaturalization measures. Areas more distant to the lithostructural control point are more important for the storage of water during the droughts, while the areas closer allow water regularization in the floods during the rainy season. Both operate in an integrated manner, improving the management of water resources within the plain and benefiting the population living downstream. The sectorization of the floodplain based on water functionality and its division into sub sectors facilitates the perception of hydrological processes and allows the management of the territory taking into account the water interconnections between river and floodplain in less anthropized spaces, an essential base for establishing as measures of renaturalization of its water functionseng
dc.contributor.advisor1Valcarcel, Ricardo
dc.contributor.advisor1ID475.124.827-87por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6414014329218207por
dc.contributor.referee1Valcarcel, Ricardo
dc.contributor.referee1ID475.124.827-87por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6414014329218207por
dc.contributor.referee2Cortines, Erika
dc.contributor.referee2Latteshttp://lattes.cnpq.br/1020062257227266por
dc.contributor.referee3Salemi, Luiz Felippe
dc.contributor.referee3IDhttps://orcid.org/0000-0003-2271-5712por
dc.contributor.referee3Latteshttp://lattes.cnpq.br/2422077073578660por
dc.contributor.referee4Cunha, Sandra Baptista da
dc.contributor.referee4Latteshttp://lattes.cnpq.br/9402896675191214por
dc.contributor.referee5Freitas, Welington Kiffer de
dc.contributor.referee5Latteshttp://lattes.cnpq.br/9066118046924125por
dc.creator.ID099.179.607-16por
dc.creator.Latteshttp://lattes.cnpq.br/1661671959103375por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Florestaspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Ambientais e Florestaispor
dc.relation.referencesALEXANDER, L. C. et al. Featured Collection Introduction: Connectivity of Streams and Wetlands to Downstream Waters. Journal of the American Water Resources Association, v. 54, n. 2, p. 287–297, 2018. ALSDORF, D. et al. Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sensing of Environment, v. 114, p. 2448–2456, 2010. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0034425710001768>. AMOATENG, P. et al. A multi-faceted analysis of annual flood incidences in Kumasi, Ghana. International Journal of Disaster Risk Reduction, v. 27, n. June 2017, p. 105–117, 2018. Disponível em: <https://doi.org/10.1016/j.ijdrr.2017.09.044>. ANDERSON, M. G. et al. Assessing Floodplain Forests: Using Flow Modeling and Remote Sensing to Determine the Best Places for Conservation. Natural Areas Journal, v. 30, n. 1, p. 39–52, 2010. BALDOTTO, M.; CANELLAS, L.; VELLOSO, A. Propriedades redox da matéria orgânica isolada de material ultrafiltrado das águas do rio Paraíba do Sul. Química Nova, v. 32, n. 4, p. 891–896, 2009. Disponível em: <http://www.scielo.br/pdf/qn/v32n4/v32n4a12.pdf>. Acesso em: 3 abr. 2013. BALDWIN, A. H. Restoring complex vegetation in urban settings: The case of tidal freshwater marshes. Urban Ecosystems, v. 7, p. 125–137, 2004. BAPTISTA, M.N. et al. Selection of Preferred Floodplains for the Renaturalization of Hydrologic Functions: A Case Study of the Paraíba do Sul River Basin, Brazil. Water Resources Management, v. 28, n. 13, 2014. BAPTISTA, M.N. et al. Impact of Urbanization on the Hydrodynamics of a Water Table in a Floodplain with High Potential for Renaturation. Water Resources Management, v. 31, n. 13, p. 4091–4102, 2017. Disponível em: <http://link.springer.com/10.1007/s11269-017-1731-5>. BARBOZA, R. S. et al. Air Basins of Rio de Janeiro State, Brazil. Journal of Water Resource and Protection, v. 07, n. 10, p. 781–791, 2015. BAYLEY, P. Understading large river: floodplain ecossystems. BioScience, v. 45, p. 153–158, 1995. BELTRAME, A. V. Diagnóstico do meio ambiente físico de bacias hidrográficas: modelo de aplicação. Associação Brasileira das Editoras Universitárias. Florianópolis: UFSC, 112 p. 1994. BERNHARDT, E. S. et al. Synthesizing U.S. river restoration efforts. Science, v. 308, n. 5722, p. 636–637, 2005. BINDER, W., The Restoration of the Isar South of Munich. Wasserwirtschaft. 2010. BINO, G. et al. Floodplain ecosystem dynamics under extreme dry and wet phases in semi-arid Australia. Freshwater Biology, n. November 2017, p. 224–241, 2017. BIZERRIL, C. A ictiofauna da bacia do rio Paraíba do Sul. Biodiversidade e padrões biogeográficos. Brazilian Archives of Biology and Technology, v. 42, n. 2, p. 233–250, 1999. BLACKWELL, M.S.A.. MALTBY, E., Ecoflood Guidelines. How to Use Floodplains for Flood Risk Reduction - Annual Report. Environment and Climate Change. 2006. BRADLEY, W. T. Effective flood alleviation design and construction. Proceedings of the Institution of Civil Engineers - Municipal Engineer, v. 158, n. 2, p. 107–113, 2005. 71 BRAGA, B. et al. Pacto federativo e gestão de águas. Estudos Avançados, v. 22, n. Figura 1, p. 17–42, 2008. BRANDT, S. A. Classification of geomorphological effects downstream of dams. Catena, v. 40, n. 4, p. 375–401, 2000. BUIJSE, A. D. et al. Restoration strategies for river floodplains along large lowland rivers in Europe. Freshwater Biology, v. 47, n. 4, p. 889–907, 2002. BUISSON, E. et al. Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biological Reviews, v. 94, n. 2, p. 590–609, 2019. CADOL, D.; WINE, M. L. Geomorphology as a first order control on the connectivity of riparian ecohydrology. Geomorphology, v. 277, p. 154–170, 2017. CALDAS, A. DA S.; MELO, A. DE; VALCARCEL, R. Análise da gestão dos recursos hídricos da bacia hidrográfica do Rio Paraíba do Sul com base nas normas legais. Floresta e Ambiente, p. 1–14, 2005. CALHOUN, A. J. K. et al. The Significant Surface-Water Connectivity of “Geographically Isolated Wetlands”. Wetlands, v. 37, n. 4, p. 801–806, 2017. CARVALHO, N. O.; et al. Guia de avaliação de assoreamento de reservatórios. ANEEL. Brasília. 106 p. 2000. CARVALHO FILHO, A. de; et al. Levantamento de reconhecimento de baixa intensidade dos solos do estado do Rio de Janeiro. Rio de Janeiro: Embrapa Solos (Rio de Janeiro, RJ). 2003. Contém texto e mapa colorido. Escala 1:250.000. (Embrapa Solos. Boletim de Pesquisa e Desenvolvimento. 32). 2003. CEIVAP. Plano de Recursos Hídricos da Bacia do Rio Paraíba do Sul: Diagnóstico dos Recursos Hídricos - Relatório Final. Rio de Janeiro, 2006. 201 p. CHOU, C.S., et al. Assessment of Climate Change over South America under RCP 4.5 and 8.5 Downscaling Scenarios. American Journal of Climate Change, v. 3, p. 512-525. 2014 COELHO, A. L. N. Geomorfologia fluvial de rios impactados por barragens 1. Caminhos de Geografia, v. 9, n. 26, p. 16–32, 2008. COHEN, M. J. et al. Do geographically isolated wetlands influence landscape functions? Proceedings of the National Academy of Sciences, v. 113, n. 8, p. 1978–1986, 2016. COOK, B. J.; HAUER, F. R. Effects of hydrologic connectivity on water chemistry, soils, and vegetation structure and function in an intermontane depressional wetland landscape. Wetlands, v. 27, n. 3, p. 719–738, 2007. CORREIA, F.; SILVA, F. DA; RAMOS, I. Floodplain management in urban developing areas. Part I. Urban growth scenarios and land-use controls. Water Resources Management, v. 13, p. 1–21, 1999. COSTA, A.; Volta Redonda ontem e hoje. Volta Redonda: Jader Costa, 2004. CD-ROM COSTA, D. DE A. et al. Dos instrumentos de gestão de recursos hídricos - o Enquadramento - como ferramenta para reabilitação de rios. Saúde em Debate, v. 43, n. spe3, p. 35–50, 2019. COSTANZA, R. et al. The value of the world’s ecosystem services and natural capital. Nature, v. 387, n. 6630, p. 253–260, 1997. 72 CPRM - SERVIÇO GEOLÓGICO DO BRASIL Geologia e recursos minerais do Estado do Rio de Janeiro: texto explicativo do mapa geológico e de recursos minerais. Rio de Janeiro, 2016. 182 p. il. mapas. Disponível em www.cprm.gov.br/geologia básica ________. Relatório Anual. Brasília, 2004. 131 p. il. color DADE, W. B.; RENSHAW, C. E.; MAGILLIGAN, F. J. Sediment transport constraints on river response to regulation. Geomorphology, v. 126, n. 1–2, p. 245–251, 2011. DUNNE, T.; BLACK, R.D. Partial área contribuitions to storm runoff in a small New England watershed. Water Resources Research, v.6, p. 1296-1311, 1970. DURANEL, A.J. et al. Assessing the hydrological suitability of floodplains for species- rich meadow restoration : a case study of the Thames floodplain, UK. Hydrology and Earth System Sciences. v.11, p. 170–179. 2007. DWORK, T.; GORLAC, B. Flood risk management in Europe: The development of a common EU policy. International Journal of River Basin Management. v. 3, p. 97–103. 2005. ELOSEGI, A.; SABATER, S. Effects of hydromorphological impacts on river ecosystem functioning: a review and suggestions for assessing ecological impacts. Hydrobiologia, v. 712, p. 129–143, 2013. FAULKNER, S. Urbanization impacts on the structure and function of forested wetlands. Urban Ecosystems, v. 7, p. 89–106, 2004. FELD, C. K. et al. From Natural to Degraded Rivers and Back Again. A Test of Restoration Ecology Theory and Practice. 1. ed. Elsevier Ltd., v. 44. 2011. Disponível em: <http://dx.doi.org/10.1016/B978-0-12-374794-5.00003-1>. FIGUEROA, F.E.V. Avaliação econômica de ambientes naturais - o caso das áreas alagadas - uma proposta para a represa do lobo (Broa). 143 f. Dissertação (Mestrado em Engenharia) - UFSCar, São Carlos, 1996. FOX, G. A. et al. Sediment transport model for seepage erosion of streambank sediment. Journal of Hydrologic Engineering, v. 11, n. 6, p. 603–611, 2006. FRAPPART, F. et al. Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels. Remote Sensing of Environment, v. 99, n. 4, p. 387–399, 2005. FRAPPART, F. et al. Satellite-based estimates of groundwater storage variations in large drainage basins with extensive floodplains. Remote Sensing of Environment, v. 115, n. 6, p. 1588–1594, 2011. FURNAS. Usina Hidrelétrica de Furnas. Disponível em: http://www.furnas.com.br/hotsites/sistemafurnas/usina_hidr_furnas.asp. Acesso em: 05/03/2019 GARCIA, A. C. et al. Water Monitoring of Paraíba do Sul River in the City of Lorena - SP, Brazil. International Journal of Environmental Pollution and Remediation, v. 1, n. 1, p. 31–37, 2012. GOODARZI, M. et al. Evaluation of the Effects of Climate Change on Groundwater Recharge Using a Hybrid Method. Water Resources Management, v. 30, p. 133–148, 2016. GRAF, W. L. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology, v. 79, n. 3–4, p. 336–360, 2006. 73 GROFFMAN, P. M. et al. Down by the Riveside: Urban Riparian Ecology. The Ecological Society of America, v. 1, n. 6, p. 315–321, 2003. HAMILTON, S. Comparison of inundation patterns among major South American floodplains.Journal of Geophysical Research Atmospheres, v. 107, p. 1–14, 2002. HAYNES, R. J., MOORE L., 1988. Reestablishment of bottomland hardwoods within National Wildlife Refuges in the Southeast. In J. Zelazny and J. S. Feierabend 403 (eds.) Washington, DC, USA. p. 95–103, 1988. HEIN, T. et al. Current status and restoration options for floodplains along the Danube River. Science of the Total Environment, v. 543, p. 778–790, 2016. Disponível em: <http://dx.doi.org/10.1016/j.scitotenv.2015.09.073>. HESTER, E. T. et al. Vertical surface water–groundwater exchange processes within a headwater floodplain induced by experimental floods. Hydrological Processes, v. 30, n. 21, p. 3770–3787, 2016. HEWLETT J.D.; HIBBERT, E. Factors affecting the response of small watersheds to precipitation in Humid Areas. In: SOPPER W.E.; LULL H.W. (Ed). International Symposium on Forest Hydrology. Oxford: Pergamon Press, 1967. p. 275-290. HORNUNG, L. K.; PODSCHUN, S. A.; PUSCH, M. Linking ecosystem services and measures in river and floodplain management. Ecosystems and People, v. 15, n. 1, p. 214–231, 2019. Disponível em: <https://doi.org/10.1080/26395916.2019.1656287>. HORTON, R. E. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, v. 56, n. 3, p. 275-370, 1945. http://dx.doi.org/10.1130/0016-7606 IBGE - Instituto Brasileiro de Geografia e Estatística. Manual técnico da vegetação brasileira. Rio de Janeiro. Fundação Instituto Brasileiro de Geografia e Estatística, 1992. 92 p. (Série Manuais Técnicos em Geociências n 1). ___________. Síntese de Indicadores Sociais. Rio de Janeiro: IBGE, 2006. ___________. Censo Demográfico 2010. Rio de Janeiro: IBGE, 2011. JACOBSON, R. B.; JANKE, T. P.; SKOLD, J. J. Hydrologic and geomorphic considerations in restoration of river-floodplain connectivity in a highly altered river system, Lower Missouri River, USA. Wetlands Ecology and Management, v. 19, n. 4, p. 295–316, 2011. JIN, H. et al. Monitoring of wetland inundation dynamics in the Delmarva Peninsula using Landsat time-series imagery from 1985 to 2011. Remote Sensing of Environment, v. 190, p. 26–41, 2017. Disponível em: <http://dx.doi.org/10.1016/j.rse.2016.12.001>. JORDAN, S. J.; BENSON, W. H. Sustainable Watersheds: Integrating Ecosystem Services and Public Health. Environmental Health Insights, v. 9, n. S2, p. 1–7, 2015. JUNG, H. C. et al. Analysis of the relationship between flooding area and water height in the Logone floodplain. Physics and Chemistry of the Earth, v. 36, n. 7–8, p. 232–240, 2011. Disponível em: <http://dx.doi.org/10.1016/j.pce.2011.01.010>. JUNK, W.; BAYLEY, P.; SPARKS, R. The flood pulse concept in river-floodplain systems. Canadian Journal of Fisheries and Aquatic Sciences, v. 106, p. 110–127, 1989. KINGSFORD, R. T. Review Ecological impacts of dams , water diversions and river management on floodplain wetlands in Australia. Austral Ecology, v. 25, p. 109–127, 2000. 74 KNIGHTON, D. Fluvial forms and process: a new perspective. Londres, Nova York: Arnold, 1998. 383 p. KOZLOWSKI, T. T. Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetlands, v. 22, n. 3, p. 550–561, 2002. KRAUSE, S.; BRONSTERT, A.; ZEHE, E. Groundwater-surface water interactions in a North German lowland floodplain - Implications for the river discharge dynamics and riparian water balance. Journal of Hydrology, v. 347, n. 3–4, p. 404–417, 2007. KRISTENSEN, E. A. et al. 10 years after the largest river restoration project in Northern Europe : Hydromorphological changes on multiple scales in River Skjern. Ecological Engineering, v. 66, p. 141–149, 2014. Disponível em: <http://dx.doi.org/10.1016/j.ecoleng.2013.10.001>. LEIBOWITZ, S. G. et al. Connectivity of streams and wetlands to downstream waters: an integrated systems framework. Journal of the American Water Resources Association, v. 54, n. 2, 2018. LEIBOWITZ, S. G. Geographically Isolated Wetlands: Why We Should Keep the Term. Wetlands, v. 35, n. 5, p. 997–1003, 2015. LEIBOWITZ, S. G.; MUSHET, D. M.; NEWTON, W. E. Intermittent Surface Water Connectivity: Fill and Spill Vs. Fill and Merge Dynamics. Wetlands, v. 36, p. 323–342, 2016. Disponível em: <http://dx.doi.org/10.1007/s13157-016-0830-z>. LOCKABY, B. G. Floodplain ecosystems of the Southeast: Linkages between forests and people. Wetlands, v. 29, n. 2, p. 407–412, 2009. MARENGO, J.; ALVES, L. Tendências hidrológicas da bacia do rio Paraíba do Sul. Revista Brasileira de Meteorologia, p. 215–226, 2005. MALTBY, E., BLACKWELL, M.S.A., Managing riverine environments in the context of new water policy in Europe. International Journal River Basin Management. v. 3, p. 133–141. 2005. MCCARTHY, T. S. Groundwater in the wetlands of the Okavango Delta , Botswana , and its contribution to the structure and function of the ecosystem. Journal of Hydrology, v. 320, p. 264–282, 2006. MENICHINO, G. T.; HESTER, E. T. The effect of macropores on bi-directional hydrologic exchange between a stream channel and riparian groundwater. Journal of Hydrology, v. 529, n. P3, p. 830–842, 2015. Disponível em: <http://dx.doi.org/10.1016/j.jhydrol.2015.09.005>. MILLER, S. W.; WOOSTER, D.; LI, J. Resistance and resilience of macroinvertebrates to irrigation water withdrawals. Freshwater Biology, v. 52, n. 12, p. 2494–2510, 2007. MITCHELL, M. G. E.; BENNETT, E. M.; GONZALEZ, A. Linking Landscape Connectivity and Ecosystem Service Provision: Current Knowledge and Research Gaps. Ecosystems, v. 16, n. 5, p. 894–908, 2013. MOSS, B. The Water Framework Directive: Total environment or political compromise? Science of the Total Environment, v. 400, n. 1–3, p. 32–41, 2008. Disponível em: <http://dx.doi.org/10.1016/j.scitotenv.2008.04.029>. MUSHET, D. M. et al. Geographically Isolated Wetlands: Rethinking a Misnomer. Wetlands, v. 35, n. 3, p. 423–431, 2015. 75 NARDI, F. et al. On the investigation of the performances of a DEM-based hydrogeomorphic floodplain identification method in a large urbanized river basin: the Tiber river case study in Italy. EGU General Assembly, v. 15, p. 12931, 2013. NEIFF, J. Planícies de inundação são ecótonos. Ecótonos nas interfaces dos ecossistemas aquaticos. São Carlos: Rima., p. 29–46, 2003. OVALLE, A. R. C. et al. Long-term trends in hydrochemistry in the Paraíba do Sul River , southeastern Brazil. Journal of Hydrology, v. 481, p. 191–203, 2013. Disponível em: <http://dx.doi.org/10.1016/j.jhydrol.2012.12.036>. PEDERSEN, T. C. M.; BAATTRUP-PEDERSEN, A.; MADSEN, T. V. Effects of stream restoration and management on plant communities in lowland streams. Freshwater Biology, v. 51, n. 1, p. 161–179, 2006. PIGNATARO NETO, I.T.; Qualidade física e química de um latossolo vermelho-amarelo sob pastagens com diferentes períodos de usos. Dissertação (Mestrado em Ciências Agrárias)-Universidade de Brasília, Brasília, 80f. 2008. POFF, N. L. et al. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences, v. 104, n. 14, p. 5732–5737, 2007. POFF, N. L. R. et al. The natural flow regime: A paradigm for river conservation and restoration. BioScience, v. 47, n. 11, p. 769–784, 1997. POUDEVIGNE, I. et al. A systems approach to river restoration: A case study in the Lower Seine Valley, France. River Research and Applications, v. 18, n. 3, p. 239–247, 2002. RECKENDORFER, W. et al. The Integrated River Engineering Project for the free-flowing Danube in the Austrian Alluvial Zone National Park: contradictory goals and mutual solutions. Arch. Hydrobiol. Suppl., v. 155, n. 1, p. 613–630, 2005. RICHARDS, K.; BRASINGTON, J.; HUGHES, F. Geomorphic dynamics of floodplains: Ecological implications and a potential modelling strategy. Freshwater Biology, v. 47, n. 4, p. 559–579, 2002. RIQUIER, J.; PIÉGAY, H.; ŠULC MICHALKOVÁ, M. Hydromorphological conditions in eighteen restored floodplain channels of a large river: Linking patterns to processes. Freshwater Biology, v. 60, n. 6, p. 1085–1103, 2015. RODRIGUES, F. M.; PISSARRA, T. C. T.; CAMPOS, S. Caracterização morfométrica da microbacia hidrográfica Córrego da Fazenda Glória, Município de Taquaritinga. Irriga, v. 13, n. 3, p. 310-322, 2008. Disponível em: <http://hdl.handle.net/11449/70443>. RUSSI, D., et al. The Economics of Ecosystems and Biodiversity (TEEB) for Water and Wetlands. IEEP, Ramsar Secretariat Gland, London and Brussels. 2013 SANON, S. et al. Quantifying ecosystem service trade-offs: The case of an urban floodplain in Vienna, Austria. Journal of Environmental Management, v. 111, p. 159–172, 2012. Disponível em: <http://dx.doi.org/10.1016/j.jenvman.2012.06.008>. SANTOS, H. G., et al. Sistema Brasileiro de Classificação de Solos, Brasília, 187p. 2018. (https://www.embrapa.br/solos/busca-de-publicacoes/-/publicacao/1094003/sistema-brasileirode-classificacao-de-solos). SCHIEMER, F.; HEIN, T.; RECKENDORFER, W. Ecohydrology, key-concept for large river 76 restoration. Ecohydrology & Hydrobiology, v. 7, n. 2, p. 101–111, 2007. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1642359307701763>. SCHIEMER, F.; WAIDBACHER, H. Strategies for conservation of a Danubian fish fauna. River conservation and management, n. April 2016, p. 363–382, 1992. SCHIEMER, FRITZ; BAUMGARTNER, C.; TOCKNER, K. REstoration of floodplain in rivers: the "Danube Restoration Project". Regulated Rivers: Research & Managementsearch & Management, v. 15, p. 231–244, 1999. SCHINDLER, S. et al. Multifunctional floodplain management and biodiversity effects: a knowledge synthesis for six European countries. Biodiversity and Conservation, v. 25, n. 7, p. 1349–1382, 2016. SCHINDLER, S. et al. Multifunctionality of floodplain landscapes: Relating management options to ecosystem services. Landscape Ecology, v. 29, n. 2, p. 229–244, 2014. SCHOBER, B.; HAUER, C.; HABERSACK, H. A novel assessment of the role of Danube floodplains in flood hazard reduction (FEM method). Natural Hazards, v. 75, n. 1, p. 33–50, 2015. SCHOT, P.; WINTER, T. Groundwater – surface water interactions in wetlands for integrated water resources management. Journal of Hydrology, v. 320, p. 261–263, 2006. SHIELDS, F. D.; SIMON, A.; STEFFEN, L. J. Reservoir effects on downstream river channel migration. Environmental Conservation, v. 27, n. 1, p. 54–66, 2000. STANFORD, J. A. et al. A general protocol for restoration of regulated rivers. Regulated Rivers: Research and Management, v. 12, n. 4–5, p. 391–413, 1996. TECLAFF, L.A., The river basin in history and Law. La Haya. 1967. TOCKNER, K.; MALARD, F.; WARD, J. V. An extension of the food pulse concept. Hydrological Processes, v. 2883, n. July 1999, p. 2861–2883, 2000. TOCKNER, K.; STANFORD, J. A. Riverine flood plains: present state and future trends. Environmental conservation, v. 29, n. 3, p. 308–330, 2002. TONELLO, K. C.; DIAS, H. C. T.; SOUZA, A. L. de.; RIBEIRO, C. A. A.S. R.; LEITE, F. P. Análise hidroambiental da bacia hidrográfica da Cachoeira das Pombas, Guanhães, MG. Revista Árvore, Viçosa-MG, v. 30, n. 5, p. 849-857, 2006. VALCARCEL, R. Propostas de ação para o manejo da bacia hidrográfica do rio Paraíba do Sul. Revista Floresta e Ambiente, v. 5, n. 1, p. 68–88, 1998. VEIGA, L. B. E.; MAGRINI, A. The Brazilian Water Resources Management Policy: Fifteen Years of Success and Challenges. Water Resources Management, v. 27, n. 7, p. 2287–2302, 7 fev. 2013. Disponível em: <http://link.springer.com/10.1007/s11269-013-0288-1>. VILLELA, S. M.; MATTOS, A. Hidrologia aplicada. São Paulo: Mc Graw-Hill do Brasil, 1975. WARD, J. V.; TOCKNER, K.; SCHIEMER, F. Biodiversity of floodplain river ecosystems: ecotones and connectivity1. Regulated Rivers: Research & Management, v. 15, n. 1–3, p. 125–139, 1999. WEIGELHOFER, G. et al. The hydrochemical response of small and shallow floodplain water bodies to temporary surface water connections with the main river. Freshwater Biology, v. 60, 77 n. 4, p. 781–793, 2015. WELCH, C. et al. Propagation of solutes and pressure into aquifers following river stage rise. Water Resources Research, v. 49, n. 9, p. 5246–5259, 2013. WIGINGTON, P. J.; MOSER, T. J.; LINDEMAN, D. R. Stream network expansion: A riparian water quality factor. Hydrological Processes, v. 19, n. 8, p. 1715–1721, 2005por
dc.subject.cnpqRecursos Florestais e Engenharia Florestalpor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/71882/2020%20-%20Marcelle%20Nardelli%20Baptista.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6251
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2023-01-24T12:15:23Z No. of bitstreams: 1 2020 - Marcelle Nardelli Baptista.pdf: 2718397 bytes, checksum: bf15a7411fb7acbc3fe485fd3cb1b7d4 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-01-24T12:15:23Z (GMT). No. of bitstreams: 1 2020 - Marcelle Nardelli Baptista.pdf: 2718397 bytes, checksum: bf15a7411fb7acbc3fe485fd3cb1b7d4 (MD5) Previous issue date: 2020-12-19eng
Appears in Collections:Doutorado em Ciências Ambientais e Florestais

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Marcelle Nardelli Baptista.pdf2020 - Marcelle Nardelli Baptista2.65 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.