Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9428
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerreira, Bruno Paes Leme
dc.date.accessioned2023-12-21T18:39:15Z-
dc.date.available2023-12-21T18:39:15Z-
dc.date.issued2019-07-30
dc.identifier.citationFERREIRA, Bruno Paes Leme. Participação dos receptores AT1 do órgão subfornical na integração entre o equilíbrio hidroeletrolítico e energético. 2019. 95p. Tese (Doutorado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9428-
dc.description.abstractEmbora classicamente envolvido no controle cardiovascular e equilíbrio hidromineral, o sistema renina-angiotensina (SRA) tem sido implicado no controle do balanço energético. A angiotensina II (ANG II), atuando em receptores do tipo 1 (AT1) pode alterar a ingestão alimentar e o ganho de peso em modelos para indução de obesidade. Um dos principais locais de ação da ANG II circulante no sistema nervoso central é o órgão subfornical (SFO), desprovido de barreira hematoencefálica e relacionado com o controle de diversas funções autonômicas, comportamentos motivados e do metabolismo energético. Assim, nossa hipótese é que a ANG II pode atuar em receptores AT1 para promover o controle integrado do metabólico e hidroeletrolítico em desafios à homeostase energética. Tem-se três objetivos principais: a) investigar se um mesmo neurônio do SFO é sensível a ANG II e glicose, e se a concentração de glicose influencia a resposta à ANG II; b) avaliar se a privação alimentar, como estímulo hipoglicemiante, pode alterar a atividade do SRA circulante e a expressão de AT1 no SFO; c) e avaliar se a ANG II via receptores AT1 influência a ingestão de ração e/ou água após a privação alimentar. Para tal, foram usados ratos machos Sprague-Dawley e Wistar e todos os procedimentos foram aprovados por comitês de ética em uso de animais experimentais, respectivamente Queen’s University 2017-1735 e FMRP-USP 229/18. Observou-se que neurônios do SFO que respondem a ANG II podem ser encontrados em populações de diferentes fenótipos de glicossensibilidade, podendo ser tanto não glicossensiveis (43%), como glicoexcitáveis (52%) ou glicoinibidos (71%). Cultura de células do SFO mantidas em diferentes concentrações de glicose por 1, 6 e 24 horas não apresentaram diferença na expressão de receptores AT1. Mesmo assim, estudos eletrofisiológicos de patchclamp de neurônios isolados do SFO mostraram que aproximadamente 31% (n=4/13) das células testadas não respondiam a ANG II a 5mM de glicose e passavam a apresentar despolarização a 10mM de glicose. Isso sugere uma inter-relação entre o estado metabólico do organismo e a forma como o sistema nervoso central responde à ANG II. A privação de alimentos induziu o aumento da concentração plasmática de ANG II e do mRNA para receptores AT1a no SFO. O tratamento com losartana, um antagonista AT1, em baixas doses na água de beber durante 48h de jejum atenuou a queda da glicemia. Quando os animais receberam comida, apenas uma tendência de aumento da ingestão alimentar foi observada aos 60 min no grupo tratado com losartana na água. Entretanto, neste mesmo tempo, foi observada uma redução significativa da ingestão de água. Ainda, microinjeções intracerebroventriculares (i.c.v.) de losartana mostram uma significativa diminuição da ingestão comida e água após 12 horas em condições basais, mas depois de jejum de 48 horas apenas a ingestão de água foi significativamente reduzida pelo tratamento com losartana i.c.v. Assim, podemos concluir que SRA encontra-se ativado em condições de jejum, acompanhado de aumento na expressão de AT1 no SFO, e está relacionado com a ingestão de água durante a alimentação, como um importante mecanismo de manutenção do volume e osmolalidade do líquido extracelular durante a ingestão de alimentos.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectÓrgão subfornicalpor
dc.subjectAngiotensina IIpor
dc.subjectReceptor para angiotensina do tipo 1por
dc.subjectPrivação alimentarpor
dc.subjectEletrofisiologiapor
dc.subjectSubfornical organeng
dc.subjectangiotensin IIeng
dc.subjectType 1 angiotensin receptoreng
dc.subjectFood deprivationeng
dc.subjectElectrophysiologyeng
dc.titleParticipação dos receptores AT1 do órgão subfornical na integração entre o equilíbrio hidroeletrolítico e energéticopor
dc.title.alternativeRole of AT1 receptors at the subfornical organ, in the integration of hydroelectrolytic and energetic balanceeng
dc.typeTesepor
dc.description.abstractOtherAlthough classically involved in cardiovascular control and hydromineral balance, the reninangiotensin system (SRA) has been implicated in energy balance control. Angiotensin II (ANG II) stimulating its type 1 receptor (AT1) may change body weight and food ingestion in some experimental models of obesity. One of the main sites of action of circulating ANG II is the subfornical organ (SFO), a circumventricular organ related to the control of several autonomic functions, motivated behaviors, and energetic metabolism. Thus, our hypothesis is that ANG II may act on AT1 receptors to promote an integrate control of metabolic and hydroelectrolytic balance during challenges of energetic homeostasis. This thesis aims three main goals: a) investigate if a same SFO neuron is sensitive to ANG II and glucose, and if glucose concentration may influence this cell’s response to ANG II; b) evaluate if food deprivation, as a hypoglycemic stimulus, may alter systemic SRA activity and AT1 expression at SFO; c) and evaluate if ANG II through AT1 may influence food and/or water ingestion after food deprivation. Male Wistar and Sprague-Dawley male rats were used and all procedures have been approved by ethics committees in experimental animal use, respectively: Queen’s University 2017-1735 and FMRP-USP 229/18. SFO neurons that responded to ANG II may be found in different phenotype populations of glucosensing, either non-glucosensitive (43%), glucoexcited (52%) or glucoinhibited (71%). Cultures of SFO cells grown at different glucose concentrations for 1, 6 or 24h did not change expression of AT1 receptors. Nevertheless, electrophysiological studies, shows that approximately 31% (n=4/13) of tested SFO neurons didn’t responded to ANG II at 5mM glucose medium but depolarized to ANG II at 10mM. It suggests that metabolic state of the organism may change the way the central nervous system respond to ANG II. Food deprivation lead to and increased plasmatic concentration of ANG II and of mRNA for AT1a receptors at SFO. Treatment with losartan (an AT1 blocker) at low doses in drinking water, for 48h fasting attenuated the glycemic drop. After access to food was reestablished, there’s only a tendency of decrease of food ingestion at 60 min in the group treated with losartan. By that same one-hour period, this same group exhibited a significative reduction in water intake. Yet, after 12 hours of intracerebroventricular (i.c.v.) microinjections of losartan lead to food and water ingestion decrease in basal condition, while after a 48h fasting, only water ingestion was significantly decreased 12h after losartan i.c.v. Though we might conclude that SRA is activated in fasting conditions, followed to an increase in AT1 expression at SFO, which is related to water ingestion during feeding, as an important mechanism of maintenance of volume and osmolality of extracellular fluid during food ingestion.eng
dc.contributor.advisor1Mecawi, André de Souza
dc.contributor.advisor1ID103.378.127-48por
dc.contributor.referee2Almeida, Norrna Aparecida dos Santos
dc.contributor.referee3Olivares, Ernerson Lopes
dc.contributor.referee4Rorato, Rodrigo Cesar
dc.contributor.referee5Oliveira, Eduardo Rebelato L. de
dc.creator.ID130.896.557-57por
dc.creator.IDhttps://orcid.org/0000-0002-2976-6523por
dc.creator.Latteshttp://lattes.cnpq.br/1352708033248914por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Fisiológicaspor
dc.relation.referencesALIM, I. et al. Actions of adiponectin on the excitability of subfornical organ neurons are altered by food deprivation. Brain Research, v. 1330, p. 72–82, 2010. ALPONTI, R. F.; SILVEIRA, P. F. Neutral Aminopeptidase and Dipeptidyl Peptidase IV Activities in Plasma of Monosodium Glutamate Obese and Food-deprived Rats. Obesity, v. 18, n. 7, p. 1312–1317, 2009. ANSAR, S. et al. MAPK signaling pathway regulates cerebrovascular receptor expression in human cerebral arteries. BMC Neuroscience, v. 14, n. 1, p. 12, 23 dez. 2013. ANTUNES-RODRIGUES, J. Neuroendocrine Control of Body Fluid Metabolism. Physiological Reviews, v. 84, n. 1, p. 169–208, 2004. ATKINSON, A. B. et al. Angiotensin II and renal hypertension in dog, rat and man: effect of converting enzyme inhibition. Clinical and experimental hypertension, v. 2, n. 3–4, p. 499– 524, 1980. BALI, A.; JAGGI, A. S. Angiotensin as stress mediator: Role of its receptor and interrelationships among other stress mediators and receptors. Pharmacological Research, v. 76, p. 49–57, out. 2013. BANKS, W. A.; OWEN, J. B.; ERICKSON, M. A. Insulin in the brain: There and back again. Pharmacology & Therapeutics, v. 136, n. 1, p. 82–93, out. 2012. BARTH, E. et al. Glucose metabolism and catecholamines. Critical Care Medicine, v. 35, n. Suppl, p. S508–S518, set. 2007. BARTH, S. W.; GERSTBERGER, R. Differential regulation of angiotensinogen and AT1A receptor mRNA within the rat subfornical organ during dehydration. Molecular Brain Research, v. 64, n. 2, p. 151–164, 5 fev. 1999. BASSO, N.; TERRAGNO, N. A. History About the Discovery of the Renin-Angiotensin System. Hypertension, v. 38, n. 6, p. 1246–1249, 25 dez. 2001. BATALLER, R. et al. Liver Fibrogenesis: A New Role for the Renin-Angiotensin System. Antioxidants & Redox Signaling, v. 7, n. 9–10, p. 1346–1355, set. 2005. BAUTISTA, R. et al. Angiotensin II-dependent increased expression of Na + -glucose cotransporter in hypertension. American Journal of Physiology-Renal Physiology, v. 286, n. 1, p. F127–F133, jan. 2004. BERESFORD, M.; FITZSIMONS, J. Intracerebroventricular angiotensin II-induced thirst and sodium appetite in rat are blocked by the AT1 receptor antagonist, Losartan (DuP 753), but not by the AT2 antagonist, CGP 42112B. Experimental Physiology, v. 77, n. 5, p. 761–764, 1 set. 1992. BONVENTRE, J. V. Phospholipase A2 and signal transduction. Journal of the American Society of Nephrology : JASN, v. 3, n. 2, p. 128–50, ago. 1992. BORGHI, C.; ROSSI, F. Role of the Renin-Angiotensin-Aldosterone System and Its Pharmacological Inhibitors in Cardiovascular Diseases: Complex and Critical Issues. High Blood Pressure & Cardiovascular Prevention, v. 22, n. 4, p. 429–444, 24 dez. 2015. BOTELHO, L. M. O. et al. Plasma angiotensin(1–7) immunoreactivity is increased by salt load, water deprivation, and hemorrhage. Peptides, v. 15, n. 4, p. 723–729, jan. 1994. BOUSTANY, C. M. et al. Activation of the systemic and adipose renin-angiotensin system in rats with diet-induced obesity and hypertension. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology, v. 287, n. 4, p. R943–R949, out. 2004. BRAUN-MENENDEZ, E.; PAGE, I. H. Suggested Revision of Nomenclature--Angiotensin. Science, v. 127, n. 3292, p. 242–242, 31 jan. 1958. BRINK, M. et al. Angiotensin II Induces Skeletal Muscle Wasting through Enhanced Protein Degradation and Down-Regulates Autocrine Insulin-Like Growth Factor I 1. Endocrinology, v. 142, n. 4, p. 1489–1496, abr. 2001. BRINK, M.; WELLEN, J.; DELAFONTAINE, P. Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism. Journal of Clinical Investigation, v. 97, n. 11, p. 2509–2516, 1 jun. 1996. BRIONES, A. M. et al. Adipocytes Produce Aldosterone Through Calcineurin-Dependent Signaling Pathways. Hypertension, v. 59, n. 5, p. 1069–1078, maio 2012. BURDAKOV, D.; LUCKMAN, S. M.; VERKHRATSKY, A. Glucose-sensing neurons of the hypothalamus. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, v. 360, n. 1464, p. 2227–35, 2005. CABANDUGAMA, P. K.; GARDNER, M. J.; SOWERS, J. R. The Renin Angiotensin Aldosterone System in Obesity and Hypertension. Medical Clinics of North America, v. 101, n. 1, p. 129–137, jan. 2017. CANCELLIERE, N. M.; FERGUSON, A. V. Subfornical organ neurons integrate cardiovascular and metabolic signals. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, v. 312, n. 2, p. R253–R262, 1 fev. 2017. CARPENTER, C. C. J.; DAVIS, J. O.; AYERS, C. R. Relation of Renin, Angiotensin II, and Experimental Renal Hypertension to Aldosterone Secretion. Journal of Clinical Investigation, v. 40, n. 11, p. 2026–2042, 1 nov. 1961. CARRETERO, O. A. et al. Role of the renin-angiotensin system in the pathogenesis of severe hypertension in rats. Circulation research, v. 29, n. 6, p. 654–63, dez. 1971. CASSIS, L. et al. Angiotensin II regulates oxygen consumption. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, v. 282, n. 2, p. R445– R453, fev. 2002. CASSIS, L. A. et al. Local adipose tissue renin-angiotensin system. Current Hypertension Reports, v. 10, n. 2, p. 93–98, 27 abr. 2008. CASSIS, L. A et al. Mechanisms contributing to angiotensin II regulation of body weight. The American journal of physiology, v. 274, n. 5 Pt 1, p. E867-76, maio 1998. CASTRO, M.; FIGUEIREDO, F.; MOREIRA, A. Time-Course of Hypothalamic CRH and Pituitary ACTH Contents, and Pituitary Responsiveness to CRH Stimulation After Bilateral Adrenalectomy. Hormone and Metabolic Research, v. 27, n. 01, p. 10–15, 23 jan. 1995. CHAMPMAN, B. J.; BOOKS, D. P.; MUNDAY, K. A. Half-Life of Angiotensin II in the Conscious and Barbiturate-Anaesthetizes Rat. British Journal of Anaesthesia, v. 52, n. 4, p. 389–393, abr. 1980. COBLE, J. P. et al. Mechanisms of brain renin angiotensin system-induced drinking and blood pressure: importance of the subfornical organ. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology, v. 308, n. 4, p. R238–R249, 15 fev. 2015. CODY, R. J. The Sympathetic Nervous System and the Renin–Angiotensin–Aldosterone System in Cardiovascular Disease. The American Journal of Cardiology, v. 80, n. 9, p. 9J- 14J, nov. 1997. COSTA-NETO, C. M. et al. Non-canonical signalling and roles of the vasoactive peptides angiotensins and kinins. Clinical Science, v. 126, n. 11, p. 753–774, 1 jun. 2014. DANEMAN, R.; PRAT, A. The Blood–Brain Barrier. Cold Spring Harbor Perspectives in Biology, v. 7, n. 1, p. a020412, 5 jan. 2015. DE KLOET, A. D. et al. The Effect of Angiotensin-Converting Enzyme Inhibition Using Captopril on Energy Balance and Glucose Homeostasis. Endocrinology, v. 150, n. 9, p. 4114–4123, set. 2009. DE KLOET, A. D. et al. Reporter mouse strain provides a novel look at angiotensin type-2 receptor distribution in the central nervous system. Brain Structure and Function, v. 221, n. 2, p. 891–912, 27 mar. 2016. DELLMANN, H. D.; SIMPSON, J. B. The Subfornical Organ. In: International Review of Cytology. [s.l: s.n.]. p. 333–421. DEMARCO, V. G.; AROOR, A. R.; SOWERS, J. R. The pathophysiology of hypertension in patients with obesity. Nature Reviews Endocrinology, v. 10, n. 6, p. 364–376, 15 abr. 2014. DIEZ-SAMPEDRO, A. et al. A glucose sensor hiding in a family of transporters. Proceedings of the National Academy of Sciences of the United States of America, v. 100, n. 20, p. 11753–8, 2003. DIZ, D. I.; BAER, P. G.; NASJLETTI, A. Angiotensin II-induced hypertension in the rat. Effects on the plasma concentration, renal excretion, and tissue release of prostaglandins. Journal of Clinical Investigation, v. 72, n. 2, p. 466–477, 1 ago. 1983. DOS-SANTOS, R. C. et al. Central angiotensin-(1–7) increases osmotic thirst. Experimental Physiology, v. 102, n. 11, 2017a. DOUGLAS, J. G. Angiotensin receptor subtypes of the kidney cortex. The American journal of physiology, v. 253, n. 1 Pt 2, p. F1-7, jul. 1987. ENGELI, S. et al. Co-expression of renin-angiotensin system genes in human adipose tissue. J Hypertens, v. 17, n. 4, p. 555–560, 1999. EPSTEIN, A. N.; FITZSIMONS, J. T.; ROLLS, B. J. Drinking induced by injection of angiotensin into the brain of the rat. The Journal of Physiology, v. 210, n. 2, p. 457–474, 1 set. 1970. FENG, Y.-H. et al. Unconventional Homologous Internalization of the Angiotensin II Type-1 Receptor Induced by G-Protein–Independent Signals. Hypertension, v. 46, n. 2, p. 419–425, ago. 2005. FERGUSON, A. V. Circumventricular Organs: Integrators of Circulating Signals Controlling Hydration, Energy Balance, and Immune Function. In: DE LUCA, L.A. JR; MENANI, J.V.; JOHNSON, A. K. (Ed.). . Neurobiology of Body Fluid Homeostasis: Transduction and Integration. 1. ed. Boca Raton (FL): CRC Press/Taylor & Francis, 2014. FERGUSON, A. V.; KASTING, N. W. Electrical stimulation in subfornical organ increases plasma vasopressin concentrations in the conscious rat. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology, v. 251, n. 2, p. R425–R428, ago. 1986. FERGUSON, S. S. G. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacological reviews, v. 53, n. 1, p. 1–24, mar. 2001. FERGUSON, A. V. Paraventricular nucleus neurons projecting to the dorsomedial medulla are influenced by systemic angiotensin. Brain Research Bulletin, v. 20, n. 2, p. 197–201, fev. 1988. FERGUSON, A. V.; BAINS, J. S. Actions of Angiotensin II in the Subfornical Organ and Area Postrema: Long Term Control of Autonomic Output. Clinical and Experimental Pharmacology and Physiology, v. 24, n. 1, p. 96–101, jan. 1997. FERGUSON, A. V.; KASTING, N. W. Activation of subfornical organ efferents stimulates oxytocin secretion in the rat. Regulatory Peptides, v. 18, n. 2, p. 93–100, ago. 1987. FERGUSON, A. V.; KASTING, N. W. Angiotensin acts at the subfornical organ to increase plasma oxytocin concentrations in the rat. Regulatory peptides, v. 23, n. 3, p. 343–52, dez. 1988. FERGUSON, A V; DAY, T. A; RENAUD, L. P. Subfornical organ stimulation excites paraventricular neurons projecting to dorsal medulla. The American journal of physiology, v. 247, n. 6 Pt 2, p. R1088-92, dez. 1984. FERGUSON, A V; RENAUD, L. P. Systemic angiotensin acts at subfornical organ to facilitate activity of neurohypophysial neurons. The American journal of physiology, v. 251, n. 4 Pt 2, p. R712-7, out. 1986. FERGUSON, A. V et al. Dissociated adult rat subfornical organ neurons maintain membrane properties and angiotensin responsiveness for up to 6 days. Neuroendocrinology, v. 66, n. 6, p. 409–15, dez. 1997. FINK, G. D.; BRUNER, C. A.; MANGIAPANE, M. L. Area postrema is critical for angiotensin-induced hypertension in rats. Hypertension, v. 9, n. 4, p. 355–361, abr. 1987. FITZSIMONS, J. T. The Eighth J. A. F. Stevenson Memorial Lecture Angiotensin II in the control of hypovolaemic thirst and sodium appetite. Canadian Journal of Physiology and Pharmacology, v. 58, n. 5, p. 441–444, maio 1980. FYHRQUIST, F. et al. Angiotensin II plasma levels in hypertensive patients. Acta medica Scandinavica, v. 192, n. 6, p. 507–11, dez. 1972. GIACCHETTI, G. et al. Angiotensin II and the adrenal. Clinical and experimental pharmacology & physiology. Supplement, v. 3, n. S3, p. S119-24, set. 1996. GRAUS-NUNES, F. et al. Differential effects of angiotensin receptor blockers on pancreatic islet remodelling and glucose homeostasis in diet-induced obese mice. Molecular and Cellular Endocrinology, v. 439, p. 54–64, jan. 2017. GRAUS-NUNES, F.; SOUZA-MELLO, V. The renin-angiotensin system as a target to solve the riddle of endocrine pancreas homeostasis. Biomedicine & Pharmacotherapy, v. 109, n. October 2018, p. 639–645, jan. 2019. GREENWOOD, M. P. et al. A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus. American journal of physiology. Regulatory, integrative and comparative physiology, v. 308, n. 7, p. R559–R568, 2015. GRONAN, R. J.; YORK, D. H. Effects of chronic intraventricular administration of angiotensin II on drinking behavior and blood pressure. Pharmacology Biochemistry and Behavior, v. 10, n. 1, p. 121–126, jan. 1979. HALL, J. E. et al. Obesity-Induced Hypertension: Interaction of Neurohumoral and Renal Mechanisms. Circulation Research, v. 116, n. 6, p. 991–1006, 2015. HARRISON-BERNARD, L. M. et al. Intrarenal AT 1 receptor and ACE binding in ANG IIinduced hypertensive rats. v. 2699, p. 19–25, 2018. HATTING, M. et al. Insulin regulation of gluconeogenesis. Annals of the New York Academy of Sciences, v. 1411, n. 1, p. 21–35, jan. 2018. HAYABUCHI, Y.; DAVIES, N. W.; STANDEN, N. B. Angiotensin II inhibits rat arterial KATP channels by inhibiting steady-state protein kinase A activity and activating protein kinase Ce. The Journal of physiology, v. 530, n. Pt 2, p. 193–205, 15 jan. 2001. HAYNES, W. G. et al. Receptor-mediated regional sympathetic nerve activation by leptin. Journal of Clinical Investigation, v. 100, n. 2, p. 270–278, 15 jul. 1997. HE, H. et al. Telmisartan Prevents Weight Gain and Obesity Through Activation of Peroxisome Proliferator-Activated Receptor-δ–Dependent Pathways. Hypertension, v. 55, n. 4, p. 869–879, abr. 2010. HINDMARCH, C. et al. Microarray analysis of the transcriptome of the subfornical organ in the rat: regulation by fluid and food deprivation. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology, v. 295, n. 6, p. R1914–R1920, dez. 2008. HOCHWALD, G. M.; MAGEE, J.; FERGUSON, V. Cerebrospinal Fluid Glucose: Turnover and Metabolism. Journal of Neurochemistry, v. 44, n. 6, p. 1832–1837, 1985. HOFER, H. Zur Morphologie der circumventrikulären Organe des Zwischenhirns der Säugetiere. Verhandl. Deut. Zool. Ges., v. 8, p. 202–251, 1958. IAN PHILLIPS, M.; SPEAKMAN, E. A.; KIMURA, B. Levels of angiotensin and molecular biology of the tissue renin angiotensin systems. Regulatory Peptides, v. 43, n. 1–2, p. 1–20, jan. 1993. ITO, S.; SVED, A. F. Blockade of angiotensin receptors in rat rostral ventrolateral medulla removes excitatory vasomotor tone. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, v. 270, n. 6, p. R1317–R1323, jun. 1996. JOHREN, O.; INAGAMI, T.; SAAVEDRA, J. M. AT1A, AT1B, and AT2 angiotensin II receptor subtype gene expression in rat brain. Neuroreport, v. 6, n. 18, p. 2549–52, 15 dez. 1995. KANNEL, W. B. et al. The relation of adiposity to blood pressure and development of hypertension. The Framingham study. Annals of internal medicine, v. 67, n. 1, p. 48–59, jul. 1967. KIKUMOTO, Y. et al. Sensitization to alloxan-induced diabetes and pancreatic cell apoptosis in acatalasemic mice. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, v. 1802, n. 2, p. 240–246, fev. 2010. KINTSCHER, U. et al. Irbesartan for the treatment of hypertension in patients with the metabolic syndrome: A sub analysis of the Treat to Target post authorization survey. Prospective observational, two armed study in 14,200 patients. Cardiovascular Diabetology, v. 6, n. 1, p. 12, 2007. KISS, A.; JEZOVA, D.; AGUILERA, G. Activity of the hypothalamic pituitary adrenal axis and sympathoadrenal system during food and water deprivation in the rat. Brain Research, v. 663, n. 1, p. 84–92, nov. 1994. KRALY, F. S. Physiology of drinking elicited by eating. Psychological Review, v. 91, n. 4, p. 478–490, 1984. KRALY, F. S. et al. Angiotensin AT1 and AT2 receptors contribute to drinking elicited by eating in rats. Physiology & behavior, v. 58, n. 6, p. 1099–109, dez. 1995. KRALY, F. S.; CORNEILSON, R. Angiotensin II mediates drinking elicited by eating in the rat. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, v. 258, n. 2, p. R436–R442, fev. 1990. KRAUSE, E. G. et al. Blood-Borne Angiotensin II Acts in the Brain to Influence Behavioral and Endocrine Responses to Psychogenic Stress. Journal of Neuroscience, v. 31, n. 42, p. 15009–15015, 19 out. 2011. KUBO, M.; QUAYLE, J. M.; STANDEN, N. B. Angiotensin II inhibition of ATP-sensitive K+ currents in rat arterial smooth muscle cells through protein kinase C. The Journal of physiology, v. 503 ( Pt 3, p. 489–96, 15 set. 1997. KUO, T. et al. Regulation of Glucose Homeostasis by Glucocorticoids. Adv Exp Med Biol, v. 872, p. 99–126, 2015. LANDSBERG, L. Insulin-mediated sympathetic stimulation: role in the pathogenesis of obesity-related hypertension (or, how insulin affects blood pressure, and why). Journal of Hypertension, v. 19, n. Supplement, p. 523–528, mar. 2001. LAVOIE, J. L.; SIGMUND, C. D. Minireview: Overview of the Renin-Angiotensin System—An Endocrine and Paracrine System. Endocrinology, v. 144, n. 6, p. 2179–2183, jun. 2003. LENKEI, Z. et al. Expression of Angiotensin Type-1 (AT1) and Type-2 (AT2) Receptor mRNAs in the Adult Rat Brain: A Functional Neuroanatomical Review. Frontiers in Neuroendocrinology, v. 18, n. 4, p. 383–439, out. 1997. LEPKOVSKY, S. et al. Gastrointestinal Regulation of Water and Its Effect on Food Intake and Rate of Digestion. American Journal of Physiology-Legacy Content, v. 188, n. 2, p. 327–331, 31 jan. 1957. LEUNG, P. S. The physiology of a local renin-angiotensin system in the pancreas. The Journal of Physiology, v. 580, n. 1, p. 31–37, 1 abr. 2007. LEUNG, P. S.; CHAPPELL, M. C. A local pancreatic renin-angiotensin system: endocrine and exocrine roles. The International Journal of Biochemistry & Cell Biology, v. 35, n. 6, p. 838–846, jun. 2003. LI, X.-M. et al. The role of leptin in central nervous system diseases. NeuroReport, v. 27, n. 5, p. 1, fev. 2016. LI, X. C.; CARRETERO, O. A.; ZHUO, J. L. Cross-talk between angiotensin II and glucagon receptor signaling mediates phosphorylation of mitogen-activated protein kinases ERK 1/2 in rat glomerular mesangial cells. Biochemical Pharmacology, v. 71, n. 12, p. 1711–1719, jun. 2006. LI, Z.; FERGUSON, A. V. Angiotensin II responsiveness of rat paraventricular and subfornical organ neurons in vitro. Neuroscience, v. 55, n. 1, p. 197–207, jul. 1993a. LI, Z.; FERGUSON, A. V. Subfornical organ efferents to paraventricular nucleus utilize angiotensin as a neurotransmitter. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, v. 265, n. 2, p. R302–R309, ago. 1993b. LIND, R. W.; VAN HOESEN, G. W.; JOHNSON, A. K. An HRP study of the connections of the subfornical organ of the rat. The Journal of Comparative Neurology, v. 210, n. 3, p. 265–277, 20 set. 1982. LIVAK, K. J.; SCHMITTGEN, T. D. Analysis of Relative Gene Expression Data Using Real- Time Quantitative PCR and the 2−ΔΔCT Method. Methods, v. 25, n. 4, p. 402–408, dez. 2001. LUPI, R. et al. The direct effects of the angiotensin-converting enzyme inhibitors, zofenoprilat and enalaprilat, on isolated human pancreatic islets. European Journal of Endocrinology, v. 154, n. 2, p. 355–361, fev. 2006. MACHADO, H. et al. Dissociation of antihypertensive and metabolic response to losartan and spironolactone in experimental rats with metabolic sindrome. Jornal Brasileiro de Nefrologia, v. 34, n. 4, p. 328–336, 2012. MANRIQUE, C. et al. The Renin Angiotensin Aldosterone System in Hypertension: Roles of Insulin Resistance and Oxidative Stress. Medical Clinics of North America, v. 93, n. 3, p. 569–582, maio 2009. MATSUSAKA, T.; ICHIKAWA, I. Biological Functions of Angiotensin and its Receptors. Annual Review of Physiology, v. 59, n. 1, p. 395–412, 30 out. 1997. MCFARLAND, D. J.; ROLLS, B. Suppression of Feeding by Intracranial Injections of Angiotensin. Nature, v. 236, n. 5343, p. 172–173, mar. 1972. MCKINLEY, M. J. et al. Physiological actions of angiotensin II mediated by AT1 and AT2 receptors in the brain. Clinical and experimental pharmacology & physiology. Supplement, v. 3, p. S99-104, 1996. MECAWI, A. DE S. et al. Neuroendocrine Regulation of Hydromineral Homeostasis. Comprehensive Physiology, v. 5, n. 3, p. 1465–516, 1 jul. 2015. MECAWI, A. S. et al. The Role of Angiotensin II on Sodium Appetite After a Low-Sodium Diet. Journal of Neuroendocrinology, v. 25, n. 3, p. 281–291, mar. 2013. MEDEIROS, N.; DAI, L.; FERGUSON, A. V. Glucose-responsive neurons in the subfornical organ of the rat-a novel site for direct CNS monitoring of circulating glucose. Neuroscience, v. 201, p. 157–165, 2012. MIALHE, B. K. C.; BRIAUD, B. Involvement of Vasopressin in Corticotropin-Releasing Effect of Hypothalamic Median Eminence Extract. v. 182, p. 178–182, 1980. MIESEL, A. et al. Double blockade of angiotensin II (AT1)-receptors and ACE does not improve weight gain and glucose homeostasis better than single-drug treatments in obese rats. British Journal of Pharmacology, v. 165, n. 8, p. 2721–2735, abr. 2012. MILDNER, M. et al. Glucagon increase after chronic AT1 blockade is more likely related to an indirect leptin-dependent than to a pancreatic α-cell-dependent mechanism. Naunyn- Schmiedeberg’s Archives of Pharmacology, v. 390, n. 5, p. 505–518, 31 maio 2017. MIMEE, A.; SMITH, P. M.; FERGUSON, A. V. Circumventricular organs: Targets for integration of circulating fluid and energy balance signals? Physiology & Behavior, v. 121, p. 96–102, set. 2013. MIYATA, S. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Frontiers in Neuroscience, v. 9, n. OCT, p. 1–15, 27 out. 2015. MOELLENHOFF, E. et al. Effect of repetitive icv injections of ANG II on c-Fos and AT 1 - receptor expression in the rat brain. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, v. 280, n. 4, p. R1095–R1104, abr. 2001. MÜLLER-FIELITZ, H. et al. Improved Insulin Sensitivity after Long-Term Treatment with AT 1 Blockers Is Not Associated with PPARγ Target Gene Regulation. Endocrinology, v. 153, n. 3, p. 1103–1115, mar. 2012. MÜLLER-FIELITZ, H. et al. Chronic blockade of angiotensin AT 1 receptors improves cardinal symptoms of metabolic syndrome in diet-induced obesity in rats. British Journal of Pharmacology, v. 171, n. 3, p. 746–760, fev. 2014. MÜLLER-FIELITZ, H. et al. Preventing leptin resistance by blocking angiotensin II AT 1 receptors in diet-induced obese rats. British Journal of Pharmacology, v. 172, n. 3, p. 857– 868, fev. 2015. MÜLLER, T. D. et al. The New Biology and Pharmacology of Glucagon. Physiological Reviews, v. 97, n. 2, p. 721–766, abr. 2017. MULLICK, A. E. et al. Blood Pressure Lowering and Safety Improvements With Liver Angiotensinogen Inhibition in Models of Hypertension and Kidney Injury. Hypertension, v. 70, n. 3, p. 566–576, set. 2017. MUTHALIF, M. M. et al. Angiotensin II-induced hypertension: contribution of Ras GTPase/Mitogen-activated protein kinase and cytochrome P450 metabolites. Hypertension (Dallas, Tex. : 1979), v. 36, n. 4, p. 604–9, out. 2000. NAKAMURA, K. et al. Angiotensin II acting on brain AT1 receptors induces adrenaline secretion and pressor responses in the rat. Scientific Reports, v. 4, n. 1, p. 7248, 28 maio 2015. NAKANO-TATENO, T. et al. Prolonged effects of intracerebroventricular angiotensin II on drinking, eating and locomotor behavior in mice. Regulatory Peptides, v. 173, n. 1–3, p. 86– 92, jan. 2012. O’MALLEY, D. et al. Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing. Diabetes, v. 55, n. 12, p. 3381–3386, 2006. OHINATA, K. et al. Angiotensin II and III suppress food intake via angiotensin AT 2 receptor and prostaglandin EP 4 receptor in mice. FEBS Letters, v. 582, n. 5, p. 773–777, 5 mar. 2008. ONO, K.; HONDA, E.; INENAGA, K. Angiotensin II induces inward currents in subfornical organ neurones of rats. Journal of neuroendocrinology, v. 13, n. 6, p. 517–23, jun. 2001. ÖSTLUND, G.; SONNHAMMER, E. L. L. Quality criteria for finding genes with high mRNA-protein expression correlation and coexpression correlation. Gene, v. 497, n. 2, p. 228–236, 2012. PALS, D. T. et al. Role of the pressor action of angiotensin II in experimental hypertension. Circulation research, v. 29, n. 6, p. 673–81, dez. 1971. PAXINOS, G.; WATSON, C. The rat brain in stereotaxic coordinates. 6th Ed ed. San Diego: [s.n.]. PERELLO, M.; STUART, R. C.; NILLNI, E. A. Differential effects of fasting and leptin on proopiomelanocortin peptides in the arcuate nucleus and in the nucleus of the solitary tract. American Journal of Physiology-Endocrinology and Metabolism, v. 292, n. 5, p. E1348– E1357, maio 2007. PETERSEN, M. C.; VATNER, D. F.; SHULMAN, G. I. Regulation of hepatic glucose metabolism in health and disease. Nature Reviews Endocrinology, v. 13, n. 10, p. 572–587, 21 out. 2017. PORCARI, C. Y. et al. Whole body sodium depletion modifies AT1 mRNA expression and serotonin content in the dorsal raphe nucleus. Journal of Neuroendocrinology, v. 31, n. 4, p. e12703, abr. 2019. PORTER, J. P. Chronic intracerebroventricular infusion of angiotensin II increases brain AT1 receptor expression in young rats. Developmental Brain Research, v. 112, n. 2, p. 293–295, fev. 1999. PORTER, J. P.; POTRATZ, K. R. Effect of intracerebroventricular angiotensin II on body weight and food intake in adult rats. American journal of physiology. Regulatory, integrative and comparative physiology, v. 287, n. 2, p. R422-8, ago. 2004. PREMARATNA, S. D. et al. Angiotensin-converting enzyme inhibition reverses diet-induced obesity, insulin resistance and inflammation in C57BL/6J mice. International Journal of Obesity, v. 36, n. 2, p. 233–243, 10 fev. 2012. PULMAN, K. J. The Subfornical Organ: A Central Target for Circulating Feeding Signals. Journal of Neuroscience, v. 26, n. 7, p. 2022–2030, 15 fev. 2006. RAUCH, M. et al. Electrophysiological and Immunocytochemical Evidence for a cGMPMediated Inhibition of Subfornical Organ Neurons by Nitric Oxide. The Journal of Neuroscience, v. 17, n. 1, p. 363–371, 1 jan. 1997. REGOLI, M. et al. Angiotensinogen localization and secretion in the rat pancreas. Journal of Endocrinology, v. 179, n. 1, p. 81–89, 1 out. 2003. REID, J. L. Review: Molecular-specific effects of angiotensin II antagonists: clinical relevance to treating hypertension? Journal of the Renin-Angiotensin-Aldosterone System, v. 6, n. 1, p. 15–24, 22 mar. 2005. RIEDIGER, T.; RAUCH, M.; SCHMID, H. A. Actions of amylin on subfornical organ neurons and on drinking behavior in rats. AJP: Regulatory, Integrative, & Comparative Physiology, v. 276, n. 2 Pt 2, p. R514-21, 1999. ROBERTSON, G. L. et al. Development and Clinical Application of a New Method for the Radioimmunoassay of Arginine Vasopressin in Human Plasma. Journal of Clinical Investigation, v. 52, n. 9, p. 2340–2352, 1 set. 1973. ROLLS, R. J.; MCFARLAND, D. J. Hydration releases inhibition of feeding produced by intracranial angiotensin. Physiology & behavior, v. 11, n. 6, p. 881–4, dez. 1973. ROSAS-ARELLANO, M. P.; SOLANO-FLORES, L. P.; CIRIELLO, J. Effect of arcuate nucleus activation on neuronal activity in subfornical organ. Brain Research, v. 619, n. 1–2, p. 352–356, ago. 1993. ROWLAND, N. E.; FREGLY, M. J. Brain angiotensin AT-2 receptor antagonism and water intake. Brain research bulletin, v. 32, n. 4, p. 391–4, 1993. RUBIN, B.; ANTONACCIO, M. J.; HOROVITZ, Z. P. Captopril (SQ 14,225) (d-3-mercapto- 2-methylpropanoyl-l-proline): A novel orally active inhibitor of angiotensin-converting enzyme and antihypertensive agent. Progress in Cardiovascular Diseases, v. 21, n. 3, p. 183–194, nov. 1978. SAGAE, S. C. et al. Prevention of metabolic disorders and reproductive performance deficits by the blockade of Angiotensin II AT1 receptor in female rats fed with cafeteria diet. Physiology & Behavior, v. 119, p. 1–8, jul. 2013. SAHR, A. et al. The Angiotensin-(1–7)/Mas Axis Improves Pancreatic β-Cell Function in Vitro and in Vivo. Endocrinology, v. 157, n. 12, p. 4677–4690, 1 dez. 2016. SANTOS, E. L. et al. Effect of angiotensin converting enzyme inhibitor enalapril on body weight and composition in young rats. International Immunopharmacology, v. 8, n. 2, p. 247–253, fev. 2008. SAPRU, H. N. Role of the hypothalamic arcuate nucleus in cardiovascular regulation. Autonomic Neuroscience, v. 175, n. 1–2, p. 38–50, abr. 2013. SCHEEPERS, A.; JOOST, H.-G.; SCHÜRMANN, A. The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. JPEN. Journal of parenteral and enteral nutrition, v. 28, n. 5, p. 364–371, 2015. SCHMID, H. A.; SIMON, E. Effect of angiotensin II and atrial natriuretic factor on neurons in the subfornical organ of ducks and rats in vitro. Brain Research, v. 588, n. 2, p. 324–328, ago. 1992. SCHUSTER, F. et al. Telmisartan prevents diet-induced obesity and preserves leptin transport across the blood-brain barrier in high-fat diet-fed mice. Pflügers Archiv - European Journal of Physiology, v. 470, n. 11, p. 1673–1689, 5 nov. 2018. SCHÜTTEN, M. T. J. et al. The Link Between Adipose Tissue Renin-Angiotensin- Aldosterone System Signaling and Obesity-Associated Hypertension. Physiology, v. 32, n. 3, p. 197–209, maio 2017. SCHWEDA, F. Salt feedback on the renin-angiotensin-aldosterone system. Pflügers Archiv - European Journal of Physiology, v. 467, n. 3, p. 565–576, 13 mar. 2015. SHARIEH HOSSEINI, S. G.; KHATAMSAZ, S.; SHARIATI, M. The effects of losartan on memory performance and leptin resistance induced by obesity and high-fat diet in adult male rats. Iranian journal of basic medical sciences, v. 17, n. 1, p. 41–8, jan. 2014. SICA, D. A.; GEHR, T. W. B.; GHOSH, S. Clinical Pharmacokinetics of Losartan. Clinical Pharmacokinetics, v. 44, n. 8, p. 797–814, 2005. SIMPSON, J. B.; EPSTEIN, A. N.; CAMARDO, J. S. Localization of receptors for the dipsogenic action of angiotensin II in the subfornical organ of rats. Journal of Comparative and Physiological Psychology, v. 92, n. 4, p. 581–608, 1978. SIMPSON, J. B.; ROUTTENBERG, A. Subfornical organ: site of drinking elicitation by angiotensin II. Science (New York, N.Y.), v. 181, n. 4105, p. 1172–5, 21 set. 1973. SIMPSON, N. J.; FERGUSON, A. V. Tumor necrosis factor-α potentiates the effects of angiotensin II on subfornical organ neurons. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, v. 315, n. 3, p. R425–R433, set. 2018. SIMPSON, N. J.; FERGUSON, A. V. The pro-inflammatory cytokine tumor necrosis factor alpha excites subfornical organ neurons. Journal of neurophysiology, p. jn.00238.2017, 21 jun. 2017. SMITH, P. M. et al. The subfornical organ: a central nervous system site for actions of circulating leptin. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, v. 296, n. 3, p. R512–R520, mar. 2009. SMITH, P. M. et al. AT1 receptor blockade alters nutritional and biometric development in obesity-resistant and obesity-prone rats submitted to a high fat diet. Frontiers in psychology, v. 5, n. July, p. 832, 2014. SMITH, P. M.; BENINGER, R. J.; FERGUSON, A. V. Subfornical organ stimulation elicits drinking. Brain research bulletin, v. 38, n. 3, p. 209–13, 1995. SMITH, P. M.; ROZANSKI, G.; FERGUSON, A. V. Physiology & Behavior Acute electrical stimulation of the subfornical organ induces feeding in satiated rats. Physiology & Behavior, v. 99, n. 4, p. 534–537, 2010. SMULYAN, H.; VILLARREAL, D. The Birth of Angiotensin: An International Compromise. The American Journal of the Medical Sciences, v. 357, n. 3, p. 179–183, mar. 2019. SPARKS, M. A. et al. Classical Renin-Angiotensin System in Kidney Physiology. In: Comprehensive Physiology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. v. 4p. 1201–1228. SUMITOMO, T. et al. Angiotensin II Increases the Corticotropin-Releasing Factor Messenger Ribonucleic Acid Level in the Rat Hypothalamus*. Endocrinology, v. 128, n. 5, p. 2248–2252, maio 1991. TABÁK, A. G. et al. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet (London, England), v. 373, n. 9682, p. 2215–21, 2009. TAKAYAMA, K. et al. Expression of c-Fos protein in the brain after intravenous injection of ghrelin in rats. Neuroscience Letters, v. 417, n. 3, p. 292–296, maio 2007. TAKIMOTO-OHNISHI, E.; MURAKAMI, K. Renin–angiotensin system research: from molecules to the whole body. The Journal of Physiological Sciences, v. 69, n. 4, p. 581–587, 26 jul. 2019. TAN, W. S. D. et al. Targeting the renin–angiotensin system as novel therapeutic strategy for pulmonary diseases. Current Opinion in Pharmacology, v. 40, p. 9–17, jun. 2018. THRASHER, T. N.; SIMPSON, J. B.; RAMSAY, D. J. Lesions of the Subf ornical Organ Block Angiotensin-Induced Drinking in the Dog. Neuroendocrinology, v. 35, n. 1, p. 68–72, 1982. TIKELLIS, C. et al. Improved Islet Morphology after Blockade of the Renin- Angiotensin System in the ZDF Rat. Diabetes, v. 53, n. 4, p. 989–997, 1 abr. 2004. TOBLLI, J. E. et al. ACE Inhibition and AT1 Receptor Blockade Prevent Fatty Liver and Fibrosis in Obese Zucker Rats. Obesity, v. 16, n. 4, p. 770–776, 24 abr. 2008. TONEY, G. M.; PORTER, J. P. Effects of blockade of AT1 and AT2 receptors in brain on the central angiotensin II pressor response in conscious spontaneously hypertensive rats. Neuropharmacology, v. 32, n. 6, p. 581–9, jun. 1993. TOUYZ, R. M.; BERRY, C. Recent advances in angiotensin II signaling. Brazilian Journal of Medical and Biological Research, v. 35, n. 9, p. 1001–1015, set. 2002. USHIO-FUKAI, M. et al. Temporal Dispersion of Activation of Phospholipase C-β1 and -γ Isoforms by Angiotensin II in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, v. 273, n. 31, p. 19772–19777, 31 jul. 1998. VAN DEN TOP, M. et al. The impact of ageing, fasting and high-fat diet on central and peripheral glucose tolerance and glucose-sensing neural networks in the arcuate nucleus. Journal of Neuroendocrinology, v. 29, n. 10, p. e12528, out. 2017. VAN DIJK, G. et al. The lateral hypothalamus: A site for integration of nutrient and fluid balance. Behavioural Brain Research, v. 221, n. 2, p. 481–487, ago. 2011. VIEIRA, E.; LIU, Y.; GYLFE, E. Involvement of alpha1 and beta-adrenoceptors in adrenaline stimulation of the glucagon-secreting mouse alpha-cell. Naunyn-Schmiedeberg’s Archives of Pharmacology, v. 369, n. 2, p. 179–183, 1 fev. 2004. WANG, R. et al. The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes, v. 53, n. 8, p. 1959–1965, 2004. WEBER, M. A. Comparison of type 1 angiotensin II receptor blockers and angiotensin converting enzyme inhibitors in the treatment of hypertension. Journal of hypertension. Supplement : official journal of the International Society of Hypertension, v. 15, n. 6, p. S31-6, dez. 1997. WEISINGER, H. S. et al. Angiotensin converting enzyme inhibition from birth reduces body weight and body fat in Sprague-Dawley rats. Physiology and Behavior, v. 93, n. 4–5, p. 820– 825, 2008. WEISINGER, R. S. et al. Role of brain angiotensin in thirst and sodium appetite of rats. Peptides, v. 18, n. 7, p. 977–84, 1997. WEISINGER, R. S. et al. Angiotensin converting enzyme inhibition lowers body weight and improves glucose tolerance in C57BL/6J mice maintained on a high fat diet. Physiology & Behavior, v. 98, n. 1–2, p. 192–197, ago. 2009. WEISINGER, R. S.; BEGG, D. P.; JOIS, M. Antagonists of the renin-angiotensin system and the prevention of obesity 165. Curr.Opin.Investig.Drugs, v. 10, n. 2040- 3429 (Electronic), p. 1069–1077, 2009. XIAO, F. et al. Orexin A regulates cardiovascular responses in stress-induced hypertensive rats. Neuropharmacology, v. 67, p. 16–24, 2013. XU, Z.; XINGHONG, J. Drinking and Fos-immunoreactivity in rat brain induced by local injection of angiotensin I into the subfornical organ. Brain research, v. 817, n. 1–2, p. 67–74, 30 jan. 1999. YADAWA, A. K.; CHATURVEDI, C. M. Expression of stress hormones AVP and CRH in the hypothalamus of Mus musculus following water and food deprivation. General and Comparative Endocrinology, v. 239, p. 13–20, dez. 2016. YEH, L. F.; BAKER, S. P.; KATOVICH, M. J. Possible mechanism for increased betaadrenergic dipsogenic response in food-deprived rats. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology, v. 251, n. 6, p. R1170–R1176, dez. 1986. YOSHIDA, H. et al. Effects of Angiotensin II on Isolated Rabbit Afferent Arterioles. The Japanese Journal of Pharmacology, v. 66, n. 4, p. 457–464, 1994. YOSHIDA, T. et al. Angiotensin II Reduces Food Intake by Altering Orexigenic Neuropeptide Expression in the Mouse Hypothalamus. Endocrinology, v. 153, n. 3, p. 1411– 1420, mar. 2012. YOSTEN, G.; SAMSON, W. Separating Thirst from Hunger. In: DE LUCA, L. J.; MENANI, J.; JOHNSON, A. K. (Eds.). . Neurobiology of Body Fluid Homeostasis: Transduction and Integration. 1. ed. Boca Raton (FL): CRC Press/Taylor & Francis, 2014. p. 67–74. YU, A. S. et al. Functional expression of SGLTs in rat brain. American journal of physiology. Cell physiology, v. 299, n. September 2010, p. C1277–C1284, dez. 2010. YVAN-CHARVET, L. et al. Prevention of Adipose Tissue Depletion during Food Deprivation in Angiotensin Type 2 Receptor-Deficient Mice. Endocrinology, v. 147, n. 11, p. 5078–5086, nov. 2006. ZIMMERMAN, C. A. et al. Thirst neurons anticipate the homeostatic. Nature Publishing Group, v. 537, n. 7622, p. 680–684, 2016.por
dc.subject.cnpqFisiologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/68889/2019%20-%20Bruno%20Paes%20Leme%20Ferreira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5549
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-04-13T17:31:01Z No. of bitstreams: 1 2019 - Bruno Paes Leme Ferreira.pdf: 1777827 bytes, checksum: 8feb92b35a08849d5f5f4085f6d30310 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-04-13T17:31:01Z (GMT). No. of bitstreams: 1 2019 - Bruno Paes Leme Ferreira.pdf: 1777827 bytes, checksum: 8feb92b35a08849d5f5f4085f6d30310 (MD5) Previous issue date: 2019-07-30eng
Appears in Collections:Doutorado em Ciências Fisiológicas

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Bruno Paes Leme Ferreira.pdf1.74 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.