Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/9989
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ramos, Elizabeth Teixeira de Almeida | |
dc.date.accessioned | 2023-12-21T18:55:50Z | - |
dc.date.available | 2023-12-21T18:55:50Z | - |
dc.date.issued | 2018-09-27 | |
dc.identifier.citation | RAMOS, Elizabeth Teixeira de Almeida. Potencial biotecnológico da bacteriocina gluconacina recombinante de Gluconacetobacter diazotrophicus, estirpe pal5, sobre microrganismos de importância agrícola para as culturas de cana-de-açúcar e tomate. 2018. 80 f.. Tese( Doutorado em Fitotecnia) - Instituto de Agronomia - Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2018. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/9989 | - |
dc.description.abstract | Gluconacina é uma bacteriocina produzida pela bactéria diazotrófica Gluconacetobacter diazotrophicus, estirpe PAL5. O presente estudo teve como objetivo estabelecer as melhores condições para produção heteróloga e purificação desse peptídeo antimicrobiano, e avaliar seu espectro de ação sobre fitopatógenos e bactérias benéficas de importância para as culturas de cana-de-açúcar e tomate. Foram realizadas avaliações in vitro para elucidar o mecanismo de ação dessa bacteriocina, além de verificar sua estabilidade frente à alterações físicas e químicas. O potencial biotecnológico da gluconacina foi testado in vivo em plantas de tomate na proteção contra Xanthomonas perforans, agente causal da mancha bacteriana. Os resultados demonstraram que a gluconacina recombinante foi expressa e purificada de forma satisfatória. Este agente antimicrobiano demonstrou amplo espectro de atuação, inibindo o crescimento de todos os fitopatógenos bacterianos avaliados. Em adição, a gluconacina também demonstrou antagonismo contra algumas estirpes benéficas pertencentes a espécies de Bacillus e outras estirpes de G. diazotrophicus. Células do fitopatógeno X. albilineans (microrganismo modelo) tratadas com a bacteriocina apresentaram perda de fosfato inorgânico e compostos absorventes de UV. As análises de microscopia de varredura demonstraram que as células foram totalmente lisadas após o tratamento, sugerindo que a bacteriocina gluconacina altera a integridade da membrana e aumenta sua permeabilidade, resultando em completa lise celular. Os resultados de caracterização físico-química indicaram estabilidade da atividade antibacteriana em altas temperaturas e pH’s ácidos, enquanto foi observada redução dessa atividade após o tratamento com algumas proteases e surfactantes. As avaliações em casa de vegetação demonstraram significativa redução dos sintomas da mancha bacteriana em plantas tratadas com o peptídeo antimicrobiano, sugerindo grande potencial biotecnológico. | por |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | peptídeo antimicrobiano | por |
dc.subject | controle biológico | por |
dc.subject | atividade antibacteriana | por |
dc.subject | antimicrobial peptide | eng |
dc.subject | biological control | eng |
dc.subject | antibacterial activity | eng |
dc.title | Potencial biotecnológico da bacteriocina gluconacina recombinante de Gluconacetobacter diazotrophicus, estirpe pal5, sobre microrganismos de importância agrícola para as culturas de cana-de-açúcar e tomate | por |
dc.title.alternative | ... | eng |
dc.type | Tese | por |
dc.description.abstractOther | Gluconacin is a bacteriocin produced by the diazotrophic bacterium Gluconacetobacter diazotrophicus strain PAL5. The present study aimed to establish the best conditions for heterologous production and purification of this antimicrobial peptide and to evaluate its spectrum on phytopathogens and beneficial bacteria of importance for sugarcane and tomato crops. In vitro evaluations were performed to elucidate the mechanism of action of this bacteriocin, as well as to verify its stability against physical and chemical changes. The biotechnological potential of gluconacin was tested in vivo in tomato plants the protection against Xanthomonas perforans, causal agent of the bacterial spot. The results demonstrated that recombinant gluconacin was expressed and purified satisfactorily. This antimicrobial agent demonstrated a broad spectrum of action, inhibiting growth of all bacterial phytopathogens evaluated. In addition, gluconacin has also shown antagonism against some beneficial strains belonging to species of Bacillus and other strains of G. diazotrophicus. Phytopathogen Xanthomonas albilineans cells (model microorganism) treated with bacteriocin showed loss of inorganic phosphate and UV absorbing compounds. Scanning microscopy analyzes demonstrated that the cells were fully lysed after treatment, suggesting that bacteriocin gluconacin alters the integrity of the membrane and increases its permeability, resulting in complete cell lysis. The physico-chemical characterization results indicated stability of the antibacterial activity at high temperatures and acid pH's, while a reduction of this activity was observed after treatment with some proteases and surfactants. Greenhouse evaluations showed a significant reduction of bacterial spot symptoms in plants treated with the antimicrobial peptide, suggesting a great biotechnological potential | eng |
dc.contributor.advisor1 | Baldani, José Ivo | |
dc.contributor.advisor1ID | 538.864.458-87 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/8391182235603982 | por |
dc.contributor.advisor-co1 | Vidal, Márcia Soares | |
dc.contributor.advisor-co1ID | 026.210.947-67 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/3036544314910366 | por |
dc.contributor.referee1 | Baldani, José Ivo | |
dc.contributor.referee2 | Carmo, Margarida Goréte Ferreira do | |
dc.contributor.referee3 | Salles, Cristiane Martins Cardoso de | |
dc.contributor.referee4 | Schwab, Stefan | |
dc.contributor.referee5 | Soares, Luis Henrique de Barros | |
dc.creator.ID | 126.750.817-52 | por |
dc.creator.Lattes | http://lattes.cnpq.br/0766365766337555 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Agronomia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Fitotecnia | por |
dc.relation.references | ABEE, T.; KLAENHAMMER, T. R.; LETELLIER, L. Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Applied and Environmental Microbiology, v. 60, n. 3, p. 1006-1013, 1994. AGRIOS, G. N. Introduction to plant pathology. Elsevier Academic Press Publication, 2005. AHMAD, V. et al. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. International journal of antimicrobial agents, v. 49, n. 1, p. 1-11, 2017. ALI, B.; SABRI, A. N.; HASNAIN, S. Rhizobacterial potential to alter auxin content and growth of Vigna radiata (L.). World Journal of Microbiology and Biotechnology, v. 26, n. 8, p. 1379-1384, 2010. ALMEIDA, I.M.G. Doenças causadas por bactérias. Cana-de-açúcar. Instituto Agronômico de Campinas, Campinas, p 882p., 2008. ALMEIDA,I.M.G. Bacterial diseases of sugarcane in Brazil. In: RAO, G.P.et al. (Eds.).Current trends in sugarcane pathology. Delhi: International Books & Periodicals Supply Service, p.73-84, 1994. AMES, B. N. [10] Assay of inorganic phosphate, total phosphate and phosphatases. In: Methods in enzymology. Academic Press, p. 115-118, 1966. ARENCIBIA, A. D. et al. Gluconoacetobacter diazotrophicus elicitate a sugarcane defense response against a pathogenic bacteria Xanthomonas albilineans. Plant signaling & behavior, v. 1, n. 5, p. 265-273, 2006. ARNAU, J. et al. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein expression and purification, v. 48, n. 1, p. 1-13, 2006. BAE, J. Y. et al. Biocontrol potential of a lytic bacteriophage PE204 against bacterial wilt of tomato. Journal Microbiol Biotechnology, v. 22, p. 1613-1620, 2012. BAI, Y.; SOULEIMANOV, A.; SMITH, D. L. An inducible activator produced by a Serratia proteamaculans strain and its soybean growth‐promoting activity under greenhouse conditions. Journal of experimental botany, v. 53, n. 373, p. 1495-1502, 2002. BAI, Y.; ZHOU, X.; SMITH, D. L. Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop science, v. 43, n. 5, p. 1774-1781, 2003. BALBI-PEÑA, M. I. et al. Controle de Alternaria solani em tomateiro por extratos de Curcuma longa e curcumina-II. Avaliação in vivo. Fitopatologia Brasileira, v. 31, n. 4, p. 401-404, 2006. 65 BALCIUNAS, E. M. et al. Novel biotechnological applications of bacteriocins: a review. Food Control, v. 32, n. 1, p. 134-142, 2013. BALDANI, J. I.; BALDANI, V. L. D. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. Anais da Academia Brasileira de Ciências, v. 77, n. 3, p. 549-579, 2005. BANSAL, R. K. et al. Management of Meloidogyne incognita in cotton, using strains of the bacterium Gluconacetobacter diazotrophicus. Nematologia Mediterranea, v. 33, n. 1, 2005. BASHIRI, S.; VIKSTRÖM, D.; ISMAIL, N. Optimization of protein expression in Escherichia coli. BioPharm International, v. 28, n. 5, 2015. BASTIÁN, F. et al. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant growth regulation, v. 24, n. 1, p. 7-11, 1998. BEHLAU, F. et al. Evidence for acquisition of copper resistance genes from different sources in citrus-associated xanthomonads. Phytopathology, v. 103, n. 5, p. 409-418, 2013. BELCHIOR, D. C. V. et al. Impactos de agrotóxicos sobre o meio ambiente e a saúde humana. Cadernos de Ciência & Tecnologia, v. 34, n. 1, p. 135-151, 2017. BENEDUZI, A.; AMBROSINI, A.; PASSAGLIA, L. M. P. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetics and molecular biology, v. 35, n. 4, p. 1044-1051, 2012. BERIĆ, T. et al. Antimicrobial activity of Bacillus sp. natural isolates and their potential use in the biocontrol of phytopathogenic bacteria. Food Technology and Biotechnology, v. 50, n. 1, p. 25-31, 2012. BERTALAN, M. et al. Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC genomics, v. 10, n. 1, p. 450, 2009. BENITEZ, L. B. et al. Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. The Journal of Microbiology, v. 48, n. 6, p. 791-797, 2010. BEZERRA, M. Eficiência de Gluconacetobacter diazotrophicus no aumento de solutos osmoprotetores em arroz vermelho sob deficiência hídrica. Monografia. Paraíba: Universidade Estadual da Paraíba, 2014, 33p. BHATTACHARYYA, P. N.; JHA, Dhruva K. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, v. 28, n. 4, p. 1327-1350, 2012. BIZANI, D.; BRANDELLI, A. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8 A. Journal of Applied Microbiology, v. 93, n. 3, p. 512-519, 2002. 66 BLANCARD, D. Tomato diseases: identification, biology and control: A Colour Handbook. CRC Press, 2012. BLANCO, Y. et al. Antagonism of Gluconacetobacter diazotrophicus (a sugarcane endosymbiont) against Xanthomonas albilineans (pathogen) studied in alginate-immobilized sugarcane stalk tissues. Journal of bioscience and bioengineering, v. 99, n. 4, p. 366-371, 2005. BLANCO, Y.; LEGAZ, M.; VICENTE, C. Gluconacetobacter diazotrophicus, a sugarcane endophyte, inhibits xanthan production by sugarcane-invading Xanthomonas albilineans. Journal of Plant Interactions, v. 5, n. 4, p. 241-248, 2010. BLOCK, H. et al. Immobilized-metal affinity chromatography (IMAC): a review. In: Methods in enzymology. Academic Press, 2009. p. 439-473. BRESOLIN, I. T. L. et al. Cromatografia de afinidade por íons metálicos imobilizados (IMAC) de biomoléculas: aspectos fundamentais e aplicações tecnológicas. Química Nova, 2009. BURGESS, R. R. [12] Purification of overproduced Escherichia coli RNA polymerase σ factors by solubilizing inclusion bodies and refolding from Sarkosyl. In: Methods in enzymology. Academic Press, 1996. p. 145-149. BURGESS, R. R. Refolding solubilized inclusion body proteins. In: Methods in enzymology. Academic Press, 2009. p. 259-282. BUTTIMER, C. et al. Bacteriophages and bacterial plant diseases. Frontiers in microbiology, v. 8, p. 34, 2017. CABALLERO-MELLADO, J. et al. Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant group. Applied and Environmental Microbiology, v. 61, n. 8, p. 3008-3013, 1995. CARVALHO, K. G. et al. Characterization of multiple antilisterial peptides produced by sakacin P-producing Lactobacillus sakei subsp. sakei 2a. Archives of microbiology, p. 1-10, 2018. CAVALCANTE, V. A.; DOBEREINER, J. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant and soil, v. 108, n. 1, p. 23-31, 1988. CHAGA, G. S. Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J. Biochem. Biophys. Methods, v. 49, p. 313-334, 2001. CHAMPOISEAU, P.; ROTT, P.; DAUGROIS, J.-H. Epiphytic populations of Xanthomonas albilineans and subsequent sugarcane stalk infection are linked to rainfall in Guadeloupe. Plant disease, v. 93, n. 4, p. 339-346, 2009. CHEAVEGATTI-GIANOTTO, A. et al. Sugarcane (Saccharum X officinarum): a reference study for the regulation of genetically modified cultivars in Brazil. Tropical plant biology, v. 4, n. 1, p. 62-89, 2011. 67 CHEN, H. et al. Cloning, expression, and identification of a novel class IIa bacteriocin in the Escherichia coli cell-free protein expression system. Biotechnology letters, v. 34, n. 2, p. 359-364, 2012. CHEUNG, R. C. F.; WONG, J. H.; NG, T. B.. Immobilized metal ion affinity chromatography: a review on its applications. Applied microbiology and biotechnology, v. 96, n. 6, p. 1411-1420, 2012. CHIKINDAS, M. L. et al. Functions and emerging applications of bacteriocins. Current opinion in biotechnology, v. 49, p. 23-28, 2018. CHISNALL, B. et al. Insoluble protein purification with sarkosyl: facts and precautions. In: Structural Genomics. Humana Press, Totowa, NJ, 2014. p. 179-186. CHOWDHURY, S. P. et al. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Frontiers in microbiology, v. 6, p. 780, 2015. CONAB. Acompanhamento da safra brasileira. Cana-de-açúcar. 2018. Disponível em: https://www.conab.gov.br/info-agro/safras/cana. COOKSEY, D. A.; MOORE, L. W. Biological Control of Crown Gall With an Agrocin Mutant of Agrobacterium radiobacter. Phytopathology, v. 72, n. 7, p. 919-921, 1982. DEL CARMEN OROZCO-MOSQUEDA, M. et al. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiological research, 2018. DENNIS, C.; WEBSTER, J. Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Transactions of the British Mycological Society, v. 57, n. 1, p. 25-IN3, 1971. DINARDO-MIRANDA, L. L. Pragas. In: DINARDO-MIRANDA, L. L.: VASCONCELOS, A. C. M.; LANDELL, M. G. A. Cana-de-açúcar. Campinas: Instituto Agronômico, 2010. p.349-404. DRECHSEL, M. M. Antibiose de Gluconacetobacter diazotrophicus contra bactérias diazotróficas e fitopatogênicas de cana-de-açúcar e caracterização molecular de genes envolvidos na sintese de substancias antagônicas. Tese. Seropédica: Universidade Federal Rural do Rio de Janeiro., 2011. DU, H. et al. Purification, Characterization, and Mode of Action of Plantaricin GZ1-27, a Novel Bacteriocin against Bacillus cereus. Journal of agricultural and food chemistry, v. 66, n. 18, p. 4716-4724, 2018. DUPUY, B. et al. Transcription activation of a UV‐inducible Clostridium perfringens bacteriocin gene by a novel σ factor. Molecular microbiology, v. 55, n. 4, p. 1196-1206, 2005. DURAIRAJ, K. et al. An investigation of biocontrol activity Pseudomonas and Bacillus strains against Panax ginseng root rot fungal phytopathogens. Biological Control, 2018. 68 ELJOUNAIDI, K.; LEE, S. K.; BAE, H. Bacterial endophytes as potential biocontrol agents of vascular wilt diseases–review and future prospects. Biological Control, v. 103, p. 62-68, 2016. ESKIN, N.; VESSEY, K.; TIAN, L. Research progress and perspectives of nitrogen fixing bacterium, Gluconacetobacter diazotrophicus, in monocot plants. International journal of agronomy, v. 2014, 2014. ETO, S. F. Produção de anticorpos IGY anti-Photobacterium damselae subsp. piscicida uso terapêutico e profilático em Rachycentron canadum. Tese. Jaboticabal: Universidade Estadual Paulista. 2015, 84p. FAO. Disponível em: http://www.fao.org/faostat/en/#data. Acesso em: 15/05/2018. FARHANGNIA, L. et al. Cloning, expression, and purification of recombinant Lysostaphin from Staphylococcus simulans. Jundishapur journal of microbiology, v. 7, n. 5, 2014. FEGAN, M.; PRIOR, P. How complex is the Ralstonia solanacearum species complex. APS press, 2005. FERNANDEZ, M. et al. Effect of a Pseudomonas fluorescens tailocin against phytopathogenic Xanthomonas observed by atomic force microscopy. Journal of biotechnology, v. 256, p. 13-20, 2017. FIELD, D. et al. Bacteriocin biosynthesis, structure, and function. Research and Applications in Bacteriocins, p. 5-43, 2007. FILGUEIRA, F. A. R. Novo Manual de Olericultura – Agrotecnologia moderna na produção e comercialização de hortaliças.3ª ed. Revista e ampliada.Viçosa, MG. UFV. 421p. 2008. FILGUEIRAS, L. M. B. Eficiência de Gluconacetobacter diazotrophicus no aumento da tolerância de arroz vermelho à deficiência hídrica durante a fase reprodutiva.. Dissertação. Campina Grade: Universidade Estadual da Paraíba, 125f . 2015. FISHER, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature, v. 484, n. 7393, p. 186, 2012. FLOOD, J.. The importance of plant health to food security. Food Security, v. 2, n. 3, p. 215-231, 2010. FONTANA, P. D. et al. Isolation and genetic characterization of Acidovorax avenae from red stripe infected sugarcane in Northwestern Argentina. European journal of plant pathology, v. 137, n. 3, p. 525-534, 2013. FONTOURA, R. et al. Purification and characterization of an antimicrobial peptide produced by Pseudomonas sp. strain 4B. World journal of Microbiology and Biotechnology, v. 25, n. 2, p. 205, 2009. 69 FUENTES-RAMIREZ, L.E et al. Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant and Soil, v. 154, n. 2, p. 145-150, 1993. GE, HEALTHCARE.Recombinant Protein Purification Principles and Methods, GE Healthcare Bio-Science AB, Sweden, 2012 GE, J. et al. Purification and partial characterization of a novel bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese sauerkraut juice. Scientific reports, v. 6, p. 19366, 2016. GHEQUIRE, M. G.K. et al. A natural chimeric Pseudomonas bacteriocin with novel pore-forming activity parasitizes the ferrichrome transporter. MBio, v. 8, n. 1, p. e01961-16, 2017. GIGLIOTI, E.A.; M., S. False red stripe. In: ROTT, P.; BAILEY, R.A.; COMSTOCK, J.C.; CROFT, B.J. A guide to sugarcane diseases. Montpellier: Cirad Publications Service, 2000. p.27-31 GILLIS, M. et al. Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. International journal of systematic and evolutionary microbiology, v. 39, n. 3, p. 361-364, 1989. GONG, H. S.; MENG, X. C.; WANG, H. Plantaricin MG active against Gram-negative bacteria produced by Lactobacillus plantarum KLDS1. 0391 isolated from “Jiaoke”, a traditional fermented cream from China. Food control, v. 21, n. 1, p. 89-96, 2010. GOPAL, J.; KUMAR, A. Strategies for the production of recombinant protein in Escherichia coli. The protein journal, v. 32, n. 6, p. 419-425, 2013. GOTO, M. Fundamental of bacterial plant pathology. San Diego: Academic, 1992, 342p. GRÄSLUND, S. et al. Protein production and purification. Nature methods, v. 5, n. 2, p. 135, 2008. GRAY, E. J. et al. A novel bacteriocin, thuricin 17, produced by PGPR strain Bacillus thuringiensis NEB17: isolation and classification. Journal Applied Microbiology, v. 100, p. 545-554, 2006. GRINTER, R.; MILNER, J.; WALKER, D. Bacteriocins active against plant pathogenic bacteria.Biochemical Society Transactions. V. 40, p.1498 1501, 2012. GUPTA, S. K.; SHUKLA, P. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Critical reviews in biotechnology, v. 36, n. 6, p. 1089-1098, 2016. GURURANI, M. A. et al. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. Journal of Plant Growth Regulation, v. 32, n. 2, p. 245-258, 2013. 70 HAGEL, L.; JAGSCHIES, G.; SOFER, G.. Handbook of process chromatography. The Netherlands: Academic Press, 2008. HAMMAMI, I.; TRIKI, M. A.; REBAI, A. Purification and characterization of the novel bacteriocin BAC IH7 with antifungal and antibacterial properties. Journal of Plant Pathology, p. 443-454, 2011. HANSEN, S. K. et al. A label‐free methodology for selective protein quantification by means of absorption measurements. Biotechnology and bioengineering, v. 108, n. 11, p. 2661-2669, 2011. HAO-XIN, L. V. et al. Screen and Preliminary Identification of Lactic acid bacteria to Produce Broad-Spectrum Bacteriocin. Journal of Anhui Agricultural Sciences, v. 12, p. 115, 2013. HAYWARD, A. C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology, v. 29, p. 65-87, 1991. HAYWARD AC. The hosts of Xanthomonas .In Xanthomonas, ed. JG Swings, EL Civerolo, pp. 1–119.London, United Kingdom: Chapman & Hall, 1993. HEATLEY, N. G. A method for the assay of penicillin. Biochemical Journal, v. 38, n. 1, p. 61, 1944. HIRANO, S. S.; UPPER, Christen D. Bacteria in the Leaf Ecosystem with Emphasis on Pseudomonas syringae - a Pathogen, Ice Nucleus, and Epiphyte. Microbiology and molecular biology reviews, v. 64, n. 3, p. 624-653, 2000. HOUSSIEN, A. A.; AHMED, S. M.; ISMAIL, A. A. Activation of tomato plant defense response against Fusarium wilt disease using Trichoderma harzianum and salicylic acid under greenhouse conditions. Research Journal Agriculture Biological Sciense, v. 6, n. 3, p. 328-338, 2010. HUANG, C. et al. Effect of application frequency and reduced rates of acibenzolar-S-methyl on the field efficacy of induced resistance against bacterial spot on tomato. Plant Disease, v. 96, n. 2, p. 221-227, 2012. IBGE. Estatística da produção agrícola. Disponível em: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=72415. Acesso em: 05/09/18 JABEEN, N. et al. Bio-physicochemical characterization and applied studies of Carotovoricin na5 (crna5) on blb affected rice plants. Pakistan Journal Botany, v. 46, n. 6, p. 2249-2256, 2014. JACQUES, M. et al. Using ecology, physiology, and genomics to understand host specificity in Xanthomonas. Annual review of phytopathology, v. 54, p. 163-187, 2016. 71 JIMENEZ-SALGADO T., et al. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen fixing acetobacteria. Applied Enviromental Microbiology 63:3676–3683, 1997 JIANG, H.; LI, P.; GU, Q. Heterologous expression and purification of plantaricin NC8, a two-peptide bacteriocin against salmonella spp. from Lactobacillus plantarum ZJ316. Protein expression and purification, v. 127, p. 28-34, 2016. JIANG, H. et al. Plantaricin NC8 from Lactobacillus plantarum causes cell membrane disruption to Micrococcus luteus without targeting lipid II. Applied microbiology and biotechnology, p. 1-9, 2018. KAMENŠEK, S. et al. Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogenous expression. BMC microbiology, v. 10, n. 1, p. 283, 2010. KAMILOVA, F. et al. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environmental Microbiology, v. 7, n. 11, p. 1809-1817, 2005. KANG, T.; KIM, W. Characterization of an amylase-sensitive bacteriocin DF01 produced by Lactobacillus brevis DF01 isolated from dongchimi, Korean fermented vegetable. Korean Journal for Food Science of Animal Resources, v. 30, n. 5, p. 795-803, 2010. KAYALVIZHI, N.; RAMESHKUMAR, N.; GUNASEKARAN, P. Cloning and characterization of mersacidin like bacteriocin from Bacillus licheniformis MKU3 in Escherichia coli. Journal of food science and technology, v. 53, n. 5, p. 2298-2306, 2016. KÉKESSY D. A.; PIGUET. J. D. New method for detecting bacteriocin production. Applied Microbiology , v. 20, p.282-283, 1970. KELMAN, A.; JENSEN, J. H. Maintaining virulence in isolates of Pseudomonas solanacearum. Phytopathology, v. 41, n. 2, p. 185-187, 1951. KELMAN, A.; SEQUEIRA, L. Root-to-root spread of Pseudomonas solanacearum. Phytopathology, v. 55, p. 304-309, 1965. KRAM, K. E.; FINKEL, S. E. Rich Media Composition Affects Survival, Glycation, and Mutation Frequency of Escherichia coli During Long-Term Batch Culture. Applied and Environmental Microbiology, p. AEM. 00722-15, 2015. KRAUSE, M. et al. A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures. Microbial Cell Factories, v. 9, n. 1, p. 11, 2010. KUDOU, M. et al. Refolding single-chain antibody (scFv) using lauroyl-L-glutamate as a solubilization detergent and arginine as a refolding additive. Protein expression and purification, v. 77, n. 1, p. 68-74, 2011. 72 KYEREMEH, A.G., T. et al. Biological control of soft rot of Chinese Cabbage using single and mixed treatments of bacteriocin-producing avirulent mutants of Erwinia carotovora subsp. carotovora. J. Gen. Plant Pathology., 66(3): 264-268, 2000. LAEMMLI, U. Most commonly used discontinuous buffer system for SDS electrophoresis. Nature, v. 227, p. 680-686, 1970. LANNA FILHO, R.; ROMEIRO, R. da S.; ALVES, E. Bacterial spot and early blight biocontrol by epiphytic bacteria in tomato plants. Pesquisa Agropecuária Brasileira, v. 45, n. 12, p. 1381-1387, 2010. LANDELL, M.G. A.; SILVA, M. A. As estratégias de seleção da cana em desenvolvimento no Brasil. Visão Agrícola, v. 1, n. 1, p. 18-23, 2004. LECLÈRE, V. et al. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organisms antagonistic and biocontrol activities. Applied and environmental microbiology, v. 71, n. 8, p. 4577-4584, 2005. LIAO, H. et al. Analysis of Escherichia coli cell damage induced by HPCD using microscopies and fluorescent staining. International journal of food microbiology, v. 144, n. 1, p. 169-176, 2010. LIU, G. et al. Purification and characteristics of bifidocin A, a novel bacteriocin produced by Bifidobacterium animals BB04 from centenarians' intestine. Food control, v. 50, p. 889-895, 2015. LOGANATHAN P., et al. Isolation and characterization of two genetically distant groups of Acetobacter diazotrophicus from a new host plant Eleusine coracana L. Journal Applied Microbiology v.87:167–172, 1999. LOGESHWARN, P.; THANGARAJU, M.; RAJASUNDARI , K. Antagonistic potential of Gluconacetobacter diazotrophicus against Fusarium oxysporum in sweet potato (Ipomea batatus). Archives of Phytopathology and Plant Protection, Vol. 44, No. 3, February 2011, 216–223 LOPES, C. A. Murcha bacteriana ou murchadeira: uma inimiga do tomateiro em climas quentes. Embrapa Hortaliças-Comunicado Técnico (INFOTECA-E), 2009. LOPES, C A.; ÁVILA, A. C. Doenças do tomateiro. Embrapa Hortaliças-Livro técnico (INFOTECA-E), 1994. LOPES, C. A.; REIS, A. Doenças do tomateiro cultivado em ambiente protegido. Embrapa Hortaliças-Circular Técnica (INFOTECA-E), 2007. LOPES, C. A.; ROSSATO, M. Diagnóstico de Ralstonia solanacearum em tomateiro. Embrapa Hortaliças-Comunicado Técnico (INFOTECA-E), 2013. LOPES, C.A; QUEZADO-DUVAL, M.A. Doenças bacterianas. In: LOPES CA; ÁVILA AC (ed). Doenças do tomateiro. Brasília: Embrapa-CNPH/Embrapa Hortaliças. p. 62-64, 2005. 73 LOPES, C. A.; QUEZADO-SOARES, A. M. Doenças causadas por bactérias em tomate. Controle de doenças de plantas: hortaliças, 2000. LÓPEZ-CUELLAR, M. R.; RODRÍGUEZ-HERNÁNDEZ, A.; CHAVARRÍA-HERNÁNDEZ, N. LAB bacteriocin applications in the last decade. Biotechnology & Biotechnological Equipment, v. 30, n. 6, p. 1039-1050, 2016. MADHAIYAN, M. et al. Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India. Microbiological research, v. 159, n. 3, p. 233-243, 2004. MAKSIMOV, I. V.; ABIZGIL’DINA, R. R.; PUSENKOVA, L. I. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Applied Biochemistry and Microbiology, v. 47, n. 4, p. 333-345, 2011. MALHOTRA, A. “Tagging for protein expression,” Methods in Enzymology, vol. 463, pp. 239–258, 2009. MARTÍNEZ-VIVEROS, O. et al. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of soil science and plant nutrition, v. 10, n. 3, p. 293-319, 2010. MATSUOKA, S. Identificação de Doenças da Cana-de-Açúcar e Medidas de Controle. SANTOS, F.; BORÉM, A. Cana-de-açúcar: do plantio à colheita, p. 89-115, 2013 MATSUOKA, S.; MACCHERONI, W. Manejo de doenças. In: SANTOS, F.; BORÉM, A.; CALDAS, C. Cana-de-açúcar: Bioenergia, açúcar e etanol – Tecnologias e Perspectivas. Ed. UFV. 2012 MCAULIFFE, O.; ROSS, R. P.; HILL, C. Lantibiotics: structure, biosynthesis and mode of action. FEMS microbiology reviews, v. 25, n. 3, p. 285-308, 2001. MILOJEVIC, T. et al. False positive RNA binding activities after Ni-affinity purification from Escherichia coli. RNA biology, v.10, 2013. MONTVILLE, T. J.; BRUNO, M. E. C. Evidence that dissipation of proton motive force is a common mechanism of action for bacteriocins and other antimicrobial proteins. International journal of food microbiology, v. 24, n. 1-2, p. 53-74, 1994. MOULOUD, G. et al. New bacteriocin from Bacillus clausii strain GM17: purification, characterization, and biological activity. Applied biochemistry and biotechnology, v. 171, n. 8, p. 2186-2200, 2013. MOUSSA, M.; PERRIER-CORNET, J; GERVAIS, P. Damage in Escherichia coli cells treated with a combination of high hydrostatic pressure and subzero temperature. Applied and environmental microbiology, v. 73, n. 20, p. 6508-6518, 2007. MUÑOZ-ROJAS, J.; FUENTES-RAMÍREZ, L. E.; CABALLERO-MELLADO, J. Antagonism among Gluconacetobacter diazotrophicus strains in culture media and in endophytic association. FEMS Microbiology Ecology, v. 54, n. 1, p. 57-66, 2005. 74 MOZAMBANI, A. E. et al. História e morfologia da cana-de-açúcar. Atualização em produção de cana-de-açúcar. Piracicaba, v. 1, n. 11-18, 2006. MURTHY, K, N. et al. Characterization of bacteriocin from lactic acid bacteria and its antibacterial activity against Ralstonia solanacearum causing tomato wilt. Plant Science Archives, v. 1, n. 1, p. 44-58, 2016. MUTHUKUMARASAMY, R. et al. Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Current Science, p. 137-145, 2002. MUTHUKUMARASAMY, R.; REVATHI, G.; VADIVELU, M. Antagonistic potential of N2-fixing Acetobacter diazotrophicus against Colletotrichum falcatum Went., a causal organism of red-rot of sugarcane. Current Science, v. 78, n. 9, p. 1063-1065, 2000. NAIR, A. et al. Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against Alternaria alternata. Plant Biology, v. 17, n. 3, p. 625-631, 2015. NAKANO, M. M.; ZHENG, G.; ZUBER, P. Dual control of sbo-alb operon expression by the Spo0 and ResDE systems of signal transduction under anaerobic conditions in Bacillus subtilis. Journal of bacteriology, v. 182, n. 11, p. 3274-3277, 2000. NARASIMHA MURTHY, K. et al. Characterization of bacteriocin from lactic acid bacteria and its antibacterial activity against Ralstonia solanacearum causing tomato wilt. Plant Science Archives, v. 1, n. 1, p. 44-58, 2016. NASHWA, S. M. A et al. Evaluation of various plant extracts against the early blight disease of tomato plants under greenhouse and field conditions. Plant Protection Science, v. 48, n. 2, p. 74-79, 2012. NAZ, S. A. et al. Biophysicochemical characterization of Pyocin SA189 produced by Pseudomonas aeruginosa SA189. Brazilian Journal of Microbiology, v. 46, n. 4, p. 1147-1154, 2015. NEERAJA, C. et al. Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Critical reviews in biotechnology, v. 30, n. 3, p. 231-241, 2010. NIETO-PEÑALVER, C. G. et al. Gluconic acid produced by Gluconacetobacter diazotrophicus Pal5 possesses antimicrobial properties. Research in microbiology, v. 165, n. 7, p. 549-558, 2014. OERKE E-C. Crop losses to pests. The Journal of Agricultural Science 144: 31–43, 2006. OKUDA, K. et al. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrobial agents and chemotherapy, p. AAC. 00888-13, 2013. 75 OLIVARES, F. L. et al. Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biology and Fertility of Soils, v. 21, n. 3, p. 197-200, 1996. OLIVEIRA, T. F. et al. Concentração Mínima Inibitória (CMI) de antibióticos para oito estirpes de bactérias diazotróficas da Coleção de Culturas da Embrapa Agrobiologia. Embrapa Agrobiologia. Boletim de Pesquisa e Desenvolvimento, 2009. OLIVEIRA, M. M. Atividade antimicrobiana da bacteriocina tipo Linocina M18 de Gluconacetobacter diazotrophicus estirpe PAL5 contra Xanthomonas albilineans. Dissertação. Rio de Janeiro: Universidade Federal do Rio de Janeiro, 73 f., 2013. OLIVEIRA, M. M. et al. Gluconacin from Gluconacetobacter diazotrophicus PAL 5 is an active bacteriocin against phytopathogenic and beneficial sugarcane bacteria. Journal of applied microbiology, 2018. O’SULLIVAN, L.; ROSS, R. P.; HILL, C. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie, v. 84, n. 5-6, p. 593-604, 2002. OVERTON, T. W. et al. Microarray analysis of gene regulation by oxygen, nitrate, nitrite, FNR, NarL and NarP during anaerobic growth of Escherichia coli: new insights into microbial physiology. 2006. PAL, G.; SRIVASTAVA, S. Scaling up the production of recombinant antimicrobial plantaricin E from a heterologous host, Escherichia coli. Probiotics and antimicrobial proteins, v. 7, n. 3, p. 216-221, 2015. PARET, M. L. et al. Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology, v. 103, n. 3, p. 228-236, 2013. PATIL N. B et al. Optimization of indole 3-acetic acid (IAA) production by Acetobacter diazotrophicus L1 isolated from sugarcane. International Journal Environmental Sciense.;2:295-302, 2011. PERALTA, I. E.; SPOONER, D. M. History, origin and early cultivation of tomato (Solanaceae). Genetic improvement of solanaceous crops, v. 2, p. 1-27, 2007. PERIN, L.; BALDANI, J. I.; REIS, V. M. Diversidade de Gluconacetobacter diazotrophicus isolada de plantas de cana-de-açúcar cultivadas no Brasil. Pesquisa Agropecuária Brasileira, v. 39, n. 8, p. 763-770, 2004. PIÑÓN, D et al. Gluconacetobacter diazotrophicus, a sugar cane endosymbiont, produces a bacteriocin against Xanthomonas albilineans, a sugar cane pathogen. Research in Microbiology, v. 153, n. 6, p. 345-351, 2002. 76 PINSACH, J. et al. Influence of process temperature on recombinant enzyme activity in Escherichia coli fed-batch cultures. Enzyme and Microbial Technology, v. 43, n. 7, p. 507-512, 2008. POKUSAEVA, K. et al. Novel bacteriocins produced by Geobacillus stearothermophilus. Open Life Sciences, v. 4, n. 2, p. 196-203, 2009. POTNIS, N. et al. Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Molecular plant pathology, v. 16, n. 9, p. 907-920, 2015. PRÍNCIPE, A. et al. Effectiveness of tailocins produced by Pseudomonas fluorescens SF4c in controlling the bacterial-spot disease in tomatoes caused by Xanthomonas vesicatoria. Microbiological research, v. 212, p. 94-102, 2018. PRUDENT, M. et al. Soybean is less impacted by water stress using Bradyrhizobium japonicum and thuricin-17 from Bacillus thuringiensis. Agronomy for Sustainable Development, v. 35, n. 2, p. 749-757, 2015. PYE, M. F. et al. Induced resistance in tomato by SAR activators during predisposing salinity stress. Frontiers in plant science, v. 4, p. 116, 2013. QUEZADO-DUVAL, A. M.; LOPES, C. A. Mancha-bacteriana: uma atualização para o sistema de produção integrada de tomate indústria. Embrapa Hortaliças-Circular Técnica (INFOTECA-E), 2010. REIS, V. M. et al. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. International Journal of Systematic and Evolutionar y Microbiology , v. 54, p. 2155-2162, 2004. RICHARD, Christelle et al. Heterologous expression and purification of active divercin V41, a class IIa bacteriocin encoded by a synthetic gene in Escherichia coli. Journal of bacteriology, v. 186, n. 13, p. 4276-4284, 2004. ROCHA, F. Y. O. et al. Taxonomical and functional characterization of Bacillus strains isolated from tomato plants and their biocontrol activity against races 1, 2 and 3 of Fusarium oxysporum f. sp. lycopersici. Applied soil ecology, v. 120, p. 8-19, 2017. ROJAS, M. M. et al. Relationships between nitrogen fixation and auxins production in Gluconacetobacter diazotrophicus strains from different crops. Revista Colombiana de Biotecnología, v. 11, n. 1, p. 84-93, 2009. SACHDEV, D. et al. Assessment of microbial biota associated with rhizosphere of wheat (Triticum aestivum) during flowering stage and their plant growth promoting traits. International Journal Microbiology, v. 10, 2008. SAHARAN, B. S.; NEHRA, V. Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res, v. 21, n. 1, p. 30, 2011. 77 SAHDEV, S.; KHATTAR, S. K.; SAINI, K. S. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Molecular and cellular biochemistry, v. 307, n. 1-2, p. 249-264, 2008. SALLES, J. F. et al. Use of endophytic diazotrophic bacteria as a vector to express the cry3A gene from Bacillus thuringiensis. Brazilian Journal of Microbiology, v. 31, n. 3, p. 154-160, 2000. SALMON, K. et al. Global gene expression profiling in Escherichia coli K12: the effects of oxygen availability and FNR. Journal of Biological Chemistry, 2003. SANGUINO, A. As principais doenças da cana-de-açúcar. In: Curso à Distância Tópicos Da Cultura de Cana-De-Açúcar. Instituto Agronômico, 2012. SASHIHARA, T. et al. A novel lantibiotic, nukacin ISK-1, of Staphylococcus warneri ISK-1: cloning of the structural gene and identification of the structure. Bioscience, biotechnology, and biochemistry, v. 64, n. 11, p. 2420-2428, 2000. SAUMTALLY, A. S.; DOOKUN-SAUMTALLY. In: RAO, G. P. Sugarcane Pathology, Vol. 3: Bacterial and Nematode Diseases. CRC Press, 2004. SCARPARI, M. S.; BEAUCLAIR, E. G. F. de. Anatomia e botânica. In: DINARDO-MIRANDA, L. L.; VASCONCELOS, A. C. M. de; LANDELL, M. G. de A. (Ed.). Cana-de-açúcar. Campinas: Instituto Agronômico, 2010.882p. SEGATO, S.V.; PINTO, A. de S.; JENDIROBA, E.; NÓBREGA, J.C.M. de. Atualização em produção em cana-de-açúcar. Piracicaba: Livroceres, 2006. 415p SHEHANE, S. D.; SIZEMORE, R. K. Isolation and preliminary characterization of bacteriocins produced by Vibrio vulnificus. Journal of applied microbiology, v. 92, n. 2, p. 322-328, 2002. SHANER, G.; FINNEY, R. E. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology, v. 67, n. 8, p. 1051-1056, 1977. SINGHA, T. K. et al. Efficient genetic approaches for improvement of plasmid based expression of recombinant protein in Escherichia coli: A review. Process Biochemistry, v. 55, p. 17-31, 2017. SIVASHANMUGAM, A. et al. Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Science, v. 18, n. 5, p. 936-948, 2009. SOARES, L. H. B. et al. Mitigação das emissões de gases efeito estufa pelo uso de etanol da cana-de-açúcar produzido no Brasil. Embrapa Agrobiologia-Circular Técnica (INFOTECA-E), 2009. SOUZA, L. T. et al. Reação de genótipos de tomateiro às raças 2 e 3 de Fusarium oxysporum f. sp. lycopersici. Horticultura Brasileira, v. 28, n. 1, 2010. 78 STRANGE, R. N.; SCOTT, P. R. Plant disease: a threat to global food security. Annual Reviews Phytopathology, v. 43, p. 83-116, 2005. SUBASHINI, M. et al. Recombinant Gluconacetobacter diazotrophicus containing cry1Ac gene codes for 130-kDa toxin protein. Journal of molecular microbiology and biotechnology, v. 20, n. 4, p. 236-242, 2011. SUBRAMANIAN, S. Mass spectrometry based proteome profiling to understand the effects of lipo-chito-oligosaccharide and thuricin 17 in Arabidopsis thaliana and Glycine max under salt stress. McGill University, Montreal, 2013. SUBRAMANIAN, S.; SMITH, Donald L. Bacteriocins from the rhizosphere microbiome–from an agriculture perspective. Frontiers in plant science, v. 6, p. 909, 2015. SUGAYAMA, R. L. et al. (Ed.). Defesa vegetal: fundamentos, ferramentas, políicas e perspectivas. SBDA, Sociedade Brasileira de Defesa Agropecuária, 2015. SURESH et al. Tomato disease – Field Guide. Ed. Seminis Vegetable Seeds, 2017. TANG, X. et al. Antimicrobial activity and preliminary mode of action of PlnEF expressed in Escherichia coli against Staphylococci. Protein expression and purification, v. 143, p. 28-33, 2018. TAO, H. et al. Purifying natively folded proteins from inclusion bodies using sarkosyl, Triton X-100, and CHAPS. Biotechniques, v. 48, n. 1, p. 61-64, 2010. TAPIA-HERNÁNDEZ, A. et al. Natural endophytic occurrence of Acetobacter diazotrophicus in pineapple plants. Microbial Ecology, v. 39, n. 1, p. 49-55, 2000. TONTOU, R. et al. Isolation of bacterial endophytes from Actinidia chinensis and preliminary studies on their possible use as antagonists against Pseudomonas syringae pv. actinidiae. Journal of Berry Research, v. 6, n. 4, p. 395-406, 2016. TYEDMERS, J.; MOGK, A.; BUKAU, B. Cellular strategies for controlling protein aggregation. Nature reviews Molecular cell biology, v. 11, n. 11, p. 777, 2010. UEDA, E. K. M.; GOUT, P. W.; MORGANTI, L. Current and prospective applications of metal ion–protein binding. Journal of chromatography A, v. 988, n. 1, p. 1-23, 2003. UKKONEN, K. Improvement of recombinant protein production in shaken cultures. Dissertation, University of Oulu. 2014 URQUIAGA, S. et al. Evidence from field nitrogen balance and 15 N natural abundance data for the contribution of biological N 2 fixation to Brazilian sugarcane varieties. Plant and soil, v. 356, n. 1-2, p. 5-21, 2012. VALDÉS-STAUBER, N,; SCHERER, S. Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Applied and environmental microbiology, v. 60, n. 10, p. 3809-3814, 1994. 79 VALIDOV, S. et al. Selection of bacteria able to control Fusarium oxysporum f. sp. radicis‐lycopersici in stonewool substrate. Journal of applied microbiology, v. 102, n. 2, p. 461-471, 2007. VAN LOON, L. C. Plant responses to plant growth-promoting rhizobacteria. In: New Perspectives and Approaches in Plant Growth-Promoting Rhizobacteria Research. Springer, Dordrecht, 2007. p. 243-254. VARGAS, L. et al. Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS One, v. 9, n. 12, p. e114744, 2014. VASALA, A. et al. A new wireless system for decentralised measurement of physiological parameters from shake flasks. Microbial cell factories, v. 5, n. 1, p. 8, 2006. VAUGHAN, A.; EIJSINK, V. GH; VAN SINDEREN, Douwe. Functional characterization of a composite bacteriocin locus from malt isolate Lactobacillus sakei 5. Applied and environmental microbiology, v. 69, n. 12, p. 7194-7203, 2003. VIDEIRA, S. S.; CRUZ, G. B. da; BALDANI, V. L. D. Gota d´água: método rápido para visualização de flagelos em bactérias. Seropédica: Embrapa Agrobiologia, 2003. 2 p. (Embrapa Agrobiologia. Comunicado Técnico, 62. VIGNOLO, G. M. et al. Influence of growth conditions on the production of lactocin 705, a bacteriocin produced by Lactobacillus casei CRL 705. Journal of Applied Bacteriology, v. 78, n. 1, p. 5-10, 1995. WINKOWSKI, K.; BRUNO, M. E.; MONTVILLE, Thomas J. Correlation of bioenergetic parameters with cell death in Listeria monocytogenes cells exposed to nisin. Applied and Environmental Microbiology, v. 60, n. 11, p. 4186-4188, 1994. WINSTEAD, N. N. Inoculation techniques for evluating resistance to Pseudomonas solanacearum. Phytopathology, v. 42, p. 623-634, 1952. WONG, Jon W.; ALBRIGHT, R. L.; WANG, N. L. Immobilized metal ion affinity chromatography (IMAC) chemistry and bioseparation applications. Separation and Purification Methods, v. 20, n. 1, p. 49-106, 1991. YI, L. et al. Purification and characterization of a novel bacteriocin produced by Lactobacillus crustorum MN047 isolated from koumiss from Xinjiang, China. Journal of dairy science, v. 99, n. 9, p. 7002-7015, 2016. YI, L.; LUO, L.; L., X. Heterologous expression of two novel bacteriocins produced by Lactobacillus crustorum MN047 and application of BM1157 in control of Listeria monocytogenes. Food Control, v. 86, p. 374-382, 2018. YIM, W. J. et al. Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. vesicatoria. Journal of plant physiology, v. 171, n. 12, p. 1064-1075, 2014. 80 YONEYAMA, F. et al. Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin, lacticin Q. Antimicrobial agents and chemotherapy, v. 53, n. 8, p. 3211-3217, 2009. ZHAO, S. et al. Purification and characterization of plantaricin JLA-9: a novel bacteriocin against Bacillus spp. produced by Lactobacillus plantarum JLA-9 from Suan-Tsai, a traditional Chinese fermented cabbage. Journal of agricultural and food chemistry, v. 64, n. 13, p. 2754-2764, 2016. ZHU, H. et al. Inhibition of Ralstonia solanacearum by AM fungus Glomus versiforme and their effect on phenols in root. Wei sheng wu xue tong bao, v. 31, n. 1, p. 1-5, 2004. | por |
dc.subject.cnpq | Agronomia | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/65309/2018%20-%20Elizabeth%20Teixeira%20de%20Almeida%20Ramos.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/4700 | |
dc.originais.provenance | Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-05-27T11:55:01Z No. of bitstreams: 1 2018 - Elizabeth Teixeira de Almeida Ramos.pdf: 3348904 bytes, checksum: 4d2882d0af7f3a837dbca740e865f714 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2021-05-27T11:55:02Z (GMT). No. of bitstreams: 1 2018 - Elizabeth Teixeira de Almeida Ramos.pdf: 3348904 bytes, checksum: 4d2882d0af7f3a837dbca740e865f714 (MD5) Previous issue date: 2018-09-27 | eng |
Appears in Collections: | Doutorado em Fitotecnia |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2018 - Elizabeth Teixeira de Almeida Ramos.pdf | Elizabeth Teixeira de Almeida Ramos | 3.27 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.