Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10907
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPereira, Joana de Novais
dc.date.accessioned2023-12-22T01:44:49Z-
dc.date.available2023-12-22T01:44:49Z-
dc.date.issued2015-02-02
dc.identifier.citationPEREIRA, Joana de Novais. Avaliação de diferentes linhagens de soja preta quanto as suas características físico-química, nutricionais e compostos bioativos. 2015. 73 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2015.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10907-
dc.description.abstractO grão de soja com tegumento preto (Glycine max (L.) Merrill) vem despertando interesse de consumidores e pesquisadores devido o seu consumo estar associado com benefícios à saúde humana, relacionados à presença de metabólitos secundários, isoflavonas e principalmente das antocianinas. A Embrapa dispõe de diferentes linhagens de soja preta que precisam ser avaliadas não somente em relação às suas características agronômicas, mas se são adequadas ao consumo humano. O presente trabalho teve como objetivo geral avaliar e comparar quatro diferentes linhagens de soja preta desenvolvidas pela Embrapa quanto à composição centesimal, fatores antinutricionais, teores de açúcares, perfil e teores de isoflavonas, antocianinas, aminoácidos, carotenoides, além da atividade antioxidante medida pelo método DPPH e ABTS. Em relação à composição centesimal, não foi observada diferença estatística entre os teores de proteína (41,15 a 41,69 g/100) e umidade (10,41 a 10,61 g/100g) nas quatro linhagens de soja, enquanto os valores de extrato etéreo (19,12 a 19,79 g/100g), cinzas (5,13 a 5,81 g/100g) e carboidratos (33,38 a 34,22 g/100g) variaram estatisticamente (p≤0,05). A BRM11-51400 foi a linhagem com o resultado mais expressivo para minerais, uma vez que apresentou o maior teor de potássio (2372,89 mg/100g), mineral mais abundante em todas as amostras avaliadas, fósforo (753,56 mg/100g), magnésio (255,32 mg/100g) e cálcio (257,82 mg/100). Foi também determinada a concentração de manganês, zinco, cobre, cobalto, selênio, alumínio e ferro em teores significativos (9,04 a 11,52 mg/100g). O maior teor de sacarose (6,46 g/100g) e de rafinose (1,56 g/100g) foi observado na BRM09-50901, enquanto a BRM11-51400 foi a linhagem com a maior concentração de estaquiose (5,24 g/100g). O fitato é um fator antinutricional presente em grão de soja, e foi detectado em teores que variaram de 11,91 a 14,88 mg/100g. Em relação aos compostos bioativos, a linhagem BRM09-50995, apresentou os teores mais elevados de antocianinas monoméricas totais, isoflavonas totais e carotenoides totais. Foram identificadas nas linhagens de soja três antocianinas monoméricas: a cianidina-3-O-glicosídeo, perfil majoritário em todas as amostras (262,27 a 720,45 mg/100g), a delfinidina-3-O-glicosídeo (184,41 a 316,72 mg/100g) e a petunidina-3-O-glicosídeo (6,34 a 153,06 mg/100g). Foram também identificadas as isoflavonas: daidzina, glicitina e a genistina em maiores concentrações, e suas respectivas formas agliconas, daidzeína, gliciteína e genisteína. Não foi observada diferença estatística entre os teores de isoflavonas totais nas linhagens BRM09-50995 (138,65 mg/100g) e BRM11-51400 (140,75 mg/100g), que apresentaram o maior teor deste composto. A maior capacidade antioxidante pelo método DPPH foi observada na linhagem BRM09-50995 (1072,92 g/g DPPH), enquanto a BRM11-51400 apresentou o resultado mais expressivo quando utilizado o método do radical ABTS. Embora a linhagem BRM09-50995 tenha apresentando os maiores teores de compostos bioativos, com base nos resultados obtidos nesse estudo, verificou-se que as quatro linhagens de soja são adequadas ao consumo humano.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectGlycine maxpor
dc.subjectcomposição centesimalpor
dc.subjectcompostos fenólicospor
dc.subjectatividade antioxidantepor
dc.subjectGlycine maxeng
dc.subjectchemical compositioneng
dc.subjectphenolic compoundseng
dc.subjectantioxidant activityeng
dc.titleAvaliação de diferentes linhagens de soja preta quanto as suas características físico-química, nutricionais e compostos bioativospor
dc.title.alternativeEvaluation of different lines of black soybeans as theirs physical and chemical characteristics, nutritional and bioactive compoundseng
dc.typeDissertaçãopor
dc.description.abstractOtherThe soybean with black coat (Glycine max (L.) Merrill) is attracting great interest to consumers and researchers because its consumption is associated with benefits to human health, in part associated with the presence of secondary metabolites, mainly isoflavones and anthocyanins. Embrapa has different strains of black soybeans that need to be assessed not only in relation to their agronomic characteristics, but also suitable for human consumption. Therefore, this study aimed to evaluate and compare four different strains of black soybean developed by Embrapa as the chemical composition, antinutritional factors, content and profile of isoflavones, anthocyanins, amino acids, carotenoids and antioxidant activity measured by DPPH method and ABTS. In respect to composition, there was no statistical difference (p> 0.05) between the protein (41.15 to 41.69 g/100) and moisture (from 10.41 to 10.61 g/100 g) in four soybean lines, while the ether extract values (19.12 to 19.79 g/100 g), carbohydrates (33.38 to 34.22 g / 100g) and ash (5.13 to 5.81 g / 100g ) varied statistically. The BRM11-51400 was the lineage with the most significant result for mineral as it showed the highest potassium content (2372.89 mg / 100g), most abundant mineral in all samples, phosphorus (753.56 mg / 100g ), magnesium (255.32 mg / 100 g) and calcium (257.82 mg / 100). It was also determined the concentration of manganese, zinc, copper, cobalt, selenium, iron and aluminum in significant amounts (9.04 to 11.52 mg / 100g). The higher sucrose content (6.46 g / 100 g) and raffinose (1.56g / 100g) was observed in BRM90-50901 while BRM11-51400 was the strain with the highest concentration of stachyose (5.24g /100g). Phytate varied from 11.91 to 14.88 mg / 100g, respectively. In relation to bioactive compounds, the BRM09-50995 lineage showed the highest levels of total monomeric anthocyanins, total isoflavones and carotenoids. In all three soybean linages monomeric anthocyanins were identified: cyanidin-3-O-glucoside, majority profile in all samples (262.27 to 720.45 mg / 100g), delphinidin-3-O-glucoside (184.41 to 316.72 mg / 100g) and petunidin-3-O-glucoside (6.34 to 153.06 mg / 100g). The isoflavones daidzein, glycitin, genistein were also identified at higher levels, and their aglycone forms, daidzein, glycitein and genistein. It was not found statistically significant difference between the total isoflavone content in BRM09-50995 linage (138.65 mg / 100 g) and BRM11-51400 (140.75 mg / 100 g), which had the highest content of this compound. The greater the DPPH antioxidant activity was observed in BRM09-50995 (1072.92 g / g DPPH), while BRM11-51400 showed the most significant results when used in the method of ABTS radical. Based on the results obtained in this study, it was found that the four soybean lineages are suitable for human consumption.eng
dc.contributor.advisor1Godoy, Ronoel Luiz de Oliveira
dc.contributor.advisor1ID507.802.047-00por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3671854931659782por
dc.contributor.advisor-co1Felberg, Ilana
dc.contributor.referee1Galdeano, Melicia Cintia
dc.contributor.referee2Carvalho, Carlos Wanderlei Piler de
dc.creator.ID121.994.117-45por
dc.creator.Latteshttp://lattes.cnpq.br/0282669959921778por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.referencesAACC. AMERICAN ASSOCIATION OF CEREAL CHEMISTS. Approved methodos of AACC. 9 ed. St. Paul: AACC, 1995. ALVES-RODRIGUES, A.; SHAO, A. The science behind lutein. Toxicology Letters, n. 150, p. 57-83, 2004. AL-WESALI, M.; LAMBERT, N.; WELHAM, T.; DOMONEY, C. The influence of pea seed trypsin inhibitors on the in vitro digestibility of casein. Journal of the Science of Food and Agriculture, v.68, p.431-437, 1995. ANDRADE-WARTHA, E. R. S. Propriedades antioxidants de clones do pedúnculo do caju (Anacardium occidentale L.): efeito sobre a lipoperoxidação e enzimas participantes do sistema antioxidante de defesa do organismo animal. Tese. Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2007. ANTOLOVICH, M.; PRENZLER, P. D.; PATSALIDES, E.; MACDONALD, S.; ROBARDS, K. Methods for testing antioxidant activity. Journal Royal Society Chemistry, v. 127, p. 183-198, 2002. AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists. 18th ed. (ed. W. HOROWITZ), Washington, DC. 2005. 1 CD-ROM. AOAC (ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTRY). Official methods of analysis. 19.ed. Gaithersburg, 3000p, 2012. ARMSTRONG, G. A. Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annual Review of Microbiology, v. 51, p. 629-659, 1997. BARBOSA, A. C. L.; HASSIMOTTO, N. M. A.; LAJOLO, F. M.; GENOVESE, M. I. Teores de isoflavonas e capacidade antioxidante da soja e produtos derivados. Ciência e Tecnologia de Alimentos, v. 26, p. 921-926, 2006. BARNES S.; PRASAIN J.; D'ALESSANDRO T.; WANG C.; ZHANG H.; KIM H. Soy Isoflavones. In: HEBER, D.; BLACKBURN G.L; GO V.L.W, MILNER. Journal Nutritional oncology, 2nd ed. St. Louis: Academic Press, p. 559-571, 2006. BIANCHI, M. L. P.; ANTUNES, L. M. G. Radicais livres e os principais antioxidantes da dieta. Revista de Nutrição, v. 12, p. 123-30, 1999. BIANCHI, M. L. P.; SILVA, H. C.; OLIVEIRA, J. E. D. Considerações sobre a biodisponibilidade do ferro dos alimentos. Archivos Latino-americanos de Nutricion, v. 42, n. 2, p. 94-100, 1992. 60 BLACK, R. J. Complexo soja: fundamentos, situação atual e perspectiva. In: CÂMARA , G. M. S. (Ed.). Soja: tecnologia de produção II. Piracicaba: ESALQ, p.1- 18, 2000. BLANCO, A.; BRESSANI, R. Biodisponibilidad de aminoácidos in el frijol (Plhaseolus vulgaris). Archivos Latinoamericano de Nutrición, v. 41, p. 38-51, 1991. BOHLAND, A. R.; GARNER, G. B.; O´DELL, B. L. Identification and properties of “phytate” in cereal and oilseed products, Journal of Agricultural and Food Chemistry, v. 23, p. 1186, 1975. BONETTI, L. P. Distribuição da soja no mundo: origem, história e distribuição. In : MIYASAKA, S.; MEDINA, J.C. (Ed.). A soja no Brasil. Campinas : ITAL, p. 1-6, 1981. BRASIL. AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA. Alimentos. Comissões e Grupos de Trabalho. Alimentos com Alegações de Propriedades Funcionais e ou de Saúde, Novos Alimentos/Ingredientes, Substâncias Bioativas e Probióticos. Atualizado em julho de 2008. IX -Lista das Alegações Aprovadas. Disponível em: http://www.anvisa.gov.br/alimentos/comissoes/tecno_lista_alega.htm>. Acesso em: 05 abr. 2012. BRITTON, G.; LIAAEN-JENSEN, S.; PFANDER, H. Carotenoids today and challenges for the future. In: Carotenoids: isolation and analysis. Switzerland: BIRKHAUSER, v. 1A, Capítulo. 2, p. 13-26, 1995. BROUILLARD, R. Anthocyanins as food colors; Markakis, P., ed.; Academic Press: New York, capítulo 1, 1982. BURBANO, C.; MUZQUIZ, M.; OSAGIE, A.; AYET, G.; CUADRADO, C. Determination of phytate and lower inositol phosphates in spanish legumes by HPLC methodology. Food Chemistry, v.52, p.321- 325, 1995. CACACE. J. E.; MAZZA, G. Optimization of extraction of Anthocyanins from Black Currants with Aqueous Ethanol. Journal of Food Science, v. 68, p. 240-248, 2003. CAO, G.; PRIOR, R. L. Measurement of oxygen radical absorbance capacity in biological samples. Methods in Enzymology, v. 299, p. 50-62, 1999. CARRÃO-PANIZZI, M. C.; BELÉIA, A. P.; KITAMURA, K.; OLIVEIRA, M. C. N. Effects of genetics and environment on isoflavone contente of soybean from diferente regions of Brazil. Pesquisa Agropecuária Brasileira, v. 34, p. 1787-1795, 1999. CARRATU, E.; SANZINI, E. Sostanze biologicamente attive presenti negli alimenti di origine vegetable. Annali dell'Istituto Superiore di Sanità, v. 41, p. 7-16, 2005. CARVALHO, N. M.; NAKAGAWA, J. Sementes: ciência, tecnologia e produção. 3 ed. Campinas: Fundação Cargill, p. 428, (2010). CASSIDY, A.; ALBERTAZZI, P.; NIELSEN, IL.; HALL, W.; WILLIAMSON, G.; TETENS, I.; ATKINS, S.; CROSS, H.; MANIOS, Y.; WOLK, A.; STEINER, C.; BARNCA, F. Critical review of health effects of soybean phytoestrogens in postmenopausal women. Proceedings of the Nutrition Society, v. 65, p. 76-92, 2006. 61 CASTAÑEDA-OVANDO, A.; PACHECO-HERNANDEZ, M. L.; PAEZ-HERNANDEZ, M. E.; RODRIGUEZ, J. A.; GALAN-VIDAL, C. A. Chemical studies of anthocyanins: A review. Food Chemistry, v. 133, p.859-871, 2009. CHO, K. M.; HA, T. J.; LEE, Y. B.; SEO, W. D.; KIM, J. Y.; RYU, H. W.; JEONG, S. H.; KANG, Y. M.; LEE, J. H. Soluble phenolics and antioxidante properties of soybean (Glycine mal L.) cultivars with varying seed coat colours. Journal of Functional Foods, v. 5, p. 1065-1076, 2013. CHO, S. J., JUILLERAT, M. A., LEE, C. H. Cholesterol lowering mechanism of soybean protein hydrolysate. Journal of Agricultural and Food Chemistry. v. 55, p. 10599-10604, 2007. CHO, S. J.; JUILLERAT, M. A.; LEE, C. H. Identification of LDL-receptor transcription stimulating peptides from soybean hydrolysate in human hepatocytes. Journal of Agricultural and Food Chemistry. v. 56, p. 4372-4376, 2008. CHOUNG, M. G.; BEAK, I. Y.; KANG, S. T.; HAN, W. Y.; SHIN, D. C.; MOON, H. P. Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr.). Journal of Agricultural and Food Chemistry, v. 49, p. 5848–51, 2001. CIABOTTI, S.; BARCELLOS, M. F. P.; MANDARINO, J. M. G.; TARONE, A. G. Avaliações químicas e bioquímicas dos grãos, extratos e tofus de soja comum e de soja livre de lipoxigenase. Ciência e agrotecnologia, v. 30, p. 920-929, 2006. CNPSO. Embrapa Soja. Soja: história. Disponível em < http:// www.cnpso.embrapa.br/> Acesso em 07.08.2014. COLLINS, C. H.; BRAGA, G. L.; BONATO, P. S. Fundamentos de cromatografia. Campinas, SP: Editora da UNICAMP. 2006. COLLINS, C. H.; BRAGA, G. L.; BONATO, P. S. Introdução a métodos cromatográficos. 5ª ed. Campinas: Editora da Unicamp, 1993. CONAB, 2014. COMPANHIA NACIONAL DE ABASTECIMENTO. Acompanhamento de safra brasileira: grãos, sétimo levantamento, abril 2012 / Companhia Nacional de Abastecimento. Brasília: Conab, 2012. CORNWELL, T.; COHICK, W.; RASKIN, I. Dietary phytoestrogens and health. Phytochemistry, v. 65, p. 995-1016, 2004. 62 COSTA, L. M.; MOURA, N. F.; MARANGONI, C.; MENDES, C. E.; TEIXEIRA, A. O. Atividade antioxidante de pimentas do gênero Capsicum. Ciência e Tecnologia de Alimentos, v. 30, supl. 1, maio, 2010. COWARD, L..; BARNES, N.C.; SETCHELL, K.D.R.; BARNES, S. Genistein, daidzein, and their β-glycoside conjugates: Antitumor isoflavones in soybean foods from American and Asian diets. Journal of Agricultural and Food Chemistry, v. 41, p. 1961-1967, 1993. CUMMINGS, J. H.; MACFARLANE, G. T. Gastrointestinal effects of prebiotics. British Journal of Nutrition, v.87, p.145-151, 2002. DAMODARAN, S.; KIRK, P.; FENNEMA, O.R. Food Chemistry. 4a ed. CRC Press, p. 1144, 2008. DELI, J.; MOLNÁR, P.; OSZ, E.; TÓTH, G.; ZSILA, F. Epimerisation of lutein to 3’-epilutein in processed foods. Bioorganic & Medicinal Chemistry Letters, n.14, p. 925-928, 2004. DIXON, R. A.; FERREIRA, D. Molecules of interest: genistein. Phitochemistry, v. 60, p. 205-211, 2002. DUENAS, M.; HERNADEZ, T. E. Assessment of in vitro antioxidant activity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chemistry, v. 98, p. 95–103, 2006. EMBRAPA. Soja no Brasil, 2012. Disponível em: http://www.cnpso.embrapa.br/producaosojanoBrasil.htm. Acesso em 10 abr 2014. FAN, G.; HAN, Y.; GU, Z.; CHEN, D. Optimizing conditions for anthocyanins extraction from purple sweet potato using response surface methodology (RSM). LWT – Food Science and Techonology, v. 41, 155-160, 2008. FAO/WHO. FOOD AND AGRICULTURE ORGANIZATION & WORLD HEALTH ORGANIZATION. Energy and protein requirements. Report of a joint FAO/WHO/UNU Expert Consultation. Technical Report Series No. 724. Geneva, Switzerland:WHO, 1985. FAO/WHO. FOOD AND AGRICULTURE ORGANIZATION & WORLD HEALTH ORGANIZATION. Evaluation on protein and amino acid requirements in human nutrition. Report of the joint FAO/WHO/ONU Expert consultation on protein and amino acid requirement inhuman nutrition. Geneva: United Nation University. Who Technical Report Series N° 935; 2007. FERNANDES, I.; FARIA, A.; CALHAU, C.; FREITAS, V.; MATEUS, N. Bioavailability of anthocyanins and derivatives. Journal of functional foods, v. 7, p. 54-66, 2013. FONTANA, J. D.; MENDES, S. V.; PERSIKE, D. S.; PERACETTA, L.; PASSOS, M. Carotenoides cores atraentes e ação biológica. Biotecnologia, Ciência e Desenvolvimento, v. 13, p.40-45, 2000. FOOD AND NUTRITION BOARD. Institute of Medicine. Dietary References Intakes for energy, carbohydrate, fiber, fat, fatty, acids, cholesterol, protein, and amino acids (Macronutrients). Washington DC: The National academies Press, 2005. 63 FRANCIS, F. J. Anthocyanins and betalains: composition and applicatons. Cereal Foods World, v. 45, p. 208-213, 2000. FUKUTAKE, M.; TAKAHASHI, M.; ISHIDA, K.; KAWAMURA, H.; SUGIMURA, T.; WAKABAYASHI, K. Quantification of genistein and genistin in soybeans and soybean products. Food Chemistry Toxicology, v. 34, p. 457-461, 1996. GOMES, Pimentel: A soja. 5ª ed. São Paulo. Nobel, p.149, 1990. GOUVÊA, A. C. M. S.; ARAUJO, M. P.; SCHULZ, D. F.; PACHECO, S.; GODOY, R. L. DE O.; CABRAL, L. M. C. Anthocyanins Standards (cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside) isolation from freeze-dried açaí (Euterpe oleraceae Mart.) by HPLC. Ciência e Tecnologia de Alimentos, v. 32, p. 1-4, 2012. GRIESHOP, C. M.; FAHEY, G. C. Comparison of quality characteristics of soybeans from Brazil, China and the United States. Journal of Agricultural and Food Chemistry, v. 59, p. 2669-2673, 2001. HA, T. J.; LEE, J. H.; SHIN, S.; SHIN, S.; HAN, S.; KIM, H.; KO, J.; LEE, M.; PARK, K. Changes in anthocyanin and isoflavone lacktrations in black seed-coated soybean at different planting location. Journal of Crop Science and Biotechnoly. v. 12, p. 78-86, 2009. HALLIWELL, B. Antioxidants in human health and disease. Annual Review of Nutrition, v. 16, p. 33-50, 1996. HARBORNE, J. B. The flavonoids: recent advances. Plant Pigments, p.298–343, 1988. HARLAND, B. F.; NARULA, G. Phytate and its hidrolysis products. Nutrition Research Reviews, v. 19, p. 947-996, 1999. HE, J.; GIUSTI, M. M. Anthocyanins: natural colorants with health promoting properties. Food Science and Technology - Annual Reviews, v. 1, p. 163-187, 2010. HEANEY, R. P.; WEAVER, C. M.; FITZSIMMONS, M. L. Soybean phytate content: effect on calcium absorption. American Journal of Clinical Nutrition, v. 53, p.745-747, 1991. HORST, M. A.; LAJOLO, F. M. Biodisponibilidade de compostos bioativos de alimentos. In: COZZOLINO, S. M. F. Biodisponibilidade de nutrientes. v. 3, Barueri: Manole, capítulo. 36, p. 772-807. 2009. HUANG, D.; OU, B.; PRIOR, R. L. The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, v. 53, p. 1841-1856, 2005. 64 ISANGA, J.; ZHANG, G. N. Soybean bioactive components and their implications to health – A review. Food Reviews International, v. 24, p. 252-276, 2008. JAFFE, G. Phytic acid in soybeans. Journal of the American Oil Chemists´s Society, v. 58, p. 493-495, 1981. JENG, T. L.; SHIH, Y. J.; WU, M. T.; SUNG, J. M. Comparisons of flavonoids and anti-oxidative activities in seed coat, embryonic axis and cotyledon of black soybeans. Food Chemistry, v. 123, p. 1112–1116, 2010. JIN-RUI.; ZHANG, M. W.; XING-HUA, L.; ZHANG-XIONG, L.; RUI-FEN.; LING, S.; LI-JUAN, Q. Correlation between antioxidant and the content of total phenolics and anthocyanin in black soybean accessions. Agricultural Science in China, v. 6, p. 150-158, 2007. JOHN, J. A.; SHAHADI, F. Phenolic compounds and antioxidant activity of Brazil nut (Berholleta excelsa). Journal of Functional Foods, v. 2, p. 196-209, 2010. KAGAWA, A. ed. Standard table of food composition in Japan. Tokyo: University of Nutrition for women, p. 104-105, 1995. KARR-LILIENTHAL, L. K.; GRIESHOP, C. M.; MERCHEN, N. R.; MAHAN, D. C.; FAHEY, G. C. Chemical composition and protein quality comparisons of soybeans and soybean meals from five leading soybean-producing countries. Journal of Agricultural and Food Chemistry, v. 52, p. 6193-6199, 2004. KIM, K.; LIM, K. M.; KIM, C. W.; SHIN, H. J.; SEO, D. B.; LEE, S. J.; NOH, J. Y.; BAE, O. N.; SHIN, S.; CHUNG, J. H. Black soybean extract can attenuate thrombosis through inhibition of collagen-induced platelet activation. Journal of Nutritional Biochemistry. v. 22, p. 964-970, 2011. KIM, KW, THOMAS, RL. Antioxidative activity of chitosans with varying molecular weight. Food Chemistry. v. 101, p. 308-313, 2006. KLUMP, S. P.; ALLRED, M. C.; MACDONALD, J. L.; BALLAN, J. M. Determination of isoflavones in soy and selected foods containing soy by extraction, saponification, and liquid chromatography: collaborative study. Journal of AOAC internation, v. 84, p. 1865-1883, 2001. KRINSKEY, N. I. The biological properties of carotenoids. Pure and Applied Chemistry 66. 1003 1010, 1994. KUNITZ, M. Crystallization of a trypsin inhibitor from soybeans. Science, 101, 688, 1994. KUDOU, S.; FLEURY, Y.; WELTI, D.; MAGNOLATO, D.; UCHIDA, T.; KITAMURA, K.; OKUBO, K. Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill). Agricicultural and Biological Chemistry, v. 55, p. 2227–2233, 1991. KUMAR, V.; RANI, A.; DIXIT, A. K.; PRATAP, D.; BHATNAGAR, D. A comparative assessment of total phenolic content, ferric reducing-anti-oxidative power, free radical-scavenging activity, vitamin C and isoflavones content in soybean with varying seed coat colour. Food Research International, v. 43, p. 323-328, 2010. 65 KUSKOSKI, E. M.; ASUERO, A. G.; TRONCOSO, A. M.; MANCINI-FILHO, J.; FETT, R. Aplicatíon de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Ciência e Tecnologia de Alimentos, v. 25, p.726-732, 2005. LAMBEIN, F.; KUO, Y-H.; IKEGAMI, F.; KUSAMA-EGUCHI, K.; ENNEKING, D. Grain legumes and human health. Proceedings of the Fourth International Food Legumes Research Conference (IFLRC-IV), P.18–22, 2005. LAWSON, H. Food oils and fats: technology, utilization, and nutrition. New York: [s.n.], p. 339, 1995. LEE, J. H.; CHO, K. M. Changes occurring in compositional components of black soybeans maintained at room temperature for different storage periods. Food Chemistry, v. 131, p. 161-169, 2012. LEE, J.; HWANG, Y. S.; CHANG, W. S.; MOON, J. K.; CHOUNG, M. G. Seed Maturity differentially mediates metabolic responses in black soybean. Food Chemisry. v .141, p. 2052-2059, 2013. LEE, J. H.; KANG, N. S.; SHIN, S. O.; SHIN, S. H.; LIM, S. G.; SUH, D. Y.; BAEK, I. Y.; PARK, K. Y.; HA, T. J. Characterisation of anthocyanins in the black soybean (Glycine max L.) by HPLC-DAD-ESI/MS analysis. Food Chemistry, v. 112, p. 226–231, 2009. LIAO, H. F.; CHEN, Y. J.; YANG, Y. C. A novel polysaccharide of black soybean promotes myelopoiesis and reconstitutes bone marrow after 5-flurouracil and irradiation-induced myelosuppression. Life Science, v. 77, p. 400–413, 2005. LIENER, I. E. Implications of antinutritional components in soybean foods. Critical Reviews in Food Science and Nutrition, v. 34, p. 31-67, 1994. LIMA, A. Caracterização química, avaliação da atividade antioxidante in vitro e in vivo, e identificação dos compostos fenólicos presentes no Pequi (Caryocar brasiliense, Camb.). Tese (Doutorado)- Faculdade de Ciência Farmacêuticas da Universidade de São Paulo. Departamento de Alimentos e Nutrição Experimental. São Paulo 182p, 2008. LIN, P. Y.; LAI, H. M. Bioactive compounds in legumes and their germinated products. Journal of Agricultural and Food Chemistry, v. 54, p. 3807-3814, 2006. LIU, K. Nonfermented oriental soyfoods. In LIU, K. (Ed.). Soybeans: Chemistry, Technology, and Utilization. New York: Aspen Publishers, p.532, 1999. LIU, K. Soybean as a powerhouse of nutrients and phytochemicals. In: LIU, K. (Ed.) Soybeans as functional foods and ingredients. Champaign, Illinois: AOCS Press. p. 1-22, 2004. LÓPEZ O. P.; JIMÉNEZ A. R.; VARGAS F. D. Natural pigments: carotenoids, anthocyanins, and betalains – characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, v.40, p.173-289, 2000. 66 MACHLIN, L. J. Critical assessment of epidemiological data concerning the impact of antioxidant nutrients on cancer and cardiovascular disease. Critic Reviews in Food Science and Nutrition, v. 35, 41–50, 1995. MACRAE, R. HPLC in food analysis. 2ª ed. New York. Academic Press (Food Science and technology: a series of monoghraphys), p. 77, 1998. MALDONADE, I. R. Produção de carotenóides por leveduras. Tese de Doutorado- Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas- São Paulo, 2003. MANACH, C.; SCALBERT, A.; MORAND, C.; RÉMÉSY, C.; JIMENEZ, L. Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, v. 79, p.727-747, 2004. MANDARINO, J. M. G. Caracterização química de cultivares de soja desenvolvidas pela Embrapa Soja. In: REUNIÃO DE PESQUISA DE SOJA DA REGIÃO CENTRAL DO BRASIL, 26., 2004, Ribeirão Preto. Resumos. Londrina: Embrapa Soja, Fundação Meridional, p. 47-48. (Embrapa Soja. Documentos, 234), 2004. MARTEAU, P.; BOUTRON-RUAULT, M. C. Nutritional advantages of probiotics and prebiotics. Britsh Journal of Nutrition, v.87, p.153-157, 2002. MASUDA, R. Quality requirement and improvement of vegetable soybean. In: SHANMUNGASUNDARAM, S. Vegetable soybean: research needs for production and quality improvement. WORKSHOP HELD AT KENTING. Proceedings.Taiwam: Asian Vegetable Research and Development Center, p. 92-102, 1991. MATSUDA, S.; NORIMOTO, F.; MATSUMOTO, Y.; OHBA, R.; TERAMOTO, Y.; OHTA, N.; UEDA, S. Solubilization of novel isoflavone glycoside hydrolyzing b-glucosidase from Lactobacillus casei subsp. Rhamnosus. Journal of Fermentation and Bioengineering, v. 77, p. 439-441, 1994. MATSUI, T.; UEDA, T.; OKI, T.; SUGITA, K.; TERAHARA, N.; MATSUMOTO, K. α-Glucosidase inhibitory action of natural acylated anthocyanins. 2. α-Glucosidase inhibition by isolated acylated anthocyanins. Journal of Agricultural and Food Chemistry, v. 49, p. 1952-1956, 2001. MCBRIDE, J. It plants pigments pait an oxidant substance rainbow. Agricultural Research, v. 44, p. 4-8, 1996. MÉNDEZ FILHO, J. D.; RODRÍGUEZ, H. G. R. Sobre los benefícios de los radicales libres. Revista Medica del IMSS, v. 35, p. 309-313, 1997. MESSINA, M.; WATANABE, S.; SETCHELL, K. D. R. Report on the 8th International Symposium on the Role of Soy in Health Promotion and Chronic Disease Prevention and Treatment. The Journal of Nutrition. v. 139, p. 7965-8025, 2009. 67 MIYAZAWA, M.; SAKANO, K.; NAKAMURA, S.; KOSAKA, H. Antimutagenic activity of isoflavones from soybean seeds (Glycine max Merrill). Journal of Agricultural and Food Chemistry, v. 47, p. 1346-1349, 1999. MOHAMED, A. I.; MEBRAHTU, T.; RANGAPPA, M. Nutrient composition and anti-nutritional factors in selected vegetable soybean (Glycine max [L.]Merr.). Plant Foods for human Nutrition, v.41, p. 89-100, 1991. MUNROE, I.; HARWOOD,M.; HLYWKA, J.; STEPHEN, A.M.; DOULL, J.; FLAMM, G. ADLERCREUTZ, H. Soy isoflavones: A safety review. Nutritions Reviews, v. 61, p.1-33, 2003. MURPHY, P.A.; BARUA, K.; HAUCK, C. C. Solvent extraction selection in the determination of isoflavones in soy foods. Journal of Chromatography B, v. 777, p. 129– 138, 2002. NEUS, J. D.; FEHR, W. F.; SCHNEBLY, S. R. Agronomic and seed characteristics of soybean with reduced rafinose and stachyose. Crop Science, v. 45, p. 589-592, 2005. OLIVEIRA, M. A.; CARRÃO-PANIZZI, M. C.; LEITE, R. S.; CAMPOS FILHO, P. J.; VICENTINI, M. B. Quantificação dos teores de açúcares, oligossacarídeos e amido em genótipos/cultivares de soja (Glycine Max (L) Merril especiais utilizados para alimentação humana. Brazilian Journal of Food Technology, v. 13, p. 23-29, 2010. OLOGHOBO, A.D.; FETUGA, B.L. Biochemical assessment of some new varieties of soybeans. Food Chemistry, v.13, p.103-115, 1984. OMOSIYE, O.; CHERYAN, M.; Low-phytate, full-fat protein product by ultrafiltration of aqueous extracts of whole soy beans, Cereal Chemistry Journal, v. 56, 58-62, 1979. ONOMI, T.; KATAYAMA, Y. O. Effect of dietary level of phytic acid on hepatic and serum lipid status in rats fed a high-sucrose diet. Bioscience, Biotechnology, Biochemistry, v. 68, p.1379-1381, 2004. ONOZAWA, M.; FAKUDA, K.; OHTANI, M.; AKAZA, H.; SUGIMURA, T.; WAKABAYASHI, K. Effects of soybean isoflavones on cell growth and apoptosis of the human prostatic cancer cell line LNCaP. Japanese Journal of Clinical Oncology, v. 28, p. 360-363, 1998. PACHECO, S. Preparo de padrões analíticos, estudo de estabilidade e parâmetros de validação para ensaio de carotenoides por cromatografia líquida. 2009. 106 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos, Ciência dos Alimentos) – Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, 2009. 68 PARENGAM, M.; JUDPRASONG, K.; SRIANUJATA, S.; JITTINANDANA, S.; LAOHAROJANAPHAND, S.; BUSAMONGKO, A. Study of nutrients and toxic minerals in rice and legumes by instrumental neutron activation analysis and graphite furnace atomic absorption spectrophotometry. Journal of Food Composition and Analysis, v. 23, p. 340–345, 2010. PARK, Y. K.; AGUIAR, C. L.; ALENCAR, S. M.; MASCARENHAS, H. S.; SCAMPARINI, A. R. P. Conversão de malonil-β-glocosilisoflavonas em isoflavonas glicosiladas presentes em alguns cultivares de soja brasileira. Ciência e Tecnologia dos alimentos, v. 22, p. 130-135, 2002. PEREIRA C. A.M.; VILEGAS J. H. Y. Constituintes químicos e farmacologia do gênero Passiflora com ênfase a P. alata, P. edulis e P. incarnata: revisão da literatura. Revista Brasileira de Medicina, v.3, p.1-12, 2000. PÉREZ-JIMENEZ, J.; SAURA-CALIXTO, F. Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Research International, v. 39, p. 791-800, 2006. PETERSON, J.; DWYER, J. Flavonoids: Dietary occurence and biochemical activity. Nutrition Research, v. 18, p. 1995- 2018, 1998. PETTERSON, D. S.; MAKINTOSH, J. B. The Chemical Composition and Nutritive Value of Australian Grain Legumes, Grains Research and Development Corporation, Brisbane, Australia, p. 10–13, 38-41, 1994. PÍPOLO, A. E. Influência da temperatura sobre as concentrações de proteína e óleo em sementes de soja (Glycine max (L.) Merril). 128p. 2002. (Tese) Doutorado - Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, 2002. POMPEU, D. R.; SILVA, E. M.; RONGEZ, H. Optimisation of the solvent extration of phenolic antioxidante from fruits of Euterpe oleracea using Response Surface Methodology. Bioresource Techonology, v.100, 6076-6082, 2009. POPPI, R. J.; MARÇO, P. H. Procedimentos analíticos para identificação de antocianinas presentes em extratos naturais. Química nova, vol. 31, p. 1218-1223, 2008. PRADO, A. Composição fenólica e atividade antioxidante de frutas tropicais. Dissertação [Mestrado em Ciência e Tecnologia de Alimentos] - Universidade de São Paulo; 2009. PREDDY, V. R.; WATSON, R. R.; PATEL, V. B. Nuts and seeds in health and disease prevention. Academic Press, p. 1189, 2011. PRICE, K. R.; LEWIS, J.; WYATT, G. M.; FENWICK, G. R. Flatulence-causes, Relation to diet and remedies. Nahrung, v. 32, p. 609-626, 1988. 69 PRIOR, R. L.; WU, X.; SCHAICH, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, v. 53, p. 4290-4302, 2005. QURESHI, N.; LOLAS, A.; BLASCHEK, H. P. Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. Journal of Industrial Microbiology and Biotechnology, v. 26, p. 290-295, 2001. RACKIS, J. J.; GUMBMANN, M. R. Proteases inhibitors: physiological properties and nutritional significance. Antinutrients an Natural Toxicants in Foods, v. 203, 1982. RANGEL, M. A. S.; CAVALHEIRO, L. R.; CAVICHIOLLI, D.; CARDOSO, P. C. Efeito do genótipo e do ambiente sobre os teores de óleo e proteína nos grãos de soja, em quatro ambientes da Região Sul de Mato Grosso do Sul, safra 2002/ 2003. Dourados: Embrapa Agropecuária Oeste (Boletim de pesquisa e desenvolvimento, 17), 2004. RATNAM, D. V.; ANKOLA, D. D.; BHARDWAJ, V.; SAHANA, D. K.; RAVI KUMAR, M. N. V. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. Journal of Controlled Release, v. 113, p. 189-207, 2006. REYNOLDS, K.; CHIN, A.; LEES, K. A.; NGUYEN, A.; BUINOWSKI, D.; HE, J. A metaanalysis of the effect of soy protein supplementation on serum lipids. The American Journal of Cardiology, v. 98, p. 633–640, 2006. RIBEIRO, E. P.; SERAVALLI, E. A. G. Química de Alimentos. 1°edição, Instituto Mauá de Tecnologia, Editora: Edgard Blücher Ltda, São Paulo, p. 155-157, 2004. RODRIGUES-AMAYA, D. A Guide to Carotenoid Analysis in Foods, OMNI Research: ILSI Press: Washington D. C. 1999. RODRIGUEZ-AMAYA, D. B.; KIMURA, M.; AMAYA-FARFAN, J. Fontes brasileiras de carotenóides – Tabela brasileira de composição de carotenóides em alimentos, Ministério do Meio Ambiente, 2008. ROWLAND, I.; FAUGHNAN, M.; HOEY, L.; WAHALA, K.; WILLIAMSON, G.; CASSIDY, A. Bioavailability of phyto-oestrogens. British Journal of Nutrition, v. 89, p. S45-S58, 2003. RUFINO, M. S. M.; ALVES, R. E.; BRITO, E. S.; MORAIS, S. M.; SAMPAIO, C. G.; PÉREZ-JIMÉNEZ, SAURA-CALIXTO, F. D. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre ABTS +. Comunicado técnico, 128, 2007. RUFINO, M. S. M. Propriedades Funcionais de frutas tropicais brasileiras não tradicionais. Tese. Universidade Federal Rural do Semi-árido, Mossoró- RN, 2008. 70 SÁNCHEZ-MORENO, C.; CAO, G.; OU, B.; PRIOR, R. L. Anthocyanin and proanthocyanidin contente in selected White and red wines. Oxygen radical absorbance capacity comparison with nontraditional wines obtained from highblush blueberry. Journal of Agricultural and Food Chemistry, v. 51, p. 4889-4896, 2003. SÁNCHEZ-MORENO, C. Review: Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Science and Technology, v. 8, p .121-137, 2002. SANDBERG, A.S., CARLSSON, N.G., SVANBERG, U. Effects of inositol tri-, tetra-, penta- and hexaphosphates on in vitro estimation of iron availability. Journal of Food Science, v. 54, p.159-161, 1989. SASS-KISS, A.; KISS, J.; MILOTAY, P.; KEREK, M. M.; TOTH-MARKUS, M. Differences in anthocyanin and carotenoid content of fruits and vegetables. Food Research International, v. 38, 1023–1029, 2005. SETCHELL, K. D. R.; BROWN, N. M.; NECHEMIAS, L. Z.; BRASHEAR, W. T.; WOLFE, E.; KIRSCHNER, A. S.; HEUBI, J. E. Evidence for lack of absorption of soy isoflavona glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. American Journal of Clinical Nutrition, v. 76, p. 447-453, 2002. SETCHELL, K. D. R.; COLE, S. J. Variations in isoflavone levels in soy foods and soy protein isolates and issues related to isoflavone databases and food labeling. Journal of Agricultural and Food Chemistry, v. 51, p. 4146-4155, 2003. SETCHELL, K. D. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. American Journal Clinical of Nutrition, Bethesda, v. 134, p.1333S-1343S, 1998. SGARBIERI, V. C. Proteínas em alimentos protéicos. São Paulo: Varela, p. 517 p, 1996. SGARBIERI, V. C.; WHITAKER, J. R.; Physical, chemical, and nutritional properties of common bean (Phaseolus) proteins. Advances in Food Research, v. 28, p. 93-166, 1982. SHIH, M. C.; YANG, K. T.; KUO, S. J. Quality and antioxidant activity of black soybean tofu as affectes by bean cultivar. Food Chemistry and Toxicology, v. 67, p. 480-484, 2002. SIANI, A.; STRAZZULLO, P.; GIACCO, A.; PACIONI, D.; CELENTANO, E.; MANCINI, M. Increasing the dietary potassium intake reduces the need for antihypertensive medication. Annals Internal Medicine, v. 115, p. 753-9, 1991. SILVA, M. R.; SILVA, M. A. A. P. Fatores antinutricionais: inibidores de proteínas e lecitinas. Revista de Nutrição, v. 13, p. 3-9, 2000. 71 SLAVIN, M.; CHENG, Z.; LUTHER, M.; KENWORTHY, YU, L. Antioxidant properties and phenolic, isoflavone, tocopherol and carotenoid composition of Maryland-grown soybean lines with altered fatty acid profiles. Food Chemistry, v. 114, p. 20–27, 2009. SMITH, A.K.; CIRCLE, S. J. Chemical composition of seed. In: SMITH, A. K.; CICLE, S. J (ed). Soybeans: Chemistry an Technology, Westport: Tha AVI Perblishing, v. 1, p. 61-92, 1972. TAKAHASHI, R.; OHMORI, R.; KIYOSE, C.; MOMIYAMA, Y.; OHSUZU, F.; KONDO, K. Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. Journal of Agriculture and Food Chemistry, v. 53, p. 4578-4582, 2005. TANAKA, Y.; SASAKI, N.; OHMIYA, A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant Journal, v. 54, p. 733-749, 2008. TERCI, D. B. L. Aspectos analíticos e didáticos de antocianinas extraídas de frutas,2004. Tese de Doutorado, Instituto de Química, UNICAMP, Campinas, 2004. TODD, J. J.; VODKIN, L. O. Pigmented soybean (Glycin max) seed coats accumulate proanthocyanidins during development. Plant Physiology, v. 102, p. 663-670, 1993. TORRE, M.; RODRIGUEZ, A. R.; SAURA-CALIXTO, F. Effects of dietary fiber and phytic acid on mineral availability. Critical Reviews in Food Science and Nutrition, v.1, p.1-22, 1991. TSANGALIS, D.; SHAH, N. P. Metabolism of oligosaccharides and aldehydes and production of organic acids in soymilk by probiotic bifidobacteria. International Journal of Food Science and Technology, v. 39, p. 541-554, 2004. USDA – UNITED STATES DEPARTMENT OF AGRICULTURAL RESEARCH SERVICE. Oilseeds: World Market and trade, 2015. Disponível em: http://www.nal.usda.gov/fnic/foodcomp/Data/SR16/sr16.html. Acesso em:jan, 2015. USFDA. Food labeling:Health claims. Soy protein and coronary heart disease (CHD). 21 CFR part 101.82. Federal Register 64:57699, v. 64, n. 206, October 26, 1999. VERNETTI, F, J. Produção de sementes de soja. Caracterização de cultivares. EMBRAPA-UEPAE, Circular Técnica, p. 36, 1983. VIEIRA, C. R.; CABRAL, L. C.; DE PAULA, A. C. O. Composição centesimal e conteúdo de aminoácidos, ácidos graxos e minerais de seis cultivares de soja destinadas à alimentação humana. Pesquisa Agropecuária Brasileira, v.34, p.1277-1283, 1999. 72 VILLELA, G. G. Pigmentos animais: Zoocromos. Editora: Academia Brasileira de Ciências, p. 5-31, 1976. WANG, D.; MA, Y.; ZHANG, C.; ZHAO, X. Thermal characterization of the anthocyanins from black soybean (Glycine max L.) exposed to thermogravimetry. Food Science and Technology, v. 55, p. 645-649, 2014. WANG, J.; MAZZA, G. Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor alpha in LPS/IFN-gamma-activated RAW 264.7 macrophages. J Agric Food Chem, v.50, p.4183-4189, 2002. WEI, H.; BOWEN, R.; CAI, Q.; BARNES, S.; WANG, Y. Anitioxidant and antipromotional effects of the soybean isoflavone genistein. Proccedings of the Society for Experimental Biology and Medicin,. v. 208, p. 124-130, 1995. WILCKE, H. L.; HOPKINS, D. T.; WAGGLE, D. H. Soy protein and human nutrition. Academic Press, New York, 1979. WU, X.; BEECHER, G.; HOLDEN, G. R, HOLDEN, J. M.; HAYTOWITZ, D. B, GEBHARDT, S.; PRIOR, R. L. Concentrations of Anthocyanins in Common Foods in the United States and Estimation of Normal Consumption. Journal of Agricultural and Food Chemistry, v. 54, p. 4069−4075, 2006. WUTTKE, W.; JARRY, H.; SEIDLOVÁ-WUTTKE, D. Isoflavones-Safe food additives or dangerous drugs? Ageing Research Reviews, v. 6, p. 150-188, 2007. XAVIER-FILHO, J., CAMPOS, F. A. P. Proteinase inhibitors. In: CHEEK, P.R. Toxicants of plant origin. CRC Press. v.3: p.1-27, 1989. XU, B.; CHANG, S. K. C. Antioxidant capacity of seed coat, dehulled bean, and whole black soybean in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavonas. Journal of Agricultural and Food Chemistry, v. 56, p. 8365-8373, 2008. YAMADA, L. T. P.; BARCELOS, M. F. P.; SOUSA, R. V.; LIMA. Composição química e conteúdo de ferro solúvel em soja [Glycine max (L.) Merrill]. Ciência e Agrotecnologia, v.27, p. 406-413, 2003. YANG, Z.; ZHAI, W. Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (ZEA mays L.). Innovative Food Science and Emerging Technologies, v. 11, p. 169-176, 2010. 73 YILMAZ, Y.; TOLEDO, R. T. Health aspects of functional grape seed constituents. Food Science and Technology, v. 15, p. 422-433, 2004. ZHANG, R. F.; ZHANG, F. X.; ZHANG, M. W.; WEI, Z. C.; YANG, C. Y.; ZHANG, Y.; TANG, X. J.; DENG, Y. Y.; CHI, J. W. Phenolic Composition and Antioxidant Activity in Seed Coats of 60 Chinese Black Soybean (Glycine max L. Merr.) Varieties. Journal Agricultural and Food Chemistry, v. 59, p. 5935–5944, 2011.por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/63184/2015%20-%20Joana%20de%20Novais%20Pereira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4191
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-11-24T17:24:02Z No. of bitstreams: 1 2015 - Joana de Novais Pereira.pdf: 2767080 bytes, checksum: 04a4881c3f47e48b043ba5d458e72c67 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-11-24T17:24:02Z (GMT). No. of bitstreams: 1 2015 - Joana de Novais Pereira.pdf: 2767080 bytes, checksum: 04a4881c3f47e48b043ba5d458e72c67 (MD5) Previous issue date: 2015-02-02eng
Appears in Collections:Mestrado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2015 - Joana de Novais Pereira.pdf2015 - Joana de Novais Pereira2.7 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.