Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/11013
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMenezes, João Paulo de
dc.date.accessioned2023-12-22T01:45:35Z-
dc.date.available2023-12-22T01:45:35Z-
dc.date.issued2019-10-30
dc.identifier.citationMENEZES, João Paulo de. Efeito da germinação e alta pressão nas propriedades físico- químicas, funcionais e na atividade enzimática em sementes de arroz negro. 2019. 74 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11013-
dc.description.abstractO arroz (Oryza sativa L.) é um cereal básico consumido por mais de 90% da população mundial e é isento de substâncias alergênicas, se tornando um ingrediente ideal para a formulação de diversos produtos alimentícios. Variedades pigmentadas, em especial o arroz negro tem se mostrado eficientes na prevenção de doenças coronárias não transmissíveis devido a sua composição em compostos funcionais em especial, compostos fenólicos. Nos últimos anos, tem se observado o uso de diferentes estratégias como a germinação associada ou não a alta pressão visando desenvolver novos ingredientes com elevado potencial de contribuição para a melhoria da qualidade da nutricional e da promoção da saúde, tornando-se popular entre os consumidores, em especial como diabéticos e hipertensos, por causa de seus compostos bioativos. O objetivo geral deste trabalho foi avaliar as alterações nas propriedades químicas, funcionais e atividade enzimática do arroz negro submetido a diferentes tempos de germinação e tratamento de alta pressão variando a intensidade da pressão e os tempos de pressurização aplicados. No primeiro capítulo foi verificado o efeito do tempo de germinação (0, 24 e 48 h) no teor de amido total, amido resistente, de amilose e amilopectina, de açúcares redutores das amostras germinadas. Além disso, também foi estudada a capacidade antihiperglicêmiante; o conteúdo de compostos fenólicos totais, antocianinas monoméricas totais; e a cor de todas as amostras de arroz germinadas nos diferentes tempos. Observou-se que a germinação entre os períodos de 0 h (amostra controle) e 48 h se mostrou uma técnica eficiente na ativação de α-amilase com atividades entre 272,53 U/mL para a amostra controle e atividade máxima de 366,89 no período de 24 h. A atividade de lipase variou entre 10,0 até 11,9 mg/g de 0 até 48 h, mudando o conteúdo de amido total de 66,6 para 60,7 % ao final das 48 h e açúcares redutores nas amostra controle, germinada por 24 e 48 h, 37,1, 34,4 e 56,4mg/ g respectivamente . Com relação aos compostos fenólicos totais houve redução com o aumento do tempo de germinação de 0,98 para 0,89 mg/g ao final das 48 h, as antocianinas monoméricas também diminuíram de 405 até 56 mg/100 g. Para a análise instrumental de cor houve aumento dos parâmetros L aproximando do branco, a* e b* e a percepção de cor (ΔE) foi perceptível de 2,29 para a amostra germinada por 24 h e 2,08 para 48h. Na segunda parte do trabalho, foi estudado o efeito da germinação (0, 24 e 48 h) combinada ao tratamento de alta pressão (0.1, 300, 400 e 500 MPa) na atividade da lipase , no teor de amido total e de açúcares redutores , o conteúdo de compostos fenólicos totais, antocianinas monoméricas totais e na cor de arroz negro integral. Observou-se que a germinação juntamente com a de alta pressão se mostrou eficiente na inativação de lipases chegando ao valor mínimo de 6,85 mg/ g para a amostra germinada por 24 h e pressurizada por 5 min a 500 MPa. Houve mudança no conteúdo de amido total havendo redução em relação a amostra controle com o percentual mínimo de 57,49 na amostra germinada por 48 h pressurizada por 5 min a 500 MPa. A germinação seguida de tratamento de alta pressão o maior conteúdo de compostos fenólicos totais, foi de 0,253 mg/ g para as amostras germinadas por 48 h por 3 min a 300 e 500 MPa, com relação aos teores de antocianinas monoméricas houve aumento significativo, onde a amostra que apresentou maior vii concentração foi a germinada por 24 h por 5 min a 300 MPa de 919 mg/ 100 g. Conclui que de forma geral houve efeito do tempo de germinação na atividade enzimática, nas características químicas e na cor das amostras estudadas. Já para germinação combinada ao tratamento de alta pressão, verificou-se que as condições aplicadas não inativaram de forma eficaz a lípase, porém foram suficientes para modificar o conteúdo de amido total e açúcares redutores, de teores de compostos fenólicos, de antocianinas monomérica, e consequente, mudança nos parâmetros colorimétricospor
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectGerminaçãopor
dc.subjectAntocianinaspor
dc.subjectAmidopor
dc.subjectGerminationeng
dc.subjectAnthocyaninseng
dc.subjectStarcheng
dc.titleEfeito da germinação e alta pressão nas propriedades físico- químicas, funcionais e na atividade enzimática em sementes de arroz negropor
dc.title.alternativeEffect of germination and high pressure on physicochemical, functional and enzymatic activity in black rice seedseng
dc.typeDissertaçãopor
dc.description.abstractOtherRice (Oryza sativa L.) is a staple cereal consumed by more than 90% of the world population and it is free from allergenic substances, being an ideal ingredient for the formulation of various food products. Pigmented varieties, especially black rice, have been shown as an effective in preventing non-transmissible coronary diseases due to their composition in functional compounds, especially phenolic compounds. In recent years, the use of different strategies such as germination associated or not with high pressure has been observed in order to develop new ingredients with a high potential for contributing to the improvement of nutritional quality and health promotion, becoming popular with consumers, especially as diabetics and hypertensive patients, because of their bioactive compounds. The general objective of this work was to evaluate changes in the chemical, functional and enzymatic activity in black rice submitted to different germination times and high pressure treatment, varying the pressure intensity and the applied pressurization times. In the first chapter, the effect of germination time (0, 24 and 48 h) on the content of total starch, resistant starch, amylose and amylopectin, reducing sugars in the germinated samples was verified. In addition, antihyperglycemic capacity has also been studied; the content of total phenolic compounds, total monomeric anthocyanins; and the color of all rice samples germinated. It was observed that germination between the periods of 0 h (control sample) and 48 h proved to be an efficient technique in the activation of α-amylase with activities between 272.53 U / mL for the control sample and maximum activity of 366.89 within 24 h. Lipase activity ranged from 10.0 to 11.9 mg / g from 0 to 48 h, changing the total starch content from 66.6 to 60.7% at the end of 48 h and reducing sugars in the control samples, germinated by 24 and 48 h, 37.1, 34.4 and 56.4 mg / g respectively. Regarding total phenolic compounds, there was a reduction with the increase in germination time from 0.98 to 0.89 mg / g at the end of 48 h, monomeric anthocyanins also decreased from 405 to 56 mg / 100 g. For instrumental color analysis there was an increase in L parameters approaching white, a * and b* and the color perception (ΔE) was noticeable from 2.29 for the germinated sample for 24 h and 2.08 to 48 h. In the second part of the work, the effect of germination (0, 24 and 48 h) combined with high pressure treatment (0.1, 300, 400 and 500 MPa) on lipase activity, total starch and reducing sugar content was studied, the content of total phenolic compounds, total monomeric anthocyanins and in the color of hole gran black rice. It was observed that the germination together with the high pressure was efficient in the inactivation of lipases reaching the minimum value of 6.85 mg / g for the sample germinated for 24 h and pressurized for 5 min at 500 MPa. There was a change in the total starch content with a reduction in relation to the control sample with the minimum percentage of 57.49 in the sample germinated for 48 h pressurized for 5 min at 500 MPa. The germination followed by high pressure treatment, the highest content of total phenolic compounds, was 0.253 mg / g for samples germinated for 48 h for 3 min at 300 and 500 MPa, with respect to the levels of monomeric anthocyanins there was a significant increase, where the sample with the highest concentration was germinated for 24 h for 5 min at 300 MPa of 919 mg / 100 g. It concludes that in general there was an ix effect of germination time on enzyme activity, chemical characteristics and color of the studied samples. As for germination combined with high pressure treatment, it was found that the conditions applied did not effectively inactivate the lipase, but were sufficient to modify the content of total starch and reducing sugars, contents of phenolic compounds, monomeric anthocyanins, and consequent change in colorimetric parameterseng
dc.contributor.advisor1Barbosa, Maria Ivone Martins Jacintho
dc.contributor.advisor1ID08781937741por
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-9624-9139por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3609445478725882por
dc.contributor.advisor-co1Rosenthal, Amauri
dc.contributor.advisor-co1ID025.072.978-40por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/1329532290735502por
dc.contributor.referee1Barbosa, Maria Ivone Martins Jacintho
dc.contributor.referee1ID087.819.377-41por
dc.contributor.referee1IDhttps://orcid.org/0000-0002-9624-9139por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3609445478725882por
dc.contributor.referee2Gottschalk, Leda Maria Fortes
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9893440344739146por
dc.contributor.referee3Carvalho, Carlos Wanderlei Piler de
dc.contributor.referee3IDhttps://orcid.org/0000-0002-7602-264Xpor
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3532473530387852por
dc.creator.ID135.793.037-24por
dc.creator.Latteshttp://lattes.cnpq.br/3124002855446552por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.referencesABDEL-AAL, E.-S., YOUNG, J. C., & RABALSKI, I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of Agricultural and Food Chemistry. v.54, p. 4696-4704, 2006 ABENSUDARA, K. J.M.; MATSUI, T.; MATSUMOTO, K. α-Glucosidase Inhibitory Activity of Some Sri Lanka Plant Extracts, One of Which, Cassia auriculata, Exerts a Strong Antihyperglycemic Effect in Rats Comparable to the Therapeutic Drug Acarbose. Joural and Agricicutural and Food Chemistry. v. 52, p. 2541-2545, 2004 ADISAKWATTANA, S., RUENGSAMRAN, T., KAMPA, P., SOMPONG, W. In vitro inhibitory effects of plant-based foods and their combinations on intestinal alpha- glucosidase and pancreatic alpha-amylase. BMC Complementary and Alternative Medicine, v. 12, p. 110, 2012 ASANTE, E., ADJAOTTOR, A. A., & WOODE, M. Y. Malting characteristics of Wita 7 variety of rice. Peak Journal of Food Science and Technology. v.1, p. 61-67, 2013 ASEAN Manual of Food Analysis. Determination of starch by acid hydrolysis.Compiled por ASEANFOOD members. Bangkok, Thailand: Mohidol University. 2011 BARANZELLI, J.; KRINGEL, D. H.; COLUSSI, R.; PAIVA, F.F; ARANHA, B.C.; MIRANDA, M. Z.; ZAVAREZE, E. R. Changes in enzymatic activity, technological quality and gamma aminobutyric acid (GABA) content of wheat flour as affected by germination. LWT - Food Science and Technology. v. 90, p. 483-490, 2018 BASSINELLO, P. Z.; GARCIA, J. S.; SOARES, L. A.; KOAKUZU, S. N.; NETO, F. P. M.; FERREIRA, A. R.; MENDONÇA, J. A.; SANTIAGO, C. M.; RANGEL, P. H. N. ARROZ PRETO: nova opção culinária para o Brasil. Santo Antônio de Goiás: Embrapa Arroz e Feijão, 2008. 6 P. (Embrapa Arroz e Feijão. Comunicado técnico, 147). BEZERRA, C.V.; AMANTE, E. R.; OLIVEIRA, D. C. et al. Green banana (Musa cavendishii) flour obtained in spouted bed – Effect of drying on physicochemical, functional and morphological characteristics of the starch. Industrial Crops and Products, v.41, p.241-249, 2013 BISCONSIN-JUNIOR, A.; ROSENTHAL, A.; MONTEIRO, M. Optimisation of High Hydrostatic Pressure Processing of Pêra Rio Orange Juice. Food Bioprocess Technology. v. 7, p. 1670-1677, 2014 BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução normativa Nº 6, de 16 DE Fevereiro de 2009. Brasília. 2009 CHAMPAGNE, E.T. et al. Effects of drying conditions, final moisture content, and degree-of-milling on rice flavor. Cereal Chemistry, v.74, p.566-570, 1997 CHEN, Z.; YU, C.; WANG, X.; GU, Z.; BETA, T. Changes of phenolic profiles and antioxidant activity in canaryseed(Phalaris canariensis L.) during germination. Food Chemistry. v. 194, v. 608–618, 2016 42 CHINMA, C. E.; ANUONYE, J. C.; SIMON, O. C.; OHIARE, R. O.; DANBABA, N. E. Effect of germination on the physicochemical and antioxidant characteristics of rice flour from three rice varieties from Nigeria. Food Chemistry. v.185, p.454-458, 2015 CHO, D.; LIM, S. Changes in phenolic acid composition and associated enzymeactivity inshoot and kernel fractions of brown rice during germination. Food Chemistry. v.256, p. 163-170, 2018 CONN, P. F.; SCHALCH, W.; TRUSCOTT, T. G. The singlet oxygen and carotenoid interaction. Journal of Photochemistry and Photobiology, v.11, n.1, p.41-47, 1991 COULTATE, T.P. Food: The Chemistry of Its Components. 5th Edition, Royal Society of Chemistry. 2009. DELIZA, R.; ROSENTHAL, A.; ABADIO, F. B. D.; SILVA, C. H. O.; CASTILLO, C. Application of high pressure technology in the fruit juice processing: benefits perceived by consumers. Journal of Food Engineering, v. 67, p. 241–246, 2005 DING, J; HOU, G. G.; NEMZER, B. V.; XIONG, S.; DUBAT, A.; DUBAT, A; FENG, H. Effects of controlled germination on selected physicochemical andfunctional properties of whole-wheat flour and enhanced γ-aminobutyricacid accumulation by ultrasonication. Food Chemistry. v. 243, p. 214-221, 2018 DORNAS, W. C.; OLIVEITA, T. T.; DORES, R. G. R.; FABRES, M. H. A.; NAGEM, T. J. Efeitos antidiabéticos de plantas medicinais. Brazilian Journal of Pharmacognossy. v. 19, p. 488-500, 2008 ESCRIBANO, B. M. T.; SANTOS, B. C.; RIVAS, G. C.. Anthocyanins in cereal. Journal of Chromatography. v. 1054, p. 129-141, 2004 ESTRADA-GIRÓN, Y.; SWANSON, B. G.; BARBOSA-CÁNOVAS, G. V. Advances in the use of high hydrostatic pressure for processing cereal grains and legumes. Trends in Food Science & Technology. v. 16, p. 194-203, 2005 FERREIRA, E. H. R; ROSENTHAL, A.; CALADO, V.; SARAIVA, J.; MENDO, S. Byssochlamys nivea inactivation in pineapple juice and nectar using high pressure cycles. Journal of Food Engineering. v. 95, p. 664-669, 2009 FINOCCHIARO, F.; FERRARI, B.; GIANINETTI, A. A study of biodiversity of flavonoid conten in the rice caryopsis evidencing simultaneous accumulation of anthocyanins and proanthocyanidins in a black-grained genotype. Journal of Cereal Science. v.51, p.28-34, 2010 FINOCCHIARO, F.; FERRARI, B.; GIANINETTI, A.; DALLÁSTA, C.; GALAVERNA, G.; SCAZZINA, F.; PELLEGRINI, N. Characterization of antioxidant compounds of red and white rice and changes in total antioxidant capacity during processing. Molecular Nutrition Food Research. v.51, p.1006-1019, 2007 43 FOOD AND AGRICULTURE ORGANIZATION. Rice Market Monitor. Disponível em: http://www.fao.org/3/I9243EN/i9243en.pdf. Acesso em: 11 de Julho de 2019. FOOD AND AGRICULTURE ORGANIZATION. (2013). FAO rice market monitor. <http://www.fao.org/economic/est/publications/rice-publications/rice-market-monitor- rmm/en/>. Acessado: 31/05/2018 GAN, R.; LUI, W.; WU, K.; CHAN, C.; DAI, S.; SUI, Z.; CORKE, H. Bioactivecompounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends in Food Science & Technology. v. 59, p. 1-14, 2016 GRABITSKE, H. A.; Slavin, J. L. Gastrointestinal effects of low-digestible carbohydrates. Critical Reviews in Food Science and Nutrition, v.49, p. 327–360, 2009 HALLIWELL, B.; GUTTERIDGE, J.M.C. Free Radicals in Biology and Medicine. 4 ed., Oxford University Press, p.268-340, 2007 HEFNI, M.; WITTHÖFT, C. M. Effect of germination and subsequent oven- drying on folate content in different wheat and rye cultivars. Journal of Cereal Science. v. 56 p. 374-378, 2012 HIRAWAN, R.; DIEHL-JONES, W.; BETA, T. Comparative evaluation of the antioxidant potential of infant cereals produced from purple wheat and red rice grains and LC-MS analysis of their anthocyanins. Journal of Agricultural and Food Chemistry. v.59, p.12330–12341, 2011 HOU, Z.; QIN, P.; ZHANG, Y.; CUI, S.; REN, G. Identification of anthocyanin isolated from black rice (Oryza sativa L.) and degradation kinetics. Food Research International. v.50, p.691-697, 2013 HU, C.; ZAWISTOWSKI, J.; LING, W.; KITTS, D.D. Black rice (Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems. Journal of Agriculture and Food Chemistry. v.51, p.5271- 527, 2003 HUANG, D.; OU, B.; PRIOR, R, L. The Chemistry Behind the Antioxidant Capacity Assays. Journal of Agricultural Food Chemistry. n. 53, p. 1841-1856, 2005 IBGE – Instituo Brasileiro de Geografia e Estatística, 2013. Distribuição e previsão da produção de arroz nos estados brasileiros em 2018. Disponível em: htt://www.ibge.gov.br/home/. Acesso em 14 mar 2018. INSTITUTO RIOGRANDENSE DO ARROZ. Produtividades municipais Safra 2014/15. Governo do Estado do Rio Grande do Sul, Secretaria da Agricultura e Pecuária, 2015. Disponívelem:<http://www.irga.rs.gov.br/upload/20150710145210produtividade_municipi o_safra_14_15.pdf>. Acesso em: 14 de novembro de 2016 IRRI – International Rice Research Institute. Rice in Brazil, 2011. Disponível em: http://www.irri.org/index.php. Acesso em 07 de Dezembro de 2016 44 ITO, V. C.; LACERDA, L. G. Black rice (Oryza sativa L.): a review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chemistry, 2019 JAEGER, K. E.; REETZ, M. T. Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology. v. 16, p. 396-403, 1998 JANG, E. H. et al. Correlation between physicochemical properties of japonica and indica rice starches. Food Science and Technology, v.66, p.530-537, 2016 JOM, K.N.; LORJAROENPHON, Y.; UDOMPIJITKUL, P. Differentiation of Four Varieties of Germinating Thai Colored Indica Rice (Oryza sativa L.) by Metabolite Profiling. Food Science and Technology, 2016 JULIANO, B.O. Rice Chemistry and Quality, Island Publishing House, Philippines, Cap. 2: Structure and Gross Composition of the Rice Grain, p.25-54, 2003 KALITA, D.; SARMA, B.; SRIVASTAVA, B. Influence of germination conditions on malting potential of low and normal amylose paddy and changes in enzymatic activity and physicochemical properties. Food Chemistry, v. 220, p.67-75, 2016 KERBAUY, G. B. Fisiologia vegetal. Guanabara Koogan. 2ª Edição. Rio de Janeiro. 2008 KIM, D. J.; HWANG, I. G.; KIM, T. M.; WOO, K. S.; PARK, D. S.; KIM, J. H.; KIM. D. J.; LEE, J.; LEE, Y. R.; JEONG, H. S. Chemical and functional components in different parts of rough rice (Oryza sativa L.) before and after germination. Food Chemistry. v. 134, p. 288-293, 2012 KIM, M.Y.; LEE, S.H.; JANG, G.Y.; LI, M.; LEE, Y.R.; LEE, J.; JEONG H.S. Changes of phenolic-acids and vitamin E profiles on germinated rough rice (Oryza sativa L.) treated by high hydrostatic pressure. Food Chemistry. v. 217, p. 106-111, 2016 KOAKUZU, S.; ARAÚJO, E. J.; BASSINELLO, P. Z.; CARVALHO, R. N.; TEIXEIRA, M. C. Procedimento para Determinação de Amido Resistente, Amido Não Resistente (Solúvel) e Total. Santo Antônio de Goiás: Embrapa Arroz e Feijão, 2015. 8 P. (Embrapa Arroz e Feijão. Comunicado técnico, 228). KONDHARE, K. R.; FARRELL, A. D.; KETTLEWELL, P. S.; HEDDEN, P.; MONAGHAN, J. M. Pre-maturity α-amylase in wheat: The role of abscisic acid and gibberellins. Journal of Cereal Science, v. 63, p. 95-108, 2015 KONG, S.; KIM, D.; OH, S.; CHOI, I.; JEONG, H.; LEE, J. Black rice bran as an ingredient in noodles: chemical and functional evaluation. Journal of Food Science, v.77, p. 303-307, 2011 KOSEKI, S.; YAMAMOTO, K. pH and solute concentration of suspension media affect the outcome of hight hydrostatic pressure treatment of Listeria monocytogenes. Internetional Journal of food microbiology. v. 11. p. 175-179, 2006 45 LAVELLI, V., SRI HARSHA, P., FERRANTI, P., SCARAFONI, A., IAMETTI, S. Grape skin phenolics as inhibitors of mammalian alpha-glucosidase and alpha-amylase– effect of food matrix and processing on efficacy. Food & Function, v. 7, p. 1655-1663, 2016 LEE, J.; DURST, R. W.; WROLSTAD, R. E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J. AOAC Int., v.88, n.5, p. 1269- 1278, 2005 LEE, J. H. Identifications and quantification of anthocyanins from the grains of black rice (Oryza sativa L.) varieties. Food Science and Biotechnology, v. 19, 391–397, 2010 LI, C.; OH, S.; LEE, D.; BAIK, K.; CHUNG, H. Effect of germination on the structures and physicochemicalproperties of starches from brown rice, oat, sorghum, and millet. International Journal of Biological Macromolecules. v. 105, p. 931–939, 2017 LI, G.; ZHU, F.; Effect of high pressure on rheological and thermal properties of quinoa and maize starches. Food Chemistry. v. 241, p. 380-386. 2018 LI, H.; LI, J.; XIAO, C.; CUI, B.; FANG, Y.; GUO, L. In vitro digestibility of rice starch granules modified by β-amylase,transglucosidase and pullulanase. International Journal of Biological Macromolecules, v. 136, p. 1220-1236, 2019 LI, W.; DAI, R.; YU, Y.; LI, L.; WU, C.; LUAN, W.; MENG, W; ZHANG, X.; DENG, Y. Antihyperglycemic Effect of Cephalotaxus sinensis Leaves and GLUT-4 Translocation Facilitating Activity of Its Flavonoid Constituents. Biological and pharmaceutical bulletin. v. 30, p. 1123-1129, 2007 LI, X.; LI, D.; TIAN, H.; PARK, K. Reducing retrogradation of gelatinized rice starch and rice meal under low temperature by addition of extremely thermostable maltogenic amylase during their cooking. Food Research International , v. 62, p. 1134-1140, 2014 LIU, M.; HU, B.; ZHANG, H.; ZHANG, Y.; WANG, LI; QIAN, H.; QI, X. Inhibition study of red rice polyphenols on pancreatic α-amylase activity by kinetic analysis and molecular docking. Journal of Cereal Science, v. 76, p. 186-192, 2017 LUMEN, B.O.; CHOW, H. Nutritional quality of rice endosperm. In: Luh, B.S. (Ed.). Rice utilization, 2.ed., New York: Van Nostrand Reinhold, v.2, cap.15, p.363-395, 1995. MASSARETTO, I. L.. Características químicas e nutricionais de arroz-preto, vermelho e selvagem e comparação por análise estatística multivariada. Tese de Doutorado. Universidade de São Paulo. 2013 MATIOLI, G.; RODRIGUEZ-AMAYA, D.B. Microencapsulação do licopeno com ciclodextrinas. Ciência e Tecnologia de Alimentos. v. 23, p. 102-105, 2003 46 MENG, L.; ZHANG, W.; WU, Z.; HUI, A.; GAO, H; CHEN, P.; HE, Y. Effect of pressure-soaking treatments on texture and retrogradation properties of black rice. LWT- Food science and technology, v. 93, p. 485-490, 2018 NAVVABI, A.; RAZZAGHI, M.; FERNANDES, P.; KARAMI, L.; HAMAEI, A. Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochemistry, v. 70, p. 61-70, 2018 NDANGUI, CHANCELLE B. et al. Impact of thermal and chemical pretreatments on physicochemical, rheological, and functional properties of sweet potato (Ipomea batatas Lam) flour. Food and bioprocess technology. v.7, n.12, p.3618-3628, 2014 NONTASAN, S.; MOONGNGARM, A.; DEESEENTHUM, S. Application of Functional Colorant Prepared from Black Rice Bran in Yogurt. APCBEE Procedia. v. 2, p. 62-67, 2012 NORKAEW, O.; BOONTAKHAM, P.; DUMRI, K.; NOENPLAB, A. N. L.; SOOKWONG, P.; MAHATHEERANONT, S. Effect of post-harvest treatment on bioactive phytochemicals of Thai black rice. Food Chemistry. v. 217, p. 98-105, 2017 NORKAEW, O.; THITISUT, P.; MAHATHEERANONT, S; PAWIN, B.; SOOKWONG, P.; YODPITAK, S.; LUNGKAPHIN, A. Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Food Chemistry. v. 294, p. 493-502, 2019 NUGENT, A. P. Health properties of resistant starch. British Nutrition Foundation, Nutrition Bulletin. v. 30, p. 27–54, 2005 ODO, M. O.; OKORIE, P. A.; IKEGWU, O. J.; KALU, M. A. Malting potencial of hybrid and local varieties of rice. Asian Journal of Agriculture and Food Sciences. v. 4, p. 146-151, 2016 OLIVEIRA, F. A.; NETO, O. C.; SANTOS, L. M. R.; FERREIRA, E. H. R.; ROSENTHAL, A. Effect of high pressure on fish meat quality - A review. Trends in Food Science & Technology. v. 66, p. 1-19, 2017 OSBORNE, D. J.; McMANUS, M. T. Hormones, signals and target cells in plant development. New York: Cambridge University Press. 2005 PANG, Y.; AHMED, S.; XU, Y; BETA, T.; ZHU, Z.; SHAO, Y; BAO, J. Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chemistry. v, 240, p. 212-221. 2018 PATRIGNANI, F.; LANCIOTTI, R. Applications of hight and ultra hight pressure homogenizatiom for food safety. Frontiers in microbiology. 2016 PENGKUMSRI, Noppawat et al. Physicochemical and antioxidative properties of black, brown and red rice varieties of northern Thailand. Food Science and Technology (Campinas), v. 35, n. 2, p. 331-338, 2015 47 PINKAEW, H.; WANG, Y.; NAIVIKUL, O. Impact of pre-germination on amylopectin molecular structures, crystallinity, and thermal properties of pre-germinated brown rice starches. Journal of Cereal Science. v.73 p. 151-157. 2017 QIAN, J. Y., GU, Y. P., JIANG, W., CHEN, W. Inactivating effect of pulsed electric field on lipase in brown rice. Innovative Food Science & Emerging Technologies. v. 22, p. 89-94, 2014 SAJILATA, M. G.; SINGHAL, R. S.; Kulkarni, P. R. Resistant starch – A review. Comprehensive Reviews in Food Science and Food Safety, v. 5, p. 1-17, 2006 SAMAN, J.; VÁSQUEZ, J. A; PANDIELLA, S. S. Controlled germination to enhance the functional properties of rice. Process Biochemistry. v. 43, p. 1377-1382, 2008 SARTORELLI, D. S.; CARDOSO, M. A. Associação entre carboidratos da dieta habitual e diabetes mellitus tipo 2: evidências epidemiológicas. Arq Bras Endocrinol Metab. V. 50, p. 415-426, 2006 SCRIBANO-BAILON, M. T., SANTO-BUELGA, C., & RIVAS-GONZALO, J. Review – Anthocyanins in cereals. Journal of Chromatography A. v. 1054, p. 129- 141, 2004 SHAO, Y.; LIN, A. H. M. Improvement in the quantification of reducing sugars by miniaturizing the Somogyi-Nelson assay using a microtiter plate. Food Chemistry, v. 240, p. 898-903. 2017 SHARMA, S.; SAXENA, D.; RIAR, C. Changes in the GABA and polyphenols contents of foxtail millet on germination and their relationship with in vitro antioxidant activity. Food Chemistry. v. 245, p. 863-870, 2018 SIGER, A.; CZUBINSKI, J.; KACHLICKI, P. Antioxidant activity and phenolic content in three lupin species. Journal of Food Composition and Analysis. v.25, n.2, p.190-197, 2012 SILVA, M. A.; SANCHES, C.; AMANTE, E. R. Prevention of hydrolytic rancidity in rice bran. Journal of Food Engineering, Pullman, v. 75, n. 4, p. 487-491, 2006 SLOAN, A.E. Wholly grain. Food Technology, n.59, p.16, 2005 SOMOGYI M. Note on sugar determination. Journal of Biological Chemistry. v. 70, p. 599-612, 1951 SOMPONG, R.; SIEBENHANDL-EHN, S.; LINSBERGER-MARTIN, G.; BERGHOFER, E.. Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chemistry, v.124, p.132-140, 2011 SOWMYA, R.; SACHINDRA, N.M. Evaluation of antioxidant activity of carotenoid extract from shrimp processing byproducts by in vitro assays and in membrane model system. Food Chemistry. v.134, p.308-314, 2012 48 Sumczynski, D.; Kotásková, E.; Druzˇbíková, H.; Mlcˇek, J. Determination of contents and antioxidant activity of free and bound phenolics compounds and in vitro digestibility of commercial black and red rice (Oryza sativa L.) varieties. Food Chemistry. v. 211, p.339-346, 2016 SWAIN, T., HILLIS, W.E. The phenolics constituents of prunus domestica. The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, v.10, n.1, p.63-68, 1959 TAIRA, H.; ITANI, T. Lipid content and fatty acid composition of brown rice of cultivars of the United States. Journal of Agricultural and Food Chemistry, v.36, p.460-462, 1988 TANG, Y.; CAI, W.; XU, B. From rice bag to table: Fate of phenolic chemical compositions and antioxidant activities in waxy and non-waxy black rice during home cooking. Food Chemistry. v. 191, p. 81–90. 2016 TIWARI, U.; CUMMINS, E. Nutritional importance and effect of processing on tocols in cereals. Trends in Food Science & Technology, v.20, p.511-520, 2009 UNIVERSIDADE DE SÃO PAULO - USP. Faculdade de Ciências Farmacêuticas. Departamento de Alimentos e Nutrição Experimental/BRASILFOODS. Tabela Brasileira de Composição de Alimentos-USP, 2008. Versão 5.0. Disponível em: http://www.fcf.usp.br/tabela. Acesso em: 12/12/ 2016 VELASQUEZ, M. D. P.; SANTOS, P. C. Custo total do beneficiamento do arroz em uma cooperativa agrícola. XIX Congresso Brasileiro de Custos - Bento Gonçalves, RS, Brasil, 12 a 14 de novembro de 2012 VELUPPILLAI, S.; NITHYANANTHARAJAH, K; VASANTHARUBA, S.; BALAKUMAR, S.; ARASARATNAM, V. Biochemical changes associated with germinating rice grains and germination improvement. Rice Science, v. 16. p. 240-242. 2009 VIEIRA, N. R. de A.; SANTOS, A. B. dos; SANTANA, E. P. (Ed.). A cultura do arroz no Brasil. Santo Antônio de Goiás: Embrapa Arroz e Feijão, 633 p, 1999 VIJAYAKUMAR; K. R.; GOWDA, L. R. Temporal expression profiling of lipase during germination and rice caryopsis development. Plant Physiology and Biochemistry, v. 52, p. 245-253, 2012 WALTER, M.; MARCHESAN, E.; AVILA, L. A. Arroz: composição e características nutricionais. Ciência Rural, v.38, p.1148-1192, 2008 WANG, H.; ZHU, S.; RAMASWAMY, H.; HU, F.; YU, Y. Effect of high pressure processing on rancidity of brown rice during storage. LWT - Food Science and Technology. v. 93, p. 405-411, 2018 49 WANG, X.; NIE, Y.; XU, Y. Industrially produced pullulanases with thermostability: Discovery, engineering, and heterologous expression. Bioresource Technology, v. 278, p. 360-371, 2019 XIA, Q.; WANG, L.; XU, C.; MEI, J.; LI, Y. Effects of germination and high hydrostatic pressure processing on mineral elements, amino acids and antioxidants in vitro bioaccessibility, as well as starch digestibility in brown rice (Oryza sativa L.). Food Chemistry. v. 214. p. 533-542. 2016 ZHANG, Q.; HAN, Y.; XIAO, H. Microbial α-amylase: A biomolecular overview. Process Biochemistry, v. 53, p. 88-101, 2017 ZHOU, Z.; ROBARDS, K.; HELLIWELL, S.; BLANCHARD, C. Composition and functional properties of rice. International Journal of Food Science and Technology. v.37, p.849-868, 2002 ZIEGLER, U.; FERREIRA, C. D.; HOFFMANN, J. F.; CHAVES, F. C; VANIER, N. L.; OLIVEIRA, M.; ELIAS, M. C. Cooking quality properties and free and bound phenolics content of brown, black, and red rice grains stored at different temperatures for six months. Food Chemistry. v. 242, p.427-434. 2018por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/69461/2019%20-%20Jo%c3%a3o%20Paulo%20de%20Menezes.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5696
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2022-05-26T14:46:15Z No. of bitstreams: 1 2019 - João Paulo de Menezes.pdf: 1290274 bytes, checksum: dcc13a6d61f1f04762438036022ec4c4 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-05-26T14:46:15Z (GMT). No. of bitstreams: 1 2019 - João Paulo de Menezes.pdf: 1290274 bytes, checksum: dcc13a6d61f1f04762438036022ec4c4 (MD5) Previous issue date: 2019-10-30eng
Appears in Collections:Mestrado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - João Paulo de Menezes.pdf2019 - João Paulo de Menezes1.26 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.