Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/11015
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVieira, Jônathas de Souza
dc.date.accessioned2023-12-22T01:45:36Z-
dc.date.available2023-12-22T01:45:36Z-
dc.date.issued2021-06-22
dc.identifier.citationVIEIRA, Jônathas de Souza. Efeito protetor do fruto da aroeira (Schinus terebinthifolius Raddi) sobre a foto-oxidação do colesterol e ácidos graxos poli-insaturados em sistemas modelo contendo óleo de sardinhas (Sardinella brasilliensis). 2021. 144 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11015-
dc.description.abstractAs sardinhas são constantemente caracterizadas como alimento de alto valor nutricional devido ao elevado teor de ácidos graxos poli-insaturados EPA e DHA, entretanto, contêm concentrações apreciáveis de colesterol. A radiação ultravioleta, derivada da exposição destes compostos à luz fluorescente, promove a degradação e formação de compostos oxidados, comprometendo a qualidade nutricional e a segurança destes alimentos. Desta forma, torna-se imprescindível a busca por fontes alternativas de antioxidantes naturais que minimizem os processos foto-oxidativos e atendam a demanda dos consumidores por alimentos isentos de aditivos sintéticos. O objetivo deste estudo foi avaliar o efeito protetor dos frutos da aroeira (Schinus terebinthifolius Raddi) em três níveis de adição (1%, 2% e 3%) frente à oxidação lipídica em sistemas modelo contendo óleo de sardinhas expostos à radiação ultravioleta durante 15, 30, 45 e 60 dias, além do controle. Os frutos foram previamente caracterizados, nos quais determinou-se a presença de ácidos graxos essenciais e compostos bioativos. Compostos bioativos como os compostos fenólicos totais (5,05 ± 0,19 mg GAE/g), flavonóides totais (4,16 ± 0,11 mg EQ/g) e carotenóides totais (25,42 ± 0,48 μg/g) foram determinados e compostos como o ácido masticadienóico (m/z 453), tetraidroamentoflavona (m/z 541), agatisflavona (m/z 537), hikinoflavona (m/z 539) e 7-O-metilpelargonidina 3-O-galactosídeo (m/z 447) foram identificados por cromatografia líquida acoplada a espectrometria de massas. A atividade antioxidante dos frutos da aroeira foi constatada em analises in vitro. O ensaio de sequestro de radicais livres (DPPH) determinou 84,45 ± 1,61% de inibição oxidativa para o extrato dos frutos, enquanto a determinação do poder de redução do ferro (FRAP) apresentou um valor de 121,54 ± 1,31 μmol Fe2+/g. Para determinação da oxidação lipídica, identificou-se a formação de espécies reativas ao ácido tiobarbitúrico (TBARS) e alterações na composição dos ácidos graxos e colesterol, quantificando-se a formação de produtos da oxidação do colesterol (POCs). A exposição à luz fluorescente acarretou constante queda do conteúdo de ácidos graxos poliinsaturados (AGPIs) e o aumento do teor de substâncias reativas ao ácido tiobarbitúrico (TBA) e POCs durante os 60 dias de exposição. O conteúdo de AGPIs teve uma redução que variou entre 65,60 e 89,10% nas amostras controle (sem adição de antioxidantes) ao longo dos 60 dias de exposição à luz fluorescente. Entretanto, a adição dos frutos da aroeira minimizou a degradação dos AGPIs, indicando uma variação do percentual de degradação entre 58,36 e 80,93% ao longo dos 60 dias de exposição. A exposição do óleo sem antioxidantes à luz fluorescente durante 60 dias reduziu o conteúdo de colesterol em 61,86%, observando-se um aumento no conteúdo de POCs totais de 61,54 ± 0,04 para 2013,84 ± 12,86 μg/g de óleo. No entanto, o tratamento com os frutos da aroeira apresentou efeito protetor de 21,55, 25,94 e 34,77% para as adições de 1, 2 e 3%, respectivamente. O antioxidante sintético apresentou maior ação protetora frente a foto-oxidação dos óleos de sardinha, embora o efeito protetor dos frutos da aroeira não apresentou diferenças significativas em relação ao BHT, sugerindo que o emprego dos mesmos como antioxidantes naturais pode ser uma alternativa em detrimento aos sintéticos, ajudando a preservar os aspectos nutricionais e a segurança do óleo de sardinhas.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectSchinus terebinthifolius Raddipor
dc.subjectÓleo de pescadopor
dc.subjectFoto-oxidaçãopor
dc.subjectSchinus terebinthifolius Raddieng
dc.subjectFish oileng
dc.subjectPhoto-oxidationpor
dc.titleEfeito protetor do fruto da aroeira (Schinus terebinthifolius Raddi) sobre a foto-oxidação do colesterol e ácidos graxos poli-insaturados em sistemas modelo contendo óleo de sardinhas (Sardinella brasilliensis)por
dc.title.alternativeThe protective effect of aroeira fruits (Schinus terebinthifolius) on the photo-oxidation of cholesterol and polyunsaturated fatty acids in model systems containing sardine oil (sardinella brasiliensis)eng
dc.typeDissertaçãopor
dc.description.abstractOtherSardines are constantly characterized as food of high nutritional value due to the high content of polyunsaturated fatty acids EPA and DHA, however, they contain appreciable concentrations of cholesterol. Ultraviolet radiation, derived from the exposure of these compounds to fluorescent light, promotes their degradation and formation of oxidized compounds, compromising the nutritional quality and safety of these foods. Thus, it is essential to search for alternative sources of natural antioxidants that minimize photo-oxidative processes and meet consumer demand for foods that are free of synthetic additives. The objective of this study was to evaluate the protective effect of aroeira fruits (Schinus terebinthifolius Raddi) at three levels of addition (1%, 2% and 3%) against lipid oxidation in model systems containing sardine oil exposed to ultraviolet radiation for 15, 30, 45 and 60 days, beyond control. The fruits were previously characterized, where the presence of essential fatty acids and bioactive compounds was determined. Bioactive compounds such as total phenolics (5.05 ± 0.19 mg GAE / g), total flavonoids (4.16 ± 0.11 mg EQ / g) and total carotenoids (25.42 ± 0.48 μg / g) were determined and composed as masticadienic acid (m/z 453), tetrahydroamentoflavone (m/z 541), agathisflavone (m/z 537), hikinoflavone (m/z 539) and 7-O-methylpelargonidin 3-O-galactoside (m/z 447) were identified by liquid chromatography coupled to mass spectrometry. The antioxidant activity of aroeira fruits was verified in in vitro analyzes. Free radical scavenging test (DPPH) determined 84.45 ± 1.61% of oxidative inhibition for the fruit extract, while the determination of the iron reduction power (FRAP) presented a value of 121.54 ± 1.31 μmol Fe2+/g. To determine lipid oxidation, the formation of thiobarbituric acid reactive substances (TBARS) and changes in the composition of fatty acids and cholesterol were identified, quantifying the formation of cholesterol oxidation products (COPs). Exposure to fluorescent light led to a constant drop in the content of polyunsaturated fatty acids (PUFAs) and an increase in the content of substances reactive to thiobarbituric acid (TBA) and COPs during the 60 days of exposure. The content of PUFAs decreased between 65.60 and 89.10% in the control samples (without the addition of antioxidants) over the 60 days of exposure to fluorescent light. However, the addition of aroeira fruits minimized the degradation of PUFAs, indicating a variation in the percentage of degradation between 58.36 and 80.93% over the 60 days of exposure. Exposure of oil without antioxidants to fluorescent light for 60 days reduced the cholesterol content by 61.86%, with an increase in the total COP content of 61.54 ± 0.04 for 2013.84 ± 12.86 μg/g of oil. However, the treatment with aroeira fruits showed a protective effect of 21.55, 25.94 and 34.77% for the additions of 1, 2 and 3%, respectively. The synthetic antioxidant showed a greater protective action against the photo-oxidation of sardine oils, although the protective effect of aroeira fruits did not show significant differences in relation to BHT, suggesting that their use as natural antioxidants may be an alternative to the detriment of synthetics, helping to preserve the nutritional aspects of sardine oil and ensuring that the product is safe.eng
dc.contributor.advisor1Saldanha, Tatiana
dc.contributor.advisor1ID079.434.767-35por
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-4291-4639por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4490420513661579por
dc.contributor.advisor-co1Gamallo, Ormindo Domingues
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/6012598173554651por
dc.contributor.referee1Saldanha, Tatiana
dc.contributor.referee1ID079.434.767-35por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/4490420513661579por
dc.contributor.referee2Sawaya, Alexandra Christine Helena Frankland
dc.contributor.referee2IDhttps://orcid.org/0000-0001-7524-6628por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/1690221450242725por
dc.contributor.referee3Mársico, Eliane Teixeira
dc.contributor.referee3IDhttps://orcid.org/0000-0001-9452-5462por
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3971598714445106por
dc.creator.ID396.352.278-09por
dc.creator.Latteshttp://lattes.cnpq.br/6404545594176440por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.referencesABDEL-AAL, El-Sayed M.; HUCL, Pierre; RABALSKI, Iwona. Compositional and antioxidant properties of anthocyanin-rich products prepared from purple wheat. Food chemistry, v. 254, p. 13-19, 2018. AKHTAR, Muhammad Javeed et al. Control of salmon oil photo-oxidation during storage in HPMC packaging film: Influence of film colour. Food Chemistry, v. 120, n. 2, p. 395-401, 2010. ALVAREZ-SALA, Andrea et al. Apoptotic effect of a phytosterol-ingredient and its main phytosterol (β-sitosterol) in human cancer cell lines. International journal of food sciences and nutrition, v. 70, n. 3, p. 323-334, 2019. ANDERSEN, Henrik J.; SKIBSTED, Leif H. Oxidative stability of frozen pork patties. Effect of light and added salt. Journal of food science, v. 56, n. 5, p. 1182-1184, 1991. ANDERSSON, Kristina; LINGNERT, Hans. Influence of oxygen concentration and light on the oxidative stability of cream powder. LWT-Food Science and Technology, v. 31, n. 2, p. 169-176, 1998. ANDRADE, Kátia S.; PONCELET, Denis; FERREIRA, Sandra RS. Sustainable extraction and encapsulation of pink pepper oil. Journal of Food Engineering, v. 204, p. 38-45, 2017. ANGELO, Priscila Milene; JORGE, Neuza. Compostos fenólicos em alimentos-uma breve revisão. Revista do Instituto Adolfo Lutz (Impresso), v. 66, n. 1, p. 01-09, 2007. 98 ANVISA (Agência Nacional de Vigilância Sanitária). Estabelece os aditivos alimentares e coadjuvantes de tecnologia autorizados para uso em pescado e produtos de pescado. Resolução - RDC n° 329, de 19 de dezembro de 2019. Diário Oficial da União, Brasília, DF, 26/12/2019, ed. 249, s. 1, p. 83, 2019. ARAÚJO, J. Química de alimentos: teoria e prática. In: (Ed.). Química de alimentos: teoria e prática: UFV, 2004. ARMSTRONG, SHARYN G.; LEACH, DAVID N.; WYLLIE, S. GRANT. Nutritional evaluation of lipids in fish from temperate Australian waters. Journal of food science, v. 56, n. 4, p. 1111-1112, 1991. ATTA, Emad M.; MOHAMED, Nawal H.; ABDELGAWAD, Ahmed AM. Antioxidants: An overview on the natural and synthetic types. Eur. Chem. Bull, v. 6, n. 8, p. 365-375, 2017. BACELLAR, Isabel OL; BAPTISTA, Mauricio S. Mechanisms of photosensitized lipid oxidation and membrane permeabilization. Acs Omega, v. 4, n. 26, p. 21636-21646, 2019. BAGGIO, Amilton João. Aroeira como potencial para usos múltiplos na propriedade rural. Embrapa Florestas-Artigo em periódico indexado (ALICE), 1988. BAI, Ningzhu. Advances in the prevention of cardiovascular diseases by phytosterol. In: Proceedings of the third International Conference on Medical and Health Informatics 2019. 2019. p. 110-114. BALOI, M. F. et al. Growth performance, body composition and metabolic response to feeding rates in juvenile Brazilian sardine Sardinella brasiliensis. Aquaculture Nutrition, v. 23, n. 6, p. 1458-1466, 2017. BANDARRA, Narcisa Maria et al. Sardine (Sardina pilchardus) lipid composition: Does it change after one year in captivity?. Food chemistry, v. 244, p. 408-413, 2018. BAPTISTA, Maurício S. et al. Type I and type II photosensitized oxidation reactions: Guidelines and mechanistic pathways. Photochemistry and photobiology, v. 93, n. 4, p. 912-919, 2017. BARBOSA, Luiz Cláudio Almeida et al. Seasonal variation in the composition of volatile oils from Schinus terebinthifolius Raddi. Química Nova, v. 30, n. 8, p. 1959-1965, 2007. BARRIUSO, Blanca; ASTIASARÁN, Iciar; ANSORENA, Diana. A review of analytical methods measuring lipid oxidation status in foods: a challenging task. European food research and technology, v. 236, n. 1, p. 1-15, 2013. BECERRA, Josafat A. Hernández et al. Cholesterol oxidation and astaxanthin degradation in shrimp during sun drying and storage. Food Chemistry, v. 145, p. 832-839, 2014. BENDAOUD, Houcine et al. Chemical composition and anticancer and antioxidant activities of Schinus molle L. and Schinus terebinthifolius Raddi berries essential oils. Journal of food Science, v. 75, n. 6, p. C466-C472, 2010. 99 BERNARDES, Natalia R. et al. Nitric oxide production, inhibitory, antioxidant and antimycobacterial activities of the fruits extract and flavonoid content of Schinus terebinthifolius. Revista Brasileira de Farmacognosia, v. 24, n. 6, p. 644-650, 2014. BERNARDES, Natália Ribeiro et al. Quantificação dos teores de taninos e fenóis totais e avaliação da atividade antioxidante dos frutos de Aroeira. Vértices, v. 13, n. 3, p. 117-28, 2011. BARONE, Rafael Simões Coelho et al. Fish and fishery products trade in Brazil, 2005 to 2015: A review of available data and trends. Scientia Agricola, v. 74, n. 5, p. 417-424, 2017. BIESALSKI, Hans-Konrad et al. Bioactive compounds: Definition and assessment of activity. Nutrition, v. 25, n. 11-12, p. 1202-1205, 2009. BIRCH, A. E. et al. Antioxidant properties of evening primrose seed extracts. Journal of agricultural and food chemistry, v. 49, n. 9, p. 4502-4507, 2001. BLIGH, E. Graham; DYER, W. Justin. A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology, v. 37, n. 8, p. 911-917, 1959. BOSELLI, Emanuele et al. Cholesterol photosensitised oxidation of horse meat slices stored under different packaging films. Meat science, v. 85, n. 3, p. 500-505, 2010. BOSELLI, Emanuele et al. Cholesterol photosensitised oxidation of beef meat under standard and modified atmosphere at retail conditions. Meat science, v. 81, n. 1, p. 224-229, 2009. BOSELLI, Emanuele et al. Photoxidation of cholesterol and lipids of turkey meat during storage under commercial retail conditions. Food Chemistry, v. 91, n. 4, p. 705-713, 2005. BOSELLI, Emanuele; CARDENIA, Vladimiro; RODRIGUEZ‐ESTRADA, Maria Teresa. Cholesterol photosensitized oxidation in muscle foods. European journal of lipid science and technology, v. 114, n. 6, p. 644-655, 2012. BRASIL. Ministério da Saúde. Secretaria de Ciência, Tecnologia e Insumos Estratégicos. Departamento de Assistência Farmacêutica. A fitoterapia no SUS e o Programa de Pesquisas de Plantas Medicinais da Central de Medicamentos. Ministério da Saúde, 2006. BRASIL, Ministério da Pesca e Aquicultura. Boletim Estatístico da Pesca e Aquicultura, 2011. BROWN, Andrew J.; JESSUP, Wendy. Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. Molecular aspects of medicine, v. 30, n. 3, p. 111-122, 2009. BROWN, Iain et al. Anticancer effects of n-3 EPA and DHA and their endocannabinoid derivatives on breast cancer cell growth and invasion. Prostaglandins, Leukotrienes and Essential Fatty Acids, v. 156, p. 102024, 2020. 100 CALDER, Philip C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, v. 1851, n. 4, p. 469-484, 2015. CARDENIA, Vladimiro et al. Cholesterol photosensitized oxidation in food and biological systems. Biochimie, v. 95, n. 3, p. 473-481, 2013b. CARDENIA, Vladimiro et al. Health-related lipids components of sardine muscle as affected by photooxidation. Food and chemical toxicology, v. 57, p. 32-38, 2013a. CARNEIRO, M. J. et al. Evaluation of the chemical composition and biological activity of extracts of Tetragonisca angustula propolis and Schinus terebinthifolius Raddi (Anacardiaceae). Journal of Apicultural Research, v. 55, n. 4, p. 315-323, 2016. CARVALHO, M. G. et al. Schinus terebinthifolius Raddi: chemical composition, biological properties and toxicity. Revista Brasileira de Plantas Medicinais, v. 15, n. 1, p. 158-169, 2013. CAVALCANTI, N. de B.; BRITO, LT de L. Efeito de diferentes substratos no desenvolvimento de aroeira-vermelha (Schinus terebinthifolius Raddi). Embrapa Semiárido-Artigo em periódico indexado (ALICE), 2009. CERQUEIRA, Sara Raquel Peixoto. Os ácidos gordos ómega-3 e os seus efeitos anti-inflamatórios. Tese de Doutorado, 2013. CHAIJAN, Manat et al. Changes of lipids in sardine (Sardinella gibbosa) muscle during iced storage. Food Chemistry, v. 99, n. 1, p. 83-91, 2006. CHAWLA, Rekha; SIVAKUMAR, S.; GOEL, Nitika. Phytosterol and its esters as novel food ingredients: A review. Asian Journal of Dairy and Food Research, v. 35, n. 3, p. 217-226, 2016. CHEN, Qinyun; SHI, Huang; HO, Chi-Tang. Effects of rosemary extracts and major constituents on lipid oxidation and soybean lipoxygenase activity. Journal of the American Oil Chemists’ Society, v. 69, n. 10, p. 999, 1992. CHIEN, J. T.; WANG, H. C.; CHEN, B. H. Kinetic model of the cholesterol oxidation during heating. Journal of Agricultural and Food Chemistry, v. 46, n. 7, p. 2572-2577, 1998. CHIEN, J.-T. et al. Cholesterol photooxidation as affected by combination of riboflavin and fatty acid methyl esters. Food chemistry, v. 81, n. 3, p. 421-431, 2003. COLE, E. R. et al. Chemical composition of essential oil from ripe fruit of Schinus terebinthifolius Raddi and evaluation of its activity against wild strains of hospital origin. Brazilian journal of microbiology, v. 45, n. 3, p. 821-828, 2014. CÖMERT, Ezgi Doğan; GÖKMEN, Vural. Antioxidants bound to an insoluble food matrix: Their analysis, regeneration behavior, and physiological importance. Comprehensive Reviews in Food Science and Food Safety, v. 16, n. 3, p. 382-399, 2017. D’SOUSA’COSTA, Cinara Oliveira et al. Phytochemical screening, antioxidant and antibacterial activities of extracts prepared from different tissues of Schinus terebinthifolius 101 Raddi that occurs in the coast of Bahia, Brazil. Pharmacognosy Magazine, v. 11, n. 43, p. 607, 2015. DA ROCHA, Paola dos Santos et al. Antioxidant and protective effects of schinus terebinthifolius raddi against doxorubicin-induced toxicity. Applied biochemistry and biotechnology, v. 184, n. 3, p. 869-884, 2018. DA ROCHA, Paola dos Santos et al. Microbiological quality, chemical profile as well as antioxidant and antidiabetic activities of Schinus terebinthifolius Raddi. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, v. 220, p. 36-46, 2019. DA SILVA DANNENBERG, Guilherme et al. Antimicrobial and antioxidant activity of essential oil from pink pepper tree (Schinus terebinthifolius Raddi) in vitro and in cheese experimentally contaminated with Listeria monocytogenes. Innovative Food Science & Emerging Technologies, v. 36, p. 120-127, 2016. DA SILVA DANNENBERG, Guilherme et al. Essential oil from pink pepper (Schinus terebinthifolius Raddi): Chemical composition, antibacterial activity and mechanism of action. Food control, v. 95, p. 115-120, 2019. DA SILVA, A. C.; JORGE, N. Cogumelos: compostos bioativos e propriedades antioxidantes. Journal of Health Sciences, v., n., p., 2015. DA SILVA, Bruno Guzzo et al. Supercritical carbon dioxide extraction of compounds from Schinus terebinthifolius Raddi fruits: Effects of operating conditions on global yield, volatile compounds, and antiproliferative activity against human tumor cell lines. The Journal of Supercritical Fluids, v. 130, p. 10-16, 2017. DA SILVA, Jessica HS et al. Anti-Escherichia coli activity of extracts from Schinus terebinthifolius fruits and leaves. Natural product research, v. 32, n. 11, p. 1365-1368, 2018. DAMODARAN, S.; PARKIN, K. L.; FENNEMA, O. R. Química de alimentos de Fennema: Artmed Editora, 2009. DANTAS, Natalie Marinho et al. Cholesterol oxidation in fish and fish products. Journal of food science, v. 80, n. 12, p. R2627-R2639, 2015. DANTAS, Natalie Marinho et al. Lipid profile and high contents of cholesterol oxidation products (COPs) in different commercial brands of canned tuna. Food Chemistry, v. 352, p. 129334, 2021. DE ARAUJO GOMES, Rodrigo Borges et al. Residues from the Brazilian pepper tree (Schinus terebinthifolia Raddi) processing industry: Chemical profile and antimicrobial activity of extracts against hospital bacteria. Industrial Crops and Products, v. 143, p. 111430, 2020. DE CAMPOS BORTOLUCCI, Wanessa et al. Schinus terebinthifolius essential oil and fractions in the control of Aedes aegypti. Bioscience Journal, v. 35, n. 5, 2019. DE JESUS, JHF et al. Comportamento térmico e polimorfismo dos antioxidantes: BHA, BHT e TBHQ. Combustível , v. 278, p. 118298, 2020. DE LIMA GLÓRIA, Lorena et al. Phenolic compounds present Schinus terebinthifolius 102 Raddi influence the lowering of blood pressure in rats. Molecules, v. 22, n. 10, p. 1792, 2017. DE OLIVEIRA, Rodrigo Fortunato et al. Effect of the fruit aqueous extract of Brazilian pepper tree (Schinus terebinthifolius, Raddi) on selected quality parameters of frozen fresh pork sausage. Journal of Agriculture and Food Research, v. 2, p. 100055, 2020c. DE OLIVEIRA, Vanessa Sales et al. Aroeira fruit (Schinus terebinthifolius Raddi) as a natural antioxidant: chemical constituents, bioactive compounds and in vitro and in vivo antioxidant capacity. Food chemistry, v. 315, p. 126274, 2020b. DE OLIVEIRA, Vanessa Sales et al. Effect of aroeira (Schinus terebinthifolius Raddi) fruit against polyunsaturated fatty acids and cholesterol thermo-oxidation in model systems containing sardine oil (Sardinella brasiliensis). Food Research International, v. 132, p. 109091, 2020a. DE OLIVEIRA, Vanessa Sales et al. Use of natural antioxidants in the inhibition of cholesterol oxidation: a review. Comprehensive Reviews in Food Science and Food Safety, v. 17, n. 6, p. 1465-1483, 2018. DE SOUZA, Adriana Regia Marques; ARTHUR, Valter; NOGUEIRA, Danielle Pires. The effect of irradiation in the preservation of pink pepper (Schinus terebinthifolius Raddi). Radiation Physics and Chemistry, v. 81, n. 8, p. 1082-1083, 2012. DEGÁSPARI, Cláudia Helena; WASZCZYNSKYJ, Nina; DOS SANTOS, Rodrigo José. Atividade antioxidante de extrato de fruto de Aroeira (Schinus terebenthifolius Raddi). Visão acadêmica, v. 5, n. 2, 2004. DEGÁSPARI, Cláudia Helena; WASZCZYNSKYJ, Nina; PRADO, Maria Rosa Machado. Atividade antimicrobiana de Schinus terebenthifolius Raddi. Ciência e Agrotecnologia, v. 29, n. 3, p. 617-622, 2005. DI VITTORI, Lucia et al. Pre-harvest factors influencing the quality of berries. Scientia Horticulturae, v. 233, p. 310-322, 2018. DIONISI, F. et al. Determination of cholesterol oxidation products in milk powders: methods comparison and validation. Journal of Agricultural and Food Chemistry, v. 46, n. 6, p. 2227-2233, 1998. DO NASCIMENTO, Aline Fonseca et al. Essential oil composition and acaricidal activity of Schinus terebinthifolius from Atlantic forest of Pernambuco, Brazil against Tetranychus urticae. Natural product communications, v. 7, n. 1, 2012. DOS SANTOS CAVALCANTI, Adriano et al. Volatiles composition and extraction kinetics from Schinus terebinthifolius and Schinus molle leaves and fruit. Revista Brasileira de Farmacognosia, v. 25, n. 4, p. 356-362, 2015. DOS SANTOS OLIVEIRA, Monika BS et al. Schinus terebenthifolius Raddi extracts: From sunscreen activity toward protection of the placenta to Zika virus infection, new uses for a well-known medicinal plant. Industrial crops and products, v., n., p. 112503, 2020. EKRAMI, Mohammad et al. Eco-friendly UV protective bionanocomposite based on Salep-mucilage/flower-like ZnO nanostructures to control photo-oxidation of kilka fish oil. 103 International Journal of Biological Macromolecules, v. 168, p. 591-600, 2020. EMBUSCADO, Milda E. Bioactives from culinary spices and herbs: a review. Journal of Food Bioactives, v. 6, 2019. ENNIGROU, A. et al. Maturation-related changes in phytochemicals and biological activities of the Brazilian pepper tree (Schinus terebinthifolius Raddi) fruits. South African Journal of Botany, v. 108, p. 407-415, 2017. ERKAN, Nuray et al. Nutritional Composition and heavy Metal Concentrations in Sardinella maderensis (Lowe, 1838) obtained from the Mauritanian fisheries. Journal of Applied Ichthyology, v. 36, n. 6, p. 906-911, 2020. FAGUNDES, Mariane Bittencourt et al. Characterization of olive oil flavored with Brazilian pink pepper (Schinus terebinthifolius Raddi) in different maceration processes. Food Research International, v. 137, p. 109593, 2020. FAO, Food and Agriculture Organization of the United Nations. Fisheries and aquaculture statistics. FAO Fisheries and Aquaculture Department. Rome, p. 24-27, 2014. FAO, Food and Agriculture Organization of the United Nations. Fisheries and aquaculture statistics. FAO Fisheries and Aquaculture Department. Rome, 2018. FERIANI, Anouar et al. HPLC–ESI–QTOF–MS/MS profiling and therapeutic effects of Schinus terebinthifolius and Schinus molle fruits: investigation of their antioxidant, antidiabetic, anti-inflammatory and antinociceptive properties. Inflammopharmacology, v. 29, n. 2, p. 467-481, 2021a. FERIANI, Anouar et al. Multidirectional insights on polysaccharides from Schinus terebinthifolius and Schinus molle fruits: Physicochemical and functional profiles, in vitro antioxidant, anti-genotoxicity, antidiabetic, and antihemolytic capacities, and in vivo anti-inflammatory and anti-nociceptive properties. International Journal of Biological Macromolecules, v. 165, p. 2576-2587, 2020. FERIANI, Anouar et al. Schinus terebinthifolius fruits intake ameliorates metabolic disorders, inflammation, oxidative stress, and related vascular dysfunction, in atherogenic diet-induced obese rats. Insight of their chemical characterization using HPLC-ESI-QTOF-MS/MS. Journal of Ethnopharmacology, v. 269, p. 113701, 2021b. FERREIRA, Fernanda S. et al. Impact of air frying on cholesterol and fatty acids oxidation in sardines: Protective effects of aromatic herbs. Journal of food science, v. 82, n. 12, p. 2823-2831, 2017. FEUEREISEN, Michelle M. et al. Characterization of phenolic compounds in Brazilian pepper (Schinus terebinthifolius Raddi) Exocarp. Journal of agricultural and food chemistry, v. 62, n. 26, p. 6219-6226, 2014. FEUEREISEN, Michelle M. et al. Differentiation of Brazilian peppertree (Schinus terebinthifolius raddi) and Peruvian peppertree (Schinus molle L.) fruits by UHPLC–UV–MS analysis of their anthocyanin and biflavonoid profiles. Journal of agricultural and food chemistry, v. 65, n. 26, p. 5330-5338, 2017b. 104 FEUEREISEN, Michelle M. et al. Pressurized liquid extraction of anthocyanins and biflavonoids from Schinus terebinthifolius Raddi: A multivariate optimization. Food chemistry, v. 214, p. 564-571, 2017a. FIDELIS, Queli C. et al. Ouratea genus: chemical and pharmacological aspects. Revista Brasileira de Farmacognosia, v. 24, n. 1, p. 1-19, 2014. FIEDOR, Joanna; BURDA, Květoslava. Potential role of carotenoids as antioxidants in human health and disease. Nutrients, v. 6, n. 2, p. 466-488, 2014. FIGUEIRÊDO, Bruno C. et al. Inhibition of cholesterol and polyunsaturated fatty acids oxidation through the use of annatto and bixin in high‐pressure processed fish. Journal of food science, v. 80, n. 8, p. C1646-C1653, 2015. FOOTE, Christopher. S. Definition of type I and type II photosensitized oxidation. Photochemistry and photobiology, v. 54, n. 5, p. 659-659, 1991. FORTUNATO, Alice Raquel et al. Effect of Brazilian pepper (Schinus terebinthifolius Raddi) extracts on color and oxidative stability of sardine patties stored under refrigeration. Journal of Food Processing and Preservation, v. 43, n. 11, p. e14187, 2019. FRANKEL, Edwin N. Secondary products of lipid oxidation. Chemistry and physics of lipids, v. 44, n. 2-4, p. 73-85, 1987. FREITAS, Maria Tereza de et al. Effect of cooking method on the formation of 7-ketocholesterol in Atlantic hake (Merluccius hubbsi) and smooth weakfish (Cynoscion leiarchus) fillets. LWT-Food Science and Technology, v. 62, n. 2, p. 1141-1147, 2015. FULEKI, Tibor; FRANCIS, F. J. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. Journal of food science, v. 33, n. 1, p. 72-77, 1968. GIMÉNEZ, Begoña; RONCALÉS, Pedro; BELTRÁN, José A. The effects of natural antioxidants and lighting conditions on the quality characteristics of gilt‐head sea bream fillets (Sparus aurata) packaged in a modified atmosphere. Journal of the Science of Food and Agriculture, v. 84, n. 9, p. 1053-1060, 2004. GIROTTI, Albert W. Lipid hydroperoxide generation, turnover, and effector action in biological systems. Journal of lipid research, v. 39, n. 8, p. 1529-1542, 1998. GIROTTI, Albert W. New trends in photobiology: Photosensitized oxidation of cholesterol in biological systems: Reaction pathways, cytotoxic effects and defense mechanisms. Journal of Photochemistry and Photobiology B: Biology, v. 13, n. 2, p. 105-118, 1992. GIROTTI, Albert W.; KORYTOWSKI, Witold. Cholesterol peroxidation as a special type of lipid oxidation in photodynamic systems. Photochemistry and photobiology, v. 95, n. 1, p. 73-82, 2019. GOLDSTEIN, Joseph L.; BROWN, Michael S. A century of cholesterol and coronaries: from plaques to genes to statins. Cell, v. 161, n. 1, p. 161-172, 2015. 105 GOMES, Laura Jane et al. Pensando a biodiversidade: aroeira (Schinus terebinthifolius RADDI.). Embrapa Florestas-Livro científico (ALICE), 2013. GONÇALVES, Fabiano Gomes et al. Efeito da pimenta rosa associada a diversas dosagens de antibióticos em frangos de corte. Ciência Rural, v. 42, n. 8, p. 1503-1509, 2012. GONÇALVES, Juarez Henrique Teixeira; SANTOS, Adriana Suellen; MORAIS, Harriman Aley. Atividade antioxidante, compostos fenólicos totais e triagem fitoquímica de ervas condimentares desidratadas. Revista da Universidade Vale do Rio Verde, v. 13, n. 1, p. 486-497, 2015. GONÇALVES, Renata Menoci et al. Lipid profile and fatty acid composition of marine fish species from Northeast coast of Brazil. Journal of Food Science and Technology, p. 1-13, 2020. GORASSINI, Andrea et al. Rapid determination of cholesterol oxidation products in milk powder-based products by reversed phase SPE and HPLC-APCI-MS/MS. Food chemistry, v. 230, p. 604-610, 2017. GORDON, M. H. et al. Factors affecting lipid oxidation. Understanding and measuring the shelf-life of food, p. 128-141, 2004. GUARDIOLA, Francesc et al. Formación de derivados oxidados del colesterol en alimentos. Grasas y aceites, 1995. GUARDIOLA, Francesc. Cholesterol and phytosterol oxidation products: analysis, occurrence, and biological effects. The American Oil Chemists Society, 2002. GUINÉ, Raquel PF; HENRIQUES, Francisca. O papel dos ácidos gordos na nutrição humana e desenvolvimentos sobre o modo como influenciam a saúde. Millenium, n. 40, p. 7-21, 2011. GUZZO DA SILVA, Bruno et al. Optimization of hydrodistillation and in vitro anticancer activity of essential oil from Schinus terebinthifolius Raddi fruits. Chemical engineering communications, v. 206, n. 5, p. 619-629, 2019. HAIMEUR, Adil et al. Fish Oil and Microalga Omega‐3 as Dietary Supplements: A Comparative Study on Cardiovascular Risk Factors in High‐Fat Fed Rats. Lipids, v. 51, n. 9, p. 1037-1049, 2016. HAN, Xiuzhen; SHEN, Tao; LOU, Hongxiang. Dietary polyphenols and their biological significance. International Journal of Molecular Sciences, v. 8, n. 9, p. 950-988, 2007. HASSANPOUR, Shahin et al. Plants and secondary metabolites (Tannins): A Review. International Journal of Forest, Soil and Erosion, v.1, p. 47-53, 2011. HSIEH, R. J.; KINSELLA, J. E. Oxidation of polyunsaturated fatty acids: mechanisms, products, and inhibition with emphasis on fish. Advances in food and nutrition research, v. 33, p. 233-341, 1989. 106 HU, Po Chen; CHEN, Bing Huei. Effects of riboflavin and fatty acid methyl esters on cholesterol oxidation during illumination. Journal of agricultural and food chemistry, v. 50, n. 12, p. 3572-3578, 2002. HUSS, H. H. Garantia da qualidade dos produtos da pesca. Food & Agriculture Org., 1997. HUYUT, Zübeyir; BEYDEMIR, Şükrü; GÜLÇIN, İlhami. Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Biochemistry research international, v. 2017, 2017. HWANG, Ko-Eun et al. Effects of antioxidant combinations on shelf stability of irradiated chicken sausage during storage. Radiation Physics and Chemistry, v. 106, p. 315-319, 2015. IBAMA. Relatório de Reunião sobre a pescada de sardinha na região Sul e Sudeste. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Itajaí, p. 34, 2013. ITO, N. et al. Studies on antioxidants: their carcinogenic and modifying effects on chemical carcinogenesis. Food and Chemical Toxicology, v. 24, n. 10-11, p. 1071-1082, 1986. JAIN, Mahendra K. et al. Specific competitive inhibitor of secreted phospholipase A2 from berries of Schinus terebinthifolius. Phytochemistry, v. 39, n. 3, p. 537-547, 1995. JERIBI, Chokri et al. Comparative study of bioactive compounds and antioxidant activity of Schinus terebinthifolius Raddi fruits and leaves essential oils. Int J Sci Res, v. 3, n. 12, p. 452-8, 2014. JOHNSON, Melissa; MCELHENNEY, Wendell H.; EGNIN, Marceline. Influence of green leafy vegetables in diets with an elevated ω-6: ω-3 fatty acid ratio on rat blood pressure, plasma lipids, antioxidant status and markers of inflammation. Nutrients, v. 11, n. 2, p. 301, 2019. KAISTHA, Krishan K.; KIER, Lemont B. Structural studies on terebinthone from Schinus terebinthefolius. Journal of Pharmaceutical Sciences, v. 51, n. 3, p. 245-248, 1962a. KAISTHA, Krishan K.; KIER, Lemont B. Structural studies on the triterpenes of Schinus terebinthefolus. Journal of pharmaceutical sciences, v. 51, n. 12, p. 1136-1139, 1962b. KASSEM, M. E. S.; EL-DESOKY, S. K.; SHARAF, M. Biphenyl esters and biflavonoids from the fruits of Schinus terebenthefolus. Chemistry of Natural Compounds, v. 40, n. 5, p. 447-450, 2004. KAURINOVIC, Biljana; VASTAG, Djendji. Flavonoids and phenolic acids as potential natural antioxidants. In: Antioxidants. London, UK: IntechOpen, 2019. p. 1-20. KAZUO, Miyashita. Prevention of fish oil oxidation. Journal of oleo science, v. 68, n. 1, p. 1-11, 2019. KHATIB, Soliman; VAYA, Jacob. Oxysterols and symptomatic versus asymptomatic human atherosclerotic plaque. Biochemical and biophysical research communications, v. 107 446, n. 3, p. 709-713, 2014. KHOO, Hock Eng et al. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & nutrition research, v. 61, n. 1, p. 1361779, 2017. KLOUDOVA, Alzbeta; GUENGERICH, F. Peter; SOUCEK, Pavel. The role of oxysterols in human cancer. Trends in Endocrinology & Metabolism, v. 28, n. 7, p. 485-496, 2017. KORNIENKO, Ju S. et al. High doses of synthetic antioxidants induce premature senescence in cultivated mesenchymal stem cells. Scientific reports, v. 9, n. 1, p. 1-13, 2019. KRITCHEVSKY, David; CHEN, Shirley C. Phytosterols—health benefits and potential concerns: a review. Nutrition Research, v. 25, n. 5, p. 413-428, 2005. KULIG, Waldemar et al. Cholesterol oxidation products and their biological importance. Chemistry and physics of lipids, v. 199, p. 144-160, 2016. KUMAR, Naresh; GOEL, Nidhi. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, v. 24, p. e00370, 2019. KURUTAS, Ergul Belge. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutrition journal, v. 15, n. 1, p. 1-22, 2015. LAGUERRE, Mickaël; LECOMTE, Jérôme; VILLENEUVE, Pierre. Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. Progress in lipid research, v. 46, n. 5, p. 244-282, 2007. LEMAY-NEDJELSKI, Lauren et al. Omega-3 polyunsaturated fatty acids time-dependently reduce cell viability and oncogenic microRNA-21 expression in estrogen receptor-positive breast cancer cells (MCF-7). International journal of molecular sciences, v. 19, n. 1, p. 244, 2018. LENZI, Maurício; ORTH, Afonso Inácio. Caracterização funcional do sistema reprodutivo da Aroeira-vermelha (Schinus terebinthifolius Raddi), em Florianópolis-SC, Brasil. Revista Brasileira de Fruticultura, v. 26, n. 2, p. 198-201, 2004. LEOPOLD, Jane A.; LOSCALZO, Joseph. Oxidative risk for atherothrombotic cardiovascular disease. Free Radical Biology and Medicine, v. 47, n. 12, p. 1673-1706, 2009. LERCKER, G.; RODRIGUEZ-ESTRADA, M. T. Cholesterol oxidation: presence of 7-ketocholesterol in different food products. Journal of Food Composition and Analysis, v. 13, n. 4, p. 625-631, 2000. LICHTENTHALER, H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382, 1987. LINDEN, Maria et al. Effects of structural differences on the antibacterial activity of biflavonoids from fruits of the Brazilian peppertree (Schinus terebinthifolius Raddi). Food Research International, v. 133, p. 109134, 2020. 108 LLOYD, H. A. et al. Terpenes of Schinus terebinthifolius. Phytochemistry, 1301-1302, 1977. LOCALI-PEREIRA, Adilson Roberto et al. Modulation of volatile release and antimicrobial properties of pink pepper essential oil by microencapsulation in single-and double-layer structured matrices. International Journal of Food Microbiology, v. 335, p. 108890, 2020. LORENZI, Harri. Arvores brasileiras: manual de identificaçâo e cultivo de plantas arbóreas do Brasil. Nova Odessa. Instituto Plantarum de Estudos da Flora Ltda, 2ªedição, 1998. LORENZI, Harri; FLORA, I. P. D. E. D. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil: Instituto Plantarum de Estudos da Flora, 2002. LORENZI, H.; MATOS, F. J. A. Plantas medicinais no Brasil: nativas e exóticas. Nova Odessa-SP: Instituto Plantarum, p. 544, 2002. LORENZO, José Manuel et al. Berries extracts as natural antioxidants in meat products: A review. Food Research International, v. 106, p. 1095-1104, 2018. LUZIA, Liania A. et al. The influence of season on the lipid profiles of five commercially important species of Brazilian fish. Food chemistry, v. 83, n. 1, p. 93-97, 2003. MALDONADO-PEREIRA, Lisaura et al. The role of cholesterol oxidation products in food toxicity. Food and Chemical Toxicology, v. 118, p. 908-939, 2018. MARTINS, Amanda Mattos Dias et al. Sardinhas: importância nutricional e econômica para o Brasil. Semioses, v. 10, n. 2, p. 51-59, 2016. MEDINA‐MEZA, Ilce Gabriela et al. Kinetics of 25‐hydroperoxycholesterol formation during photo‐oxidation of crystalline cholesterol. Journal of the Science of Food and Agriculture, v. 94, n. 8, p. 1543-1551, 2014. MEDINA-MEZA, Ilce Gabriela et al. Oxidative pattern from fluorescent light exposition of crystalline cholesterol. Food Biophysics, v. 7, n. 3, p. 209-219, 2012. MEDINA-MEZA, Ilce Gabriela; BARNABA, Carlo. Kinetics of cholesterol oxidation in model systems and foods: current status. Food Engineering Reviews, v. 5, n. 3, p. 171-184, 2013. MEDINA-MEZA, Ilce Gabriela; BARNABA, Carlo; BARBOSA-CÁNOVAS, Gustavo V. Effects of high-pressure processing on lipid oxidation: A review. Innovative Food Science & Emerging Technologies, v. 22, p. 1-10, 2014. MENEGALI, Beatriz Schmidt et al. Pink pepper extract as a natural antioxidant in chicken burger: Effects on oxidative stability and dynamic sensory profile using Temporal Dominance of Sensations. LWT, v. 121, p. 108986, 2020. MERLO, Thais Cardoso et al. Incorporation of pink pepper residue extract into chitosan film combined with a modified atmosphere packaging: Effects on the shelf life of salmon 109 fillets. Food Research International, v. 125, p. 108633, 2019. MIAO, Zhijuan et al. Role of polyunsaturated fatty acids in ischemic stroke–a perspective of specialized pro-resolving mediators. Clinical Nutrition, 1921. MINTZER, Evan; CHARLES, Grace; GORDON, Sharon. Interaction of two oxysterols, 7-ketocholesterol and 25-hydroxycholesterol, with phosphatidylcholine and sphingomyelin in model membranes. Chemistry and physics of lipids, v. 163, n. 6, p. 586-593, 2010. MISHRA, Sanjukta; MISHRA, Bana Bihari. Study of lipid peroxidation, nitric oxide end product, and trace element status in type 2 diabetes mellitus with and without complications. International Journal of Applied and Basic Medical Research, v. 7, n. 2, p. 88, 2017. MIYOSHI, Noriyuki et al. Implications of cholesterol autoxidation products in the pathogenesis of inflammatory diseases. Biochemical and biophysical research communications, v. 446, n. 3, p. 702-708, 2014. MONTEIRO, Julio Marcelino et al. Taninos: uma abordagem da química à ecologia. Química Nova, v. 28, n. 5, p. 892-896, 2005. MORAIS, Thiago R. et al. Application of an ionic liquid in the microwave assisted extraction of cytotoxic metabolites from fruits of Schinus terebinthifolius Raddi (Anacardiaceae). Journal of the Brazilian Chemical Society, v. 28, n. 3, p. 492-497, 2017. MORRISSEY, P. A. et al. Lipid stability in meat and meat products. Meat science, v. 49, p. S73-S86, 1998. MORTON, Julia F. Brazilian pepper—its impact on people, animals and the environment. Economic Botany, v. 32, n. 4, p. 353-359, 1978. MORZYCKI, Jacek W. Recent advances in cholesterol chemistry. Steroids, v. 83, p. 62-79, 2014. MUHS, Amelia et al. Virulence inhibitors from Brazilian peppertree block quorum sensing and abate dermonecrosis in skin infection models. Scientific reports, v. 7, n. 1, p. 1-15, 2017. NAYAK, Balunkeswar; LIU, Rui Hai; TANG, Juming. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains—a review. Critical reviews in food science and nutrition, v. 55, n. 7, p. 887-918, 2015. NIKI, Etsuo et al. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochemical and biophysical research communications, v. 338, n. 1, p. 668-676, 2005. OHSHIMA, T. Formation and content of cholesterol oxidation products in seafood and seafood products: secondary title: AOAC Press: Champaign, IL, 187-203 p., 2002. 110 OLIVEIRA, George Layson da Silva. Determinação da capacidade antioxidante de produtos naturais in vitro pelo método do DPPH•: estudo de revisão. Revista Brasileira de Plantas Medicinais, v. 17, p. 36-44, 2015. OLIVEIRA, Soraya Kobarg et al. Efeito da sazonalidade sobre o valor químico de peixes marinhos do litoral catarinense: sardinha (Sardinella brasilienses), atum (Katsuwonus pelanis), corvina (Micropogonias furnieri) e pescada (Cynoscion steindacheri). 2003. Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Agrárias. Programa de Pós-Graduação em Ciência dos Alimentos, SC. Disponível em: < http://repositorio.ufsc.br/xmlui/handle/123456789/84650>. Acesso em: 20 maio de 2021. ORCZEWSKA-DUDEK, Sylwia et al. Cholesterol and lipid peroxides in animal products and health implications-a review. Annals of Animal Science, v. 12, n. 1, p. 25-52, 2012. ORLIEN, Vibeke; HANSEN, Eva; SKIBSTED, Leif H. Lipid oxidation in high-pressure processed chicken breast muscle during chill storage: critical working pressure in relation to oxidation mechanism. European Food Research and Technology, v. 211, n. 2, p. 99-104, 2000. OSADA, Kyoichi et al. Levels and formation of oxidized cholesterols in processed marine foods. Journal of Agricultural and Food Chemistry, v. 41, n. 11, p. 1893-1898, 1993. OZOGUL, Yesim et al. The effects of the combination of freezing and the use of natural antioxidant technology on the quality of frozen sardine fillets (Sardinella aurita). International journal of food science & technology, v. 46, n. 2, p. 236-242, 2011. PAGANI, Alessandra Almeida Castro et al. Quantification of bioactive compounds of pink pepper (Schinus Terebinthifolius, Raddi). International Journal of Engineering and Innovative Technology, v. 4, n. 5, p. 37-41, 2014. PANCHE, A. N.; DIWAN, A. D.; CHANDRA, S. R. Flavonoids: an overview. Journal of nutritional science, v. 5, 2016. PANIANGVAIT, P. et al. Cholesterol oxides in foods of animal origin. Journal of Food Science, v. 60, n. 6, p. 1159-1174, 1995. PARCHETA, Monika et al. Recent Developments in Effective Antioxidants: The Structure and Antioxidant Properties. Materials, v. 14, n. 8, p. 1984, 2021. PATOCKA, Jiri; DE ALMEIDA, Joyce Diz. Brazilian pepper tree: Review of pharmacology. Military Medicinal Science Letters, v. 86, n. 1, p. 32-41, 2017. PÉRINO-ISSARTIER, Sandrine et al. Microwave turbo hydrodistillation for rapid extraction of the essential oil from Schinus terebinthifolius Raddi Berries. Chromatographia, v. 72, n. 3, p. 347-350, 2010. PERUMALLA, A. V. S.; HETTIARACHCHY, Navam S. Green tea and grape seed extracts-Potential applications in food safety and quality. Food Research International, v. 44, n. 4, p. 827-839, 2011. PINTO, Jannaína V. da Costa et al. Effect of soil nitrogen and phosphorus on early 111 development and essential oil composition of Schinus terebinthifolius Raddi. Journal of Essential Oil Bearing Plants, v. 19, n. 1, p. 247-257, 2016. PIRAS, Alessandra et al. Chemical Composition and Biological Activity of Volatile Extracts from Leaves and Fruits of Schinus terebinthifolius Raddi from Tunisia. Records of Natural Products, v. 11, n. 1, 2017. PISOSCHI, Aurelia Magdalena et al. Antioxidant capacity determination in plants and plant-derived products: a review. Oxidative medicine and cellular longevity, v. 2016, 2016. PIZATO, Nathalia et al. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Scientific reports, v. 8, n. 1, p. 1-12, 2018. PROCHÁZKOVÁ, Dagmar; BOUŠOVÁ, I.; WILHELMOVÁ, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, v. 82, n. 4, p. 513-523, 2011. QUEIRES, L. C. S. et al. Polyphenols purified from the Brazilian aroeira plant (Schinus terebinthifolius, Raddi) induce apoptotic and autophagic cell death of DU145 cells. Anticancer research, v. 26, n. 1A, p. 379-387, 2006. QURESHI, Abdul Wahid et al. Ageing enhances the shedding of splenocyte microvesicles with endothelial pro-senescent effect that is prevented by a short-term intake of omega-3 PUFA EPA: DHA 6: 1. Biochemical pharmacology, v. 173, p. 113734, 2020. RAEISI, Sara et al. Evaluation of antioxidant and antimicrobial effects of shallot (Allium ascalonicum L.) fruit and ajwain (Trachyspermum ammi (L.) Sprague) seed extracts in semi-fried coated rainbow trout (Oncorhynchus mykiss) fillets for shelf-life extension. LWT-Food Science and Technology, v. 65, p. 112-121, 2016. RAJASINGHE, Lichchavi D. et al. Omega-3 fatty acid intake suppresses induction of diverse autoantibody repertoire by crystalline silica in lupus-prone mice. Autoimmunity, v. 53, n. 7, p. 415-433, 2020. RAMALHO, Valéria Cristina; JORGE, Neuza. Antioxidantes utilizados em óleos, gorduras e alimentos gordurosos. Química nova, p. 755-760, 2006. RIBEIRO, Jéssica Souza et al. Natural antioxidants used in meat products: A brief review. Meat Science, v. 148, p. 181-188, 2019. RICHARDSON, Alexandra J.; MONTGOMERY, Paul. The Oxford-Durham study: a randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics, v. 115, n. 5, p. 1360-1366, 2005. RICHTER, Rita; VON REUß, Stephan H.; KÖNIG, Wilfried A. Spirocyclopropane-type sesquiterpene hydrocarbons from Schinus terebinthifolius Raddi. Phytochemistry, v. 71, n. 11-12, p. 1371-1374, 2010. ROMANI, Viviane Patrícia; HERNÁNDEZ, Carlos Prentice; MARTINS, Vilásia Guimarães. Pink pepper phenolic compounds incorporation in starch/protein blends and its potential to inhibit apple browning. Food Packaging and Shelf Life, v. 15, p. 151-158, 2018. 112 RONSEIN, Graziella E. et al. Oxidação de proteínas por oxigênio singlete: mecanismos de dano, estratégias para detecção e implicações biológicas. Química Nova, v. 29, n. 3, p. 563-568, 2006. ROSA, Juliana Severo et al. Influência dos ácidos graxos ômega 3 e vitamina D na depressão: uma breve revisão. Revista de Ciências Médicas e Biológicas, v. 16, n. 2, p. 217-223, 2017. RUFINO, Maria do Socorro et al. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food chemistry, v. 121, n. 4, p. 996-1002, 2010. RUSSO, D., Balistreri, C., TAPANES-CASTILLO, A., & Pina, M. Preliminary Antioxidant Activity Analysis of Brazilian Pepper Tree (Schinus terebinthifolius) Extracts via TLC, FRAP, and DPPH. International Conference Series on Multidisciplinary Sciences, 1, 1-3, 2017. SAENZ DE VITERI, Manuel et al. Uma maior proporção de ácido eicosapentaenóico (EPA) Quando combinado com o ácido docosahexaenóico (DHA) em suplementos dietéticos ômega-3, proporciona maiores efeitos antioxidantes nas células retinais humanas. Antioxidants, v. 9, n. 9, pág. 828, 2020. SAINI, Ramesh Kumar; KEUM, Young-Soo. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life sciences, v. 203, p. 255-267, 2018. SALDANHA, T.; BENASSI, M. T.; BRAGAGNOLO, N. Fatty acid contents evolution and cholesterol oxides formation in Brazilian sardines (Sardinella brasiliensis) as a result of frozen storage followed by grilling. LWT-Food Science and Technology, v. 41, n. 7, p. 1301-1309, 2008. SALDANHA, Tatiana et al. HPLC separation and determination of 12 cholesterol oxidation products in fish: comparative study of RI, UV, and APCI-MS detectors. Journal of agricultural and food chemistry, v. 54, n. 12, p. 4107-4113, 2006. SALDANHA, Tatiana. Fatores que influenciam a formação de oxidos de colesterol em produtos marinhos ricos em acidos graxos poliinsaturados. 2006. 168 p. Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos, Campinas, SP. Disponível em: < http://www.repositorio.unicamp.br/handle/REPOSIP/255272>. Acesso em: 20 maio de 2021. SALDAÑA, Erick et al. Sensory and hedonic impact of the replacement of synthetic antioxidant for pink pepper residue extract in chicken burger. Journal of food science and technology, v. 57, n. 2, p. 617-627, 2020. SALEM, M. Z. M. et al. Antibacterial activity of extracted bioactive molecules of Schinus terebinthifolius ripened fruits against some pathogenic bacteria. Microbial pathogenesis, v. 120, p. 119-127, 2018. SALEM, Mohamed ZM; HAMED, Safa Abd El-Kader Mohamed; MANSOUR, Maisa. Assessment of efficacy and effectiveness of some extracted bio-chemicals as bio-fungicides on Wood. Drvna industrija: Znanstveni časopis za pitanja drvne tehnologije, v. 70, n. 4, p. 113 337-350, 2019. SAMADI, Afshin et al. A Comprehensive Review on Oxysterols and Related Diseases. Current medicinal chemistry, 2020. SÁNCHEZ-MORENO, C. Compuestos polifenólicos: efectos fisiológicos. Actividad antioxidante. Alimentaria, n. 329, p. 29-40, 2002. SANTOS JÚNIOR, Oscar O. et al. A simple, fast and efficient method for transesterification of fatty acids in foods assisted by ultrasound energy. Journal of the Brazilian Chemical Society, v. 25, n. 9, p. 1712-1719, 2014. SANTOS, Ana Cristina Atti dos et al. Chemical composition of the essential oils from leaves and fruits of Schinus molle L. and Schinus terebinthifolius Raddi from Southern Brazil. Journal of Essential Oil Bearing Plants, v. 12, n. 1, p. 16-25, 2009. SARTORELLI, Patricia et al. In vitro trypanocidal evaluation of pinane derivatives from essential oils of ripe fruits from Schinus terebinthifolius Raddi (Anacardiaceae). Química Nova, v. 35, n. 4, p. 743-747, 2012. SASSI, Ahlem Ben et al. Phytochemical Profile and Antiproliferative, Anti-tyrosinase, Antioxidant, and Antibacterial Potential of Schinus terebinthifolius Growing in Tunisia. Journal of Herbs, Spices & Medicinal Plants, v. 26, n. 1, p. 61-76, 2020. SATO, Tomohito et al. Preferential incorporation of administered eicosapentaenoic acid into thin-cap atherosclerotic plaques. Arteriosclerosis, thrombosis, and vascular biology, v. 39, n. 9, p. 1802-1816, 2019. SAWADA, Yu; SAITO-SASAKI, Natsuko; NAKAMURA, Motonobu. Omega 3 Fatty Acid and Skin Diseases. Frontiers in immunology, v. 11, p. 3818, 2021. SAWAYA, Alexandra CHF et al. Brazilian propolis of Tetragonisca angustula and Apis mellifera. Apidologie, v. 37, n. 3, p. 398-407, 2006. SCAPIN, G. et al. Phenolics compounds, flavonoids and antioxidant activity of chia seed extracts (Salvia hispanica) obtained by different extraction conditions. International Food Research Journal, v. 23, n. 6, 2016. SCHERR, Carlos et al. Concentração de ácidos graxos e colesterol de peixes habitualmente consumidos no Brasil. Arquivos Brasileiros de Cardiologia, 2015. SCHIMITBERGER, Vanusa Maria Bonatto et al. Volatile compounds profile changes from unripe to ripe fruits of Brazilian pepper (Schinus terebinthifolia Raddi). Industrial Crops and Products, v. 119, p. 125-131, 2018. SEOL, Kuk-Hwan et al. The effect of the water extracts of digestive medicinal plants on the shelf-life of pork patties. Food Science of Animal Resources, v. 31, n. 1, p. 54-60, 2011. SERRANO-LEÓN, Juan S. et al. Chitosan active films containing agro-industrial residue extracts for shelf life extension of chicken restructured product. Food Research International, v. 108, p. 93-100, 2018. 114 SHAHIDI, Fereidoon; AMBIGAIPALAN, Priyatharini. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of functional foods, v. 18, p. 820-897, 2015. SHAHIDI, Fereidoon; ZHONG, Ying. Lipid oxidation and improving the oxidative stability. Chemical society reviews, v. 39, n. 11, p. 4067-4079, 2010. SHARANGI, AMIT BARAN. Secondary metabolites in spices and medicinal plants: an overview. Plant secondary metabolites, biological & therapeutic significance, v. 1, p. 143-168, 2017. SHARIFI-RAD, Mehdi et al. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Frontiers in physiology, v. 11, p. 694, 2020. SHIRLEY, Brenda W. Flavonoid biosynthesis: ‘new’ functions for an ‘old’ pathway. Trends in plant science, v. 1, n. 11, p. 377-382, 1996. SHOZEN, Kei-ichi et al. Formation of cholesterol oxides in marine fish products induced by grilling. Fisheries science, v. 61, n. 5, p. 817-821, 1995. SILVA, Bruno Guzzo et al. Effects of different drying conditions on key quality parameters of pink peppercorns (Schinus terebinthifolius Raddi). Journal of Food Quality, v. 2017, 2017. SILVA, Marília Lordêlo Cardoso et al. Phenolic compounds, carotenoids and antioxidant activity in plant products. Semina: Ciências Agrárias, v. 31, n. 3, p. 669-682, 2010. SILVA, Priscila. T. et al. Composição Química do Óleo Essencial Extraído das Folhas dos Indivíduos Macho e Fêmea e Frutos de Schinus terebenthifolius. Revista Virtual Química, v. 11, 2019. SILVA, Tatiana et al. Aroeira (Schinus terebinthifolius Raddi) Fruit: Chemical Composition and Antioxidant Capacity. Revista Virtual de Química, v. 11, n., p. 1614-1624, 2019. SILVA-LUZ, C. L.; PIRANI, J. R. Anacardiaceae in lista de espécies da flora do Brasil. Jardim Botânico do Rio de Janeiro, 2012. SKOPP, Gisela; SCHWENKER, Gerhard. Biflavonoide aus Schinus terebinthifolius Raddi (Anacardiaceae)/Biflavonoids from Schinus terebinthifolius Raddi (Anacardiaceae). Zeitschrift für Naturforschung B, v. 41, n. 11, p. 1479-1482, 1986. SKROVANKOVA, Sona et al. Bioactive compounds and antioxidant activity in different types of berries. International journal of molecular sciences, v. 16, n. 10, p. 24673-24706, 2015. SMITH, Leland L. Cholesterol autoxidation 1981–1986. Chemistry and Physics of Lipids, v. 44, n. 2-4, p. 87-125, 1987. SMITH, Leland L. Cholesterol autoxidation. Springer Science & Business Media, 1981. 115 SOARES, Daniele G.; ANDREAZZA, Ana C.; SALVADOR, Mirian. Sequestering ability of butylated hydroxytoluene, propyl gallate, resveratrol, and vitamins C and E against ABTS, DPPH, and hydroxyl free radicals in chemical and biological systems. Journal of Agricultural and Food Chemistry, v. 51, n. 4, p. 1077-1080, 2003. SOARES, Denise Josino et al. Processos oxidativos na fração lipídica de alimentos. Boletim do Centro de Pesquisa de Processamento de Alimentos, v. 30, n. 2, 2012. SOARES, Sergio Eduardo. Ácidos fenólicos como antioxidantes. Revista de nutrição, v. 15, n. 1, p. 71-81, 2002. SOBHANI, Mahsa et al. Immunomodulatory; anti-inflammatory/antioxidant effects of polyphenols: a comparative review on the parental compounds and their metabolites. Food Reviews International, p. 1-53, 2020. SOTTERO, Barbara et al. Lipid oxidation derived aldehydes and oxysterols between health and disease. European journal of lipid science and technology, v. 121, n. 1, p. 1700047, 2019. SOUSA, Cleyton Marcos de M. et al. Fenóis totais e atividade antioxidante de cinco plantas medicinais. Química nova, v. 30, n. 2, p. 351-355, 2007. SOUZA, P. H. M.; SOUZA NETO, M. H.; MAIA, G. A. Componentes funcionais nos alimentos. Boletim da SBCTA, v. 37, n. 2, p. 127-135, 2003. SPIEGEL, Maciej et al. Antioxidant Activity of Selected Phenolic Acids–Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. Molecules, v. 25, n. 13, p. 3088, 2020. STAHL, Egon; KELLER, K.; BLINN, C. Cardanol, a skin irritant in pink pepper. Planta medica, v. 48, n. 05, p. 5-9, 1983. SWAIN, Tony; HILLIS, W. E. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, v. 10, n. 1, p. 63-68, 1959. TALAPATRA, Sunil Kumar; TALAPATRA, Bani. Steroids: Cholesterol and Other Phytosterols. In: Chemistry of Plant Natural Products. Springer, Berlin, Heidelberg, 2015. p. 553-583. TANASE, Corneliu; BUJOR, Oana-Crina; POPA, Valentin I. Phenolic natural compounds and their influence on physiological processes in plants. In: Polyphenols in plants. Academic Press, 2019. p. 45-58. TANG, Huaqiao et al. Triterpenoid acids isolated from Schinus terebinthifolia fruits reduce Staphylococcus aureus virulence and abate dermonecrosis. Scientific reports, v. 10, n. 1, p. 1-13, 2020. TAPAS, Ahmad R.; SAKARKAR, D. M.; KAKDE, R. B. Flavonoids as nutraceuticals: a review. Tropical journal of Pharmaceutical research, v. 7, n. 3, p. 1089-1099, 2008. TELAHIGUE, Khaoula et al. The changes of fatty acid composition in sun dried, oven 116 dried and frozen hake (Merluccius merluccius) and sardinella (Sardinella aurita). African Journal of Biochemistry Research, v. 7, n. 8, p. 158-164, 2013. THANAN, Raynoo et al. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. International journal of molecular sciences, v. 16, n. 1, p. 193-217, 2015. TLILI, Nizar et al. Schinus terebinthifolius vs Schinus molle: A comparative study of the effect of species and location on the phytochemical content of fruits. Industrial Crops and Products, v. 122, p. 559-565, 2018. URLIĆ, Marjan et al. Effects of Different n6/n3 PUFAs Dietary Ratio on Cardiac Diabetic Neuropathy. Nutrients, v. 12, n. 9, p. 2761, 2020. VAISALI, C.; BELUR, Prasanna D.; REGUPATHI, I. Comparison of antioxidant properties of phenolic compounds and their effectiveness in imparting oxidative stability to sardine oil during storage. LWT-Food Science and Technology, v. 69, p. 153-160, 2016. VALENTINI, Kelly J. et al. The effect of fish oil supplementation on brain DHA and EPA content and fatty acid profile in mice. International journal of food sciences and nutrition, v. 69, n. 6, p. 705-717, 2018. VAN BOEKEL, M. A. J. S. Statistical aspects of kinetic modeling for food science problems. Journal of Food Science, v. 61, n. 3, p. 477-486, 1996. VEJDAN, Akbar; OJAGH, Seyed Mahdi; ABDOLLAHI, Mehdi. Effect of gelatin/agar bilayer film incorporated with TiO2 nanoparticles as a UV absorbent on fish oil photooxidation. International journal of food science & technology, v. 52, n. 8, p. 1862-1868, 2017. VENTER, Pieter B. et al. Analysis of commercial proanthocyanidins. Part 3: The chemical composition of wattle (Acacia mearnsii) bark extract. Phytochemistry, v. 83, p. 153-167, 2012. VIANA DA SILVA, Marcondes et al. Synthetic and natural antioxidants used in the oxidative stability of edible oils: an overview. Food Reviews International, p. 1-24, 2021. VICENTE, Silvio JV et al. Oxidation of cholesterol in foods and its importance for human health. Food Reviews International, v. 28, n. 1, p. 47-70, 2012. VIEIRA, Mariana Neves et al. Schinus terebinthifolius scale-up countercurrent chromatography (Part I): High performance countercurrent chromatography fractionation of triterpene acids with off-line detection using atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography A, v. 1389, p. 39-48, 2015. VITORIANO, Ana Paula Garcia et al. Composição lipídica de suplementos alimentares de ômega-3 à base de óleo de peixe comercializados em Maringá. 2019. Universidade CESUMAR. XI Encontro Internacional de Produção Científica, 2019. VON SCHACKY, Clemens. Importance of EPA and DHA blood levels in brain structure and function. Nutrients, v. 13, n. 4, p. 1074, 2021. 117 VYNCKE, W. Evaluation of the direct thiobarbituric acid extraction method for determining oxidative rancidity in mackerel (Scomber scombrus L.). Fette, Seifen, Anstrichmittel, v. 77, n. 6, p. 239-240, 1975. WAGNER, Karl-Heinz; ELMADFA, Ibrahim. Biological relevance of terpenoids. Annals of Nutrition and metabolism, v. 47, n. 3-4, p. 95-106, 2003. WANKENNE, M. A. Os tipos e os efeitos da rancidez oxidativa em alimentos. Food Ingredients Brasil, v. 29, p. 38-45, 2014. WHANG, K.; PENG, I. C. Photosensitized lipid peroxidation in ground pork and turkey. Journal of Food Science, v. 53, n. 6, p. 1596-1598, 1988. WOOD, J. D. et al. Effects of fatty acids on meat quality: a review. Meat science, v. 66, n. 1, p. 21-32, 2004. XUE-SHAN, Zhao et al. Imbalanced cholesterol metabolism in Alzheimer's disease. Clinica Chimica Acta, v. 456, p. 107-114, 2016. YAN, Yiqing et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity, v. 38, n. 6, p. 1154-1163, 2013. YU, Hui et al. Antioxidant activities of aqueous extract from Stevia rebaudiana stem waste to inhibit fish oil oxidation and identification of its phenolic compounds. Food chemistry, v. 232, p. 379-386, 2017. YUE, Er et al. Anthocyanin is involved in the activation of pyroptosis in oral squamous cell carcinoma. Phytomedicine, v. 56, p. 286-294, 2019. ZAMARIA, Nicolas. Alteration of polyunsaturated fatty acid status and metabolism in health and disease. Reproduction Nutrition Development, v. 44, n. 3, p. 273-282, 2004. ZAMBIAZI, C. Oxidation reactions of vegetable oils and fats. Boletim da Sociedade Brasileira de Ciencia e Tecnologia de Alimentos (Brazil), v. 33, n. 1, p. 1 –7, 1999. ZEHIROGLU, Cuma; SARIKAYA, Sevim Beyza Ozturk. The importance of antioxidants and place in today’s scientific and technological studies. Journal of food science and technology, v. 56, n. 11, p. 4757-4774, 2019. ZHENG, Wei; WANG, Shiow Y. Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food chemistry, v. 49, n. 11, p. 5165-5170, 2001. ZHISHEN, Jia; MENGCHENG, Tang; JIANMING, Wu. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food chemistry, v. 64, n. 4, p. 555-559, 1999. ZHONG, Shanshan et al. An update on lipid oxidation and inflammation in cardiovascular diseases. Free Radical Biology and Medicine, v. 144, p. 266-278, 2019. 118 ZHU, Xiangqian et al. A comparison of selected methods for determining eicosapentaenoic acid and docosahexaenoic acid in cereal-based foods. Food chemistry, v. 125, n. 4, p. 1320-1327, 2011. ZMYSŁOWSKI, Adam; SZTERK, Arkadiusz. Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Lipids in health and disease, v. 16, n. 1, p. 1-19, 2017.por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/72876/2021%20-%20J%c3%b4nathas%20de%20Souza%20Vieira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6500
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2023-04-04T16:11:00Z No. of bitstreams: 1 2021 - Jônathas de Souza Vieira.pdf: 3774350 bytes, checksum: 530ef14a9a59bb0dfe4ad19cf1dd17b1 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-04-04T16:11:00Z (GMT). No. of bitstreams: 1 2021 - Jônathas de Souza Vieira.pdf: 3774350 bytes, checksum: 530ef14a9a59bb0dfe4ad19cf1dd17b1 (MD5) Previous issue date: 2021-06-22eng
Appears in Collections:Mestrado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Jônathas de Souza Vieira.pdf2021 - Jônathas de Souza Vieira3.69 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.