Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/11073
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGouvêa, Lucas de Paiva
dc.date.accessioned2023-12-22T01:46:21Z-
dc.date.available2023-12-22T01:46:21Z-
dc.date.issued2022-07-26
dc.identifier.citationGOUVÊA, Lucas de Paiva. Avaliação das propriedades tecnológicas de ingredientes proteicos de diferentes leguminosas para o mercado plant-based. 2022. 93 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11073-
dc.description.abstractO mercado mundial observa um crescente aumento pela demanda de produtos vegetarianos e veganos, ao mesmo tempo em que observa um aumento da população que deseja reduzir o consumo de produtos de origem animal sem, contudo, excluí-los da dieta. Esse novo consumidor, denominado de flexitariano, busca a preservação da sensorialidade dos produtos de origem animal, em produtos feitos de plantas, e atualmente representa, aproximadamente 50% dos consumidores brasileiros. Tendo em vista a crescente demanda por ingredientes e produtos proteicos de origem vegetal, é importante conhecer suas propriedades tecnológicas, uma vez que o processo de obtenção desses ingredientes pode modificar as estruturas das proteínas, afetando suas propriedades. O objetivo deste estudo é avaliar as propriedades tecnológicas de ingredientes proteicos provenientes de diferentes leguminosas (soja, ervilha, feijão carioca e feijão fava) para o mercado plant-based. Foram avaliadas a composição centesimal, as propriedades tecnológicas e as características morfológicas dos ingredientes, na forma de farinhas, concentrados e isolados proteicos. O isolado proteio de soja apresentou maior capacidade de retenção de água (4,52 g/g de ingrediente), enquanto o concentrado proteico de feijão fava maior capacidade de retenção de óleo (2,84 g/g de ingrediente), além da menor concentração necessária para formação de gel (12%). As farinhas de feijão carioca e de feijão fava se destacaram na capacidade de formação de espuma (aproximadamente 111% e 93%, respectivamente). O concentrado proteico de feijão carioca obteve atividade emulsificante de 18,87 m2 /g, igualando-se aos isolados comerciais, além de excelente estabilidade da espuma (aproximadamente 95% após 60 min). O concentrado proteico de soja e os isolados proteicos de soja e ervilha apresentaram baixa solubilidade em água comparados aos demais ingredientes. Todos os ingredienes estudados, apesar de terem apresentado algumas diferenças quanto às propriedades estudadas, se mostraram tecnologicamente viáveis de serem incorporados em produtos plant-based, possibilitando a ampliação da oferta de matérias-primas para a produção dos mesmos. Este estudo traz resultados que podem ser utilizados para otimizar a aplicação desses ingredientes pelas indústrias de alimentos no Brasil.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectCiência de alimentospor
dc.subjectFuncionalidade de proteínaspor
dc.subjectPlant-basedpor
dc.subjectFood scienceeng
dc.subjectProtein Functionalityeng
dc.subjectPlant-basedeng
dc.titleAvaliação das propriedades tecnológicas de ingredientes proteicos de diferentes leguminosas para o mercado plant-basedpor
dc.title.alternativeEvaluation of the technological properties of protein ingredients from different legumes for the plant-based marketeng
dc.typeDissertaçãopor
dc.description.abstractOtherThe world market observes a major increase in the demand for vegetarian and vegan products while observing an increase in the population that wants to reduce the consumption of products of animal origin, however, without excluding them from the diet. This new consumer is called flexitarian and they seek to preserve the sensoriality of products from animal origin, in products made from plants. They currently represent approximately 50% of Brazilian consumers. In view of the growing demand for ingredients and protein products of plant origin, it is important to know their technological properties, since the process of obtaining these ingredients can modify the structures of proteins, affecting their properties. The objective of this study is to evaluate the technological properties of protein ingredients from different legumes (soybeans, peas, carioca beans, and fava beans) for the plant-based market. The proximate composition, technological properties, and morphological characteristics of the ingredients were evaluated, in the form of flours, concentrates and protein isolates. The soy protein isolate presented the highest water holding capacity (4,52 g/g of ingredient), while the fava bean protein concentrate showed the highest oil holding capacity (2,84 g/g of ingredient) and the lowest concentration required for gel formation (12%). The carioca bean and fava bean flours stood out in terms of foaming capacity (approximately 111% and 93%, respectively). The carioca bean protein concentrate presented an emulsifying activity of 18.87 m2 /g, similar to the commercial isolates, in addition to the excellent foam stability (approximately 95% after 60 min). The soy protein concentrate and the soy and pea protein isolates showed low solubility compared to the other ingredients. All the ingredients studied, despite having presented some differences in terms of the properties, proved to be technologically viable to be incorporated into plant-based products, expanding the supply of different raw materials for their production. This study rended results that can be used to optimize the application of these ingredients by the food industries in Brazil.eng
dc.contributor.advisor1Silva, Caroline Mellinger
dc.contributor.advisor1ID026.909.329-03por
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-4623-0170por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4981972339690532por
dc.contributor.referee1Silva, Caroline Mellinger
dc.contributor.referee1ID026.909.329-03por
dc.contributor.referee1IDhttps://orcid.org/0000-0003-4623-0170por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/4981972339690532por
dc.contributor.referee2Barbosa, Maria Ivone Martins Jacintho
dc.contributor.referee2IDhttps://orcid.org/0000-0002-9624-9139por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3609445478725882por
dc.contributor.referee3Rosa, Luísa Ozorio Lopes da
dc.contributor.referee3ID131.714.717-01por
dc.contributor.referee3Latteshttp://lattes.cnpq.br/0866833599909274por
dc.creator.ID145.420.427-31por
dc.creator.Latteshttp://lattes.cnpq.br/6445419319760085por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.referencesALZUWAID, N. T.; SISSONS, M.; LADDOMADA, B.; FELLOWS, C. M. Nutritional and functional properties of durum wheat bran protein concentrate. Cereal Chemistry, v. 97, n. 2, p. 304–315, 2020. DOI: https://doi.org/10.1002/cche.10246. AYDEMIR, L. Y.; YEMENICIOĜLU, A. Potential of Turkish Kabuli type chickpea and green and red lentil cultivars as source of soy and animal origin functional protein alternatives. LWT - Food Science and Technology, v. 50, n. 2, p. 686–694, 2013. DOI: https://doi.org/10.1016/j.lwt.2012.07.023. BOYE, J. I., AKSAY, S.; RIBÉREAU, S. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International, v. 43, n. 2, p. 537–546, 2010. DOI: https://doi.org/10.1016/j.foodres.2009.07.021 BOZKURT, F.; BEKIROGLU, H.; DOGAN, K.; KARASU, S.; SAGDIC, O. Technological and bioactive properties of wheat glutenin hydrolysates prepared with various commercial proteases.LWT - Food Science and Technology, v. 149, e-111787, 2021. DOI: https://doi.org/10.1016/j.lwt.2021.111787. BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v. 72, n. 1/2, p. 248-254, 1976. DOI: https://doi.org/10.1016/0003-2697(76)90527-3. ČAKAREVIĆ, J.; VIDOVIĆ, S.; VLADIĆ, J.; GAVARIĆ, A.; JOKIĆ, S.; PAVLOVIĆ, N.; BLAŽIĆ, M.; POPOVIĆ, L. Production of bio-functional protein through revalorization of apricot kernel cake. Foods, v. 8, n. 8, p. 1-12, 2019. DOI: https://doi.org/10.3390/foods8080318. 80 DE LA ROSA -MILLÁN, J.; ORONA-PADILLA, J. L.; FLORES-MORENO, V. M.; SERNA-SALDÍVAR, S. O. Physicochemical, functional and ATR-FTIR molecular analysis of protein extracts derived from starchy pulses. International Journal of Food Science and Technology, v. 53, n. 6, p. 1414–1424, 2018. DOI: https://doi.org/10.1111/ijfs.13719. DU, S.-K.; JIANG, H.; YU, X.; JANE, J.-L. Physicochemical and functional properties of whole legume flour. LWT - Food Science and Technology, v. 55, n. 1, p. 308–313, 2014. DOI: https://doi.org/10.1016/j.lwt.2013.06.001. GHRIBI, A. M.; GAFSI, I. M.; BLECKER, C.; DANTHINE, S.; ATTIA, H.; BESBES, S. Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates. Journal of Food Engineering, v. 165, p. 179–188, 2015. DOI: https://doi.org/10.1016/j.jfoodeng.2015.06.021. GUNDOGAN, R.; KARACA, A. C. Physicochemical and functional properties of proteins isolated from local beans of Turkey. LWT - Food Science and Technology, v. 130, e-109609, p. 1-9, 2020. DOI: https://doi.org/10.1016/j.lwt.2020.109609. IBRAHIM, S. G.; WAN-ZUNAIRAH, W. I.; SAARI, N; KARIM, R. Functional properties of protein concentrates of KB6 kenaf (Hibiscus cannabinus) seed and its milky extract. LWT - Food Science and Technology, v. 135, 110234, 2021. DOI: https://doi.org/10.1016/j.lwt.2020.110234. JARPA-PARRA, M. Lentil protein: a review of functional properties and food application. An overview of lentil protein functionality. International Journal of Food Science and Technology, v. 53, n. 4, p. 892–903, 2018. DOI: https://doi.org/10.1111/ijfs.13685. JARPA-PARRA, M.; BAMDAD, F.; WANG, Y.; TIAU, Z.; TEMELLI, F.; HAN, J.; CHEN, L. Optimization of lentil protein extraction and the influence of process pH on protein structure and functionality. LWT - Food Science and Technology, v. 57, n. 2, p. 461–469, 2014. DOI: https://doi.org/10.1016/j.lwt.2014.02. JOSHI, M.; ADHIKARI, B.; ALDRED, P.; PANOZZO, J. F.; KASAPIS, S.; BARROW, C. J. Interfacial and emulsifying properties of lentil protein isolate. Food Chemistry, v. 134, n. 3, p. 1343–1353, 2012. DOI: https://doi.org/10.1016/j.foodchem.2012.03.029. KAUR, M.; SINGH, N. Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chemistry, v. 91, n. 3, p. 403–411, 2005. DOI: https://doi.org/10.1016/j.foodchem.2004.06.015. LADJAL-ETTOUMI, Y.; BOUDRIES, H.; CHIBANE, M.; ROMERO, A. Pea, Chickpea and Lentil Protein Isolates: Physicochemical Characterization and Emulsifying Properties. Food Biophysics, v. 11, p. 43–51, 2016. DOI: https://doi.org/10.1007/s11483-015-9411-6. LADJAL ETTOUMI, Y.; CHIBANE, M. Some physicochemical and functional properties of pea, chickpea and lentil whole flours. International Food Research Journal, v. 22, n. 3, p. 987–996, 2015. DOI: http://www.ifrj.upm.edu.my/22%20(03)%202015/(16).pdf. LAFARGA, T.; ÁLVAREZ, C.; BOBO, G.; AGUILÓ-AGUAYO, I. Characterization of functional properties of proteins from Ganxet beans (Phaseolus vulgaris L. var. Ganxet) isolated using an ultrasound-assisted methodology. LWT - Food Science and Technology, v. 98, p. 106–112, 2018. DOI: https://doi.org/10.1016/j.lwt.2018.08.033. MARCHINI, M.; MARTI, A.; FOLLI, C.; PRANDI, B.; GANINO, T.; CONTE, P.; FADDA, C.; MATTAROZZI, M.; CARINI, E. Sprouting of sorghum (Sorghum bicolor [L.] moench): Effect of dryingtreatment on protein and starch features. Foods, v. 10, n. 2, p. 1–17, 2021. DOI: https://doi.org/10.3390/foods10020407. 81 NACZK, M.; DIOSADY, L. L.; RUBIN, L. J. Functional properties of canola meals produced by a two‐phase solvent extraction system. Journal of Food Science, v. 50, n. 6, p. 1685–1688, 1985. DOI: https://doi.org/10.1111/j.1365-2621.1985.tb10565.x. OMURA, M. H.; OLIVEIRA, A. P. H. de; SOARES, L. de S.; COIMBRA, J. dos S. R.; BARROS, F. A. R. de; VIDIGAL, M. C. T. R.; BARACAT-PEREIRA, M. C.; OLIVEIRA, E. B. de. Effects of protein concentration during ultrasonic processing on physicochemical properties and techno-functionality of plant food proteins. Food Hydrocolloids, v. 113, 106457, 2021. DOI: https://doi.org/10.1016/j.foodhyd.2020.106457. PEARCE, K. N.; KINSELLA, J. E. Emulsifying Properties of Proteins: Evaluation of a Turbidimetric Technique. Journal of Agricultural and Food Chemistry, v. 26, n. 3, p. 716–723, 1978. DOI: :.https://doi.org/10.1021/jf60217a041. POOLE, S.; WEST, S. I.; WALTERS, C. L. Protein-protein interactions: Their importance in the foaming of heterogeneous protein systems. Journal of the Science of Food and Agriculture, v. 35, n. 6, p. 701–711, 1984. DOI: https://doi.org/10.1002/jsfa.2740350618. RODSAMRAN, P.; SOTHORNVIT, R. Physicochemical and functional properties of protein concentrate from by-product of coconut processing. Food Chemistry, v. 241, p. 364–371, 2018. DOI: https://doi.org/10.1016/j.foodchem.2017.08.116. SARICAOGLU, F. T. Application of high-pressure homogenization (HPH) to modify functional, structural and rheological properties of lentil (Lens culinaris) proteins. International Journal of Biological Macromolecules, v. 144, p. 760–769, 2020. DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.034. SATHE, S. K.; SALUNKHE, D. K. Functional Properties of the Great Northern Bean (Phaseolus vulgaris L.) Proteins: Emulsion, Foaming, Viscosity, and Gelation Properties. Journal of Food Science, v. 46, n. 1, p. 71– 81, 1981. DOI: https://doi.org/10.1111/j.1365-2621.1981.tb14533.x. SHEVKANI, K.; SINGH, N.; KAUR, A.; RANA, J. C. Structural and functional characterization of kidney bean and field pea protein isolates: A comparative study. Food Hydrocolloids, v. 43, jan., p. 679–689, 2015. DOI: https://doi.org/10.1016/j.foodhyd.2014.07.024. ZHENG, H.-G.; YANG, X.-Q.; TANG, C. H.; LI, L.; AHMAD, N. Preparation of soluble soybean protein aggregates (SSPA) from insoluble soybean protein concentrates (SPC) and its functional properties. Food Research International, v. 41, n. 2, p. 154–164, 2008. DOI: https://doi.org/10.1016/j.foodres.2007.10.013.por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/74839/2022%20-%20Lucas%20de%20Paiva%20Gouv%c3%aaa.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6936
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2023-09-22T11:39:31Z No. of bitstreams: 1 2022 - Lucas de Paiva Gouvêa.pdf: 1807630 bytes, checksum: ed93925bd82b1abb25cad69b57a433c3 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-09-22T11:39:31Z (GMT). No. of bitstreams: 1 2022 - Lucas de Paiva Gouvêa.pdf: 1807630 bytes, checksum: ed93925bd82b1abb25cad69b57a433c3 (MD5) Previous issue date: 2022-07-26eng
Appears in Collections:Mestrado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Lucas de Paiva Gouvêa.pdf2022 - Lucas de Paiva Gouvêa1.77 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.