Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/17702
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCarvalho , Isabella Oliveira Alves Moreira de-
dc.date.accessioned2024-08-09T14:35:38Z-
dc.date.available2024-08-09T14:35:38Z-
dc.date.issued2020-09-02-
dc.identifier.citationCARVALHO, Isabella Oliveira Alves Moreira de. Utilização do suco do limão Tahiti (Citrus latifolia) como antioxidante natural durante o preparo térmico de sardinhas (Sardina pilchardus) por diferentes métodos de cocção. 87 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/17702-
dc.description.abstractA crescente preocupação dos consumidores em adquirir hábitos alimentares saudáveis tem aumentado a busca por alimentos funcionais. As sardinhas apresentam altos teores de ácidos graxos poli-insaturados da família ômega-3. Entretanto, contêm concentrações apreciáveis de colesterol, composto altamente susceptível à oxidação lipídica. A formação de óxidos de colesterol e a degradação de ácidos graxos poli-insaturados durante o processamento térmico (termo-oxidação) têm um papel de destaque entre os fatores responsáveis pela perda de qualidade e das características nutricionais do pescado. Além disso, o consumo de lipídios oxidados tem sido alvo de pesquisas na área de saúde pública, devido à correlação entre a ingestão desses e a indução de efeitos pró-inflamatórios, além de outras doenças crônicas degenerativas. Assim, torna-se necessária a pesquisa de fontes alternativas de componentes antioxidantes naturais que possam evitar ou minimizar a oxidação de pescado marinho durante o preparo térmico. O suco do limão Tahiti (Citrus latifolia) é amplamente utilizado no preparo culinário de peixes. No Brasil, o limão Tahiti é uma fruta de grande relevância comercial e amplamente disponível em mercados varejistas. Além disso, estudos têm demonstrado que o suco do limão Tahiti possui potencial antioxidante devido à presença de compostos bioativos. Este estudo avaliou a aplicação de 3 níveis de adição de suco do limão Tahiti (5%, 10% e 15%), seguida de processamento térmico em filés de sardinhas (Sardina pilchardus) submetidos aos métodos de cocção por air fryer, grelha e fritura por imersão em óleo de soja. Foram avaliados os impactos sobre os ácidos graxos insaturados e à oxidação do colesterol. O extrato do suco foi caracterizado por sua capacidade antioxidante, além dos compostos bioativos por UHPLC MS. O processamento térmico causou a degradação de ácidos graxos insaturados e aumentou o nível de óxidos de colesterol. No entanto, na maioria dos tratamentos, a oxidação lipídica foi mais pronunciada nas amostras com suco. O suco de limão induziu a oxidação do colesterol, principalmente em sardinhas preparadas em Air Fryer, onde o conteúdo total de óxidos de colesterol aumentou de 699,75 ± 3,90 (controle) para 1333,51 ± 5,20 µg / g (suco de limão a 10%). Assim, os dados gerais sugerem que potenciais compostos antioxidantes podem ter sido degradados durante o aquecimento e o ambiente ácido pode ter induzido reações de oxidação.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectácidos graxospt_BR
dc.subjectprodutos de oxidação do colesterolpt_BR
dc.subjectantioxidantes naturaispt_BR
dc.subjectfatty acidspt_BR
dc.subjectcholesterol oxidation productspt_BR
dc.subjectnatural antioxidantspt_BR
dc.titleUtilização do suco do limão Tahiti (Citrus latifolia) como antioxidante natural durante o preparo térmico de sardinhas (Sardina pilchardus) por diferentes métodos de cocçãopt_BR
dc.title.alternativeUse of Tahiti lemon juice (Citrus latifolia) as natural antioxidant during the thermal preparation of sardines (Sardina pilchardus) by different cooking methodsen
dc.typeDissertaçãopt_BR
dc.description.abstractOtherIn recent years, consumers are more concerned about their eating habits, boosting the search functional foods. Marine fish are considered functional foods, due to the presence of high levels of n3- polyunsaturated fatty acids. However, sardines contain appreciable concentrations of cholesterol which is highly susceptible to lipid oxidation. The formation of cholesterol oxides and the degradation of polyunsaturated fatty acids during thermal processing (thermo oxidation) play an important role among the factors responsible for the loss of quality and nutritional characteristics of fish. In addition, the consumption of oxidized lipids has been the subject of research in the public health area, due to the correlation between their intake and the induction of pro-inflammatory effects and other chronic degenerative diseases. Thus, natural antioxidant components that can prevent or minimize the oxidation of marine fish during the thermal preparation are interesting alternatives. Tahiti lemon (Citrus latifolia) juice is extensively used in the culinary preparation of fish. In Brazil, lemon Tahiti is a fruit of great commercial relevance and widely available in retail markets. Besides that, studies have shown that lemon juice has antioxidant potential due to the presence of bioactive compounds. This study evaluated the impact of adding Tahiti lemon juice (5%, 10% and 15%) to sardine (Sardina pilchardus) fillets submitted to air frying, grilling, and deep-fat frying, regarding the unsaturated fatty acids and the cholesterol oxidation. Firstly, the juice extract was characterized by its antioxidant capacity and bioactive constituents. Thermal processing caused the degradation of unsaturated fatty acids and increased the cholesterol oxides level. However, or most treatment, lipid oxidation was more pronounced in samples with juice. Lemon juice induced cholesterol oxidation, mainly in air-fried sardines where the total content of cholesterol oxides increased from 699.75 ± 3.90 (control) to 1333.51 ± 5.20 µg/g (10% lemon juice). Thus, the overall data suggests that potential antioxidant compounds may have been degraded during heating and the acid environment may have induced oxidative reactions.en
dc.contributor.advisor1Saldanha, Tatiana-
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-4291-4639pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4490420513661579pt_BR
dc.contributor.referee1Saldanha, Tatiana-
dc.contributor.referee1IDhttps://orcid.org/0000-0003-4291-4639pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/4490420513661579pt_BR
dc.contributor.referee2Sampaio, Geni Rodrigues-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-7763-4664pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/1488754705550506pt_BR
dc.contributor.referee3FERREIRA, MICHELI DA SILVA-
dc.creator.Latteshttp://lattes.cnpq.br/3646310642173404pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Tecnologiapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospt_BR
dc.relation.referencesAnderson, A., Campo, A., Fulton, E., Corwin, A., Jerome III, W. G., & O'Connor, M. S. (2020). 7-Ketocholesterol in disease and aging. Redox Biology, 29, 101380. 2. AOAC, G. (2016). Official methods of analysis of AOAC International. Rockville, MD: AOAC International, ISBN: 978-0-935584-87-5. 3. Bandarra, N. M., Marçalo, A., Cordeiro, A. R., & Pousão-Ferreira, P. (2018). Sardine (Sardina pilchardus) lipid composition: Does it change after one year in captivity?. Food Chemistry, 244, 408-413. 4. Barriuso, B., Ansorena, D., & Astiasarán, I. (2017). Oxysterols formation: a review of a multifactorial process. The Journal of Steroid Biochemistry and Molecular Biology, 169, 39- 45. 5. Calder, P. C. (2018). Very long-chain n-3 fatty acids and human health: fact, fiction and the future. Proceedings of the Nutrition Society, 77(1), 52-72. 6. de Moraes Barros, H. R., de Castro Ferreira, T. A. P., & Genovese, M. I. (2012). Antioxidant capacity and mineral content of pulp and peel from commercial cultivars of citrus from Brazil. Food Chemistry, 134(4), 1892-1898. 7. de Oliveira, V. S., Cháves, D. W. H., Gamallo, O. D., Sawaya, A. C. H. F., Sampaio, G. R., Castro, R. N., ... & Saldanha, T. (2020). Effect of aroeira (Schinus terebinthifolius Raddi) fruit against polyunsaturated fatty acids and cholesterol thermo-oxidation in model systems containing sardine oil (Sardinella brasiliensis). Food Research International, 109091. 8. de Oliveira, V. S., Ferreira, F. S., Cople, M. C. R., Labre, T. D. S., Augusta, I. M., Gamallo, O. D., & Saldanha, T. (2018). Use of Natural Antioxidants in the Inhibition of Cholesterol Oxidation: A Review. Comprehensive Reviews in Food Science and Food Safety, 17(6), 1465- 1483. 9. Duzzioni, A. G., Franco, A. G., Duzzioni, M., & De Sylos, C. M. (2010). Determinação da atividade antioxidante e de constituintes bioativos em frutas cítricas. Brazilian Journal of Food & Nutrition/Alimentos e Nutrição, 21(4). 10. Ferreira, F. S., Sampaio, G. R., Keller, L. M., Sawaya, A. C., Chávez, D. W., Torres, E. A., & Saldanha, T. (2017). Impact of Air Frying on Cholesterol and Fatty Acids Oxidation in Sardines: Protective Effects of Aromatic Herbs. Journal of Food Science, 82(12), 2823-2831. 11. Haraoui, N., Allem, R., Chaouche, T. M., & Belouazni, A. (2019). In-vitro antioxidant and antimicrobial activities of some varieties citrus grown in Algeria. Oriental Pharmacy and Experimental Medicine, 1-12. 77 12. Ioannou, I., Chekir, L., & Ghoul, M. (2019). Effect of the Processing Temperature on the Degradation of Food Flavonoids: Kinetic and Calorimetric Studies on Model Solutions. Journal of Food Engineering and Technology, 8(2), 91-102. 13. Kieling, D. D., & Prudencio, S. H. (2019). Blends of lemongrass derivatives and lime for the preparation of mixed beverages: antioxidant, physicochemical, and sensory properties. Journal of the Science of Food and Agriculture, 99(3), 1302-1310 14. Ledesma‐Escobar, C. A., Priego‐Capote, F., & Luque de Castro, M. D. (2015). Characterization of lemon (Citrus limon) polar extract by liquid chromatography–tandem mass spectrometry in high resolution mode. Journal of Mass Spectrometry, 50(11), 1196-1205. 15. Liu, R., Zhao, S. M., Liu, Y. M., Yang, H., Xiong, S. B., Xie, B. J., & Qin, L. H. (2010). Effect of pH on the gel properties and secondary structure of fish myosin. Food Chemistry, 121(1), 196-202. 16. McAtee, P., Karim, S., Schaffer, R. J., & David, K. (2013). A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Frontiers in Plant Science, 4, 79. 17. Mcharek, N., & Hanchi, B. (2017). Maturational effects on phenolic constituents, antioxidant activities and LC-MS/MS profiles of lemon (Citrus limon) peels. Journal of Applied Botany and Food Quality, 90, 1-9. 18. Mencherini, T., Campone, L., Piccinelli, A. L., García Mesa, M., Sánchez, D. M., Aquino, R. P., & Rastrelli, L. (2012). HPLC-PDA-MS and NMR characterization of a hydroalcoholic extract of Citrus aurantium L. var. amara peel with antiedematogenic activity. Journal of Agricultural and Food Chemistry, 61(8), 1686-1693 19. Miller, H. E. (1971). A simplified method for the evaluation of antioxidants. Journal of the American Oil Chemists' Society, 48(2), 91-91. 20. Mozuraityte, R., Kristinova, V., Rustad, T., & Storrø, I. (2016). The role of iron in peroxidation of PUFA: Effect of pH and chelators. European Journal of Lipid Science and Technology, 118(4), 658-668. 21. Murakami, M., Yamaguchi, T., Takamura, H., & Atoba, T. M. (2004). Effects of thermal treatment on radical‐scavenging activity of single and mixed polyphenolic compounds. Journal of Food Science, 69(1), FCT7-FCT10. 22. Nieva-Echevarría, B., Goicoechea, E., Manzanos, M. J., & Guillén, M. D. (2016). The influence of frying technique, cooking oil and fish species on the changes occurring in fish 78 lipids and oil during shallow-frying, studied by 1H NMR. Food Research International, 84, 150-159. 23. Nile, S. H., Keum, Y. S., Nile, A. S., Jalde, S. S., & Patel, R. V. (2018). Antioxidant, anti‐ inflammatory, and enzyme inhibitory activity of natural plant flavonoids and their synthesized derivatives. Journal of Biochemical and Molecular Toxicology, 32(1), e22002. 24. Osada, K., Kodama, T., Yamada, K., & Sugano, M. (1993). Oxidation of cholesterol by heating. Journal of Agricultural and Food Chemistry, 41(8), 1198-1202. 25. Ou, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry, 49(10), 4619-4626. 26. Ramos, K. O., Sánchez, Y. H., Pérez, N. V., & Villafaña, O. P. (2012). Actividad antioxidante in vitro y toxicidad de extractos hidroalcohólicos de hojas de Citrus spp. (Rutaceae). Revista Cubana de Plantas Medicinales, 17(4), 368-379. 27. Saldanha, T., & Bragagnolo, N. (2010). Effects of grilling on cholesterol oxide formation and fatty acids alterations in fish. Food Science and Technology, 30(2), 385-390. 28. Saldanha, T., Benassi, M. T., & Bragagnolo, N. (2008). Fatty acid contents evolution and cholesterol oxides formation in Brazilian sardines (Sardinella brasiliensis) as a result of frozen storage followed by grilling. LWT-Food Science and Technology, 41(7), 1301-1309. 29. Saldanha, T., Sawaya, A. C. H. F., Eberlin, M. N., & Bragagnolo, N. (2006). HPLC separation and determination of 12 cholesterol oxidation products in fish: comparative study of RI, UV, and APCI-MS detectors. Journal of Agricultural and Food Chemistry, 54(12), 4107-4113. 30. Seeram, N. P., Aviram, M., Zhang, Y., Henning, S. M., Feng, L., Dreher, M., & Heber, D. (2008). Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. Journal of Agricultural and Food Chemistry, 56(4), 1415-1422. 31. Sharma, A., Kaur, M., Katnoria, J. K., & Nagpal, A. K. (2018). Polyphenols in food: Cancer prevention and apoptosis induction. Current Medicinal Chemistry, 25(36), 4740-4757. 32. Smith, L. L. (1987). Cholesterol autoxidation 1981–1986. Chemistry and Physics of Lipids, 44(2-4), 87-125. 33. Sottero, B., Leonarduzzi, G., Testa, G., Gargiulo, S., Poli, G., & Biasi, F. (2019). Lipid oxidation derived aldehydes and oxysterols between health and disease. European Journal of Lipid Science and Technology, 121(1), 1700047. 34. Spínola, V., Pinto, J., & Castilho, P. C. (2015). Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD–ESI-MSn and screening for their antioxidant activity. Food Chemistry, 173, 14-30. 79 35. Teles, A. S., Chávez, D. W., Oliveira, R. A., Bon, E. P., Terzi, S. C., Souza, E. F., ... & Tonon, R. V. (2019). Use of grape pomace for the production of hydrolytic enzymes by solid-state fermentation and recovery of its bioactive compounds. Food Research International, 120, 441- 448. 36. Testai, L., & Calderone, V. (2017). Nutraceutical value of citrus flavanones and their implications in cardiovascular disease. Nutrients, 9(5), 502. 37. Zhu, X., Svendsen, C., Jaepelt, K. B., Moughan, P. J., & Rutherfurd, S. M. (2011). A comparison of selected methods for determining eicosapentaenoic acid and docosahexaenoic acid in cereal-based foods. Food Chemistry, 125(4), 1320-1327. 38. Zotos, A., Gotsis, D., & Tsolakis, M. (2016). The Effect of Prior Frozen Storage (− 20°C) on the Quality of Oven-Baked Sardines (Sardina pilchardus). Journal of Aquatic Food Product Technology, 25(2), 240-250.pt_BR
dc.subject.cnpqCiência e Tecnologia de Alimentospt_BR
Appears in Collections:Mestrado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Isabella Oliveira Alves Moreira de Carvalho.pdf1.05 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.