Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/23298
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKeller, Laura Monteiro-
dc.date.accessioned2025-09-26T17:40:56Z-
dc.date.available2025-09-26T17:40:56Z-
dc.date.issued2025-08-11-
dc.identifier.citationKELLER, Laura Monteiro. Efeito protetor da pimenta rosa (Schinus terebinthifolia Raddi) sobre a foto-oxidação lipídica em sistemas modelo contendo óleo de soja. 2025. 139 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/23298-
dc.description.abstractO óleo de soja refinado é o segundo óleo vegetal mais consumido no mundo e, devido a sua composição em lipídios insaturados, é um produto de extrema suscetibilidade a degradação oxidativa, incluindo a foto-oxidação, causada pela ação das radiações ultravioleta e luminosa. A prática doméstica de condimentar óleos com temperos e especiarias, objetivando aromatizar e saborizar, pode ter um impacto positivo sobre a oxidação do óleo durante o armazenamento. A pimenta rosa (Schinus terebinthifolia Raddi; PR), é fruto da aroeira, nativa e abundante no Brasil, rica em compostos bioativos com potencial antioxidante. Esta pesquisa propôs a avaliação da estabilidade oxidativa do óleo de soja comercial refinado nas condições controle (0% PR) e condimentado com 2%, 4% e 6% de frutos in natura de PR, durante armazenamento por 15, 30, 45 e 60 dias sob exposição a luz e temperatura ambientes. Foi realizada a caracterização do extrato dos frutos em relação a fenólicos totais (7,40 ± 0,01 mg EAG/g), flavonoides totais (26,63 ± 1,59 mg EQ/g), capacidade antioxidante in vitro DPPH (87,43 ± 0,34 % de inibição) e FRAP (125,25 ± 1,76 μmol TE/g), caracterização de compostos bioativos por cromatografia líquida acoplada a espectrometria de massas de alta resolução (HPLC-QTOF-MS/MS) determinando compostos como ácido masticadienóico (m/z 453,3351), amentoflavona (m/z 537,0809), agatisflavona (m/z 537,0794) e ácido cítrico (m/z 191,0175). Para avaliação da oxidação lipídica dos óleos foram realizadas as análises de índice de peróxidos, formação de espécies reativas ao ácido tiobarbitúrico (TBARS), composição de ácidos graxos, teores dos principais fitosteróis (β-sitosterol, estigmasterol e campesterol) e seus respectivos óxidos. A exposição à luz durante o armazenamento levou ao aumento nos teores de peróxidos e TBARS. O perfil de ácidos graxos não apresentou diferenças significativas (p>0,05) ao longo de 60 dias. Os fitosteróis degradaram ao longo do tempo. A amostra controle no 60o apresentou redução de 57,8% do β-sitosterol, 54,5% do estigmasterol e 50,8% do campesterol. A amostra com 6% PR apresentou melhor proteção, com 16%, 33% e 36% de preservação do β-sitosterol, estigmasterol e campesterol, respectivamente. Dentre os óxidos analisados o 7-ceto e o 5,6 β-epóxido foram predominantemente formados nos três fitosteróis analisados. No último dia o total de óxidos formados foi de 52,88 μg/g na amostra controle, e as amostras adicionadas de PR apresentaram uma proteção de 23% (2% PR), 37% (4% PR) e 51% (6% PR) em relação ao total de óxidos formados. A adição da pimenta rosa foi eficaz em minimizar as reações de foto-oxidação do óleo de soja, demonstrando ser uma fonte natural antioxidante potencial de proteção do óleo durante o armazenamento.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectSchinus Terebhintifolia Raddipt_BR
dc.subjectfoto-oxidaçãopt_BR
dc.subjectóleo de sojapt_BR
dc.subjectestabilidade oxidativapt_BR
dc.subjectphoto-oxidationpt_BR
dc.subjectsoybean oilpt_BR
dc.subjectoxidative stabilitypt_BR
dc.titleEfeito protetor da Pimenta Rosa (Schinus terebinthifolia Raddi) sobre a foto-oxidação lipídica em sistemas modelo contendo óleo de sojapt_BR
dc.title.alternativeProtective effect of pink pepper (Schinus terebinthifolia Raddi) on lipid photooxidation in model systems containing soybean oilen
dc.typeDissertaçãopt_BR
dc.description.abstractOtherRefined soybean oil is the second most consumed vegetable oil in the world and, due to its composition of unsaturated lipids, it is a product extremely susceptible to oxidative degradation, including photooxidation, caused by ultraviolet and light radiation. The domestic practice of seasoning oils with spices, aiming to aromatize and flavor, can have a positive impact on the oxidation of the oil during storage. Pink pepper (Schinus terebinthifolia Raddi; PP), is a fruit of the aroeira tree, native and abundant in Brazil, rich in bioactive compounds with antioxidant potential. This research proposed the evaluation of the oxidative stability of refined commercial soybean oil under control conditions (0% PP) and seasoned with 2%, 4% and 6% of fresh PP fruits, during storage for 15, 30, 45 and 60 days under exposure to light and room temperature. The characterization of the fruit extract was performed in relation to total phenolics (7.40 ± 0.01 mg EAG/g), total flavonoids (26.63 ± 1.59 mg EQ/g), in vitro antioxidant capacity DPPH (87.43 ± 0.34% inhibition) and FRAP (125.25 ± 1.76 μmol TE/g), characterization of bioactive compounds by liquid chromatography coupled to high-resolution mass spectrometry (HPLC-QTOF-MS/MS) determining some compounds such as masticadienoic acid (m/z 453.3351), amenthoflavone (m/z 537.0809), agathisflavone (m/z 537.0794) and citric acid (m/z 191.0175). To evaluate the lipid oxidation of the oils, analyses of peroxide index, formation of thiobarbituric acid reactive species (TBARS), fatty acid composition, levels of the main phytosterols (β-sitosterol, stigmasterol and campesterol) and their respective oxides were performed. Exposure to light during storage led to an increase in the levels of peroxides and TBARS. The fatty acids did not show significant differences (p>0.05) over 60 days. The phytosterols degraded over time. The control sample at 60 days showed a reduction of 57.8% of β-sitosterol, 54.5% of stigmasterol and 50.8% of campesterol. The sample with 6% PP showed better protection, with 16%, 33% and 36% preservation of β-sitosterol, stigmasterol and campesterol, respectively. Among the oxides analyzed, 7-keto and 5,6-β-epoxy were predominantly formed in the three phytosterols analyzed. On the last day, the total oxides formed was 52.88 μg/g in the control sample, and the samples added with PP showed a protection of 23% (2% PP), 37% (4% PP) and 51% (6% PP) in relation to the total oxides formed. The addition of pink pepper was effective in minimizing the photooxidation reactions of soybean oil, demonstrating that it is a potential natural antioxidant source for protecting the oil during storage.en
dc.contributor.advisor1Saldanha, Tatiana-
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-4291-4639pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4490420513661579pt_BR
dc.contributor.advisor-co1Oliveira, Vanessa Sales de-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/9150215497906323pt_BR
dc.contributor.referee1Saldanha, Tatiana-
dc.contributor.referee1IDhttps://orcid.org/0000-0003-4291-4639pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/4490420513661579pt_BR
dc.contributor.referee2Mársico, Eliane Teixeira-
dc.contributor.referee2IDhttps://orcid.org/0000-0001-9452-5462pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3971598714445106pt_BR
dc.contributor.referee3Gregorio, Sandra Regina-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/0015837037500256pt_BR
dc.creator.IDhttps://orcid.org/0000-0003-1477-4106pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9588177049574178pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Tecnologiapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospt_BR
dc.relation.referencesAbdo, E. M., Shaltout, O. E., & Mansour, H. M. M. (2023). Natural antioxidants from agro- wastes enhanced the oxidative stability of soybean oil during deep-frying. LWT, 173, 114321. https://doi.org/10.1016/j.lwt.2022.114321 Ahmed, W., Azmat, R., Qayyum, A., Bibi, Y., Ali, S., Ahmed, R., & Ramadan, M. F. (2023). Application of HPLC, LC-Q-TOF–MS, UF-HPLC and LC–MS in the comparative analysis of flavonoids and sterols in the Citrus paradise cv. Shamber (grapefruit). Rendiconti Lincei. Scienze Fisiche e Naturali, 34(4), 1145–1160. https://doi.org/10.1007/s12210-023-01188-8 Bai, G., Ma, C., & Chen, X. (2021). Phytosterols in edible oil: Distribution, analysis and variation during processing. Grain & Oil Science and Technology, 4(1), 33–44. https://doi.org/10.1016/j.gaost.2020.12.003 Bakrim, S., Benkhaira, N., Bourais, I., Benali, T., Lee, L.-H., El Omari, N., Sheikh, R. A., Goh, K. W., Ming, L. C., & Bouyahya, A. (2022). Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants, 11(10), Artigo 10. https://doi.org/10.3390/antiox11101912 Barkas, F., Bathrellou, E., Nomikos, T., Panagiotakos, D., Liberopoulos, E., & Kontogianni, M. D. (2023). Plant Sterols and Plant Stanols in Cholesterol Management and Cardiovascular Prevention. Nutrients, 15(13), Artigo 13. https://doi.org/10.3390/nu15132845 Barreira, C. F. T., De Oliveira, V. S., Chávez, D. W. H., Gamallo, O. D., Castro, R. N., Júnior, P. C. D., Sawaya, A. C. H. F., Da Silva Ferreira, M., Sampaio, G. R., Torres, E. A. F. D. S., & Saldanha, T. (2023). The impacts of pink pepper (Schinus terebinthifolius Raddi) on fatty acids and cholesterol oxides formation in canned sardines during thermal processing. Food Chemistry, 403, 134347. https://doi.org/10.1016/j.foodchem.2022.134347 Bittencourt Fagundes, M., Ballus, C. A., Perceval Soares, V., De Freitas Ferreira, D., Sena Vaz Leães, Y., Sasso Robalo, S., Guidetti Vendruscolo, R., Bastianello Campagnol, P. C., Smanioto Barin, J., Cichoski, A. J., Bevilacqua Marcuzzo, S., Assumpção Bertuol, D., & Wagner, R. (2020). Characterization of olive oil flavored with Brazilian pink pepper (Schinus terebinthifolius Raddi) in different maceration processes. Food Research International, 137, 109593. https://doi.org/10.1016/j.foodres.2020.109593 Calaminici, R., Salgarella, N. I., Cardenia, V., & Forte, E. (2024). Optimization and validation 123 of an HPLC-HRMS method through semipreparative HPLC system for determining phytosterol oxidation products during refining processing and storage of vegetable oils. Journal of the American Oil Chemists’ Society, 101(8), 735–751. https://doi.org/10.1002/aocs.12826 Cercaci, L., Rodriguez-Estrada, M. T., Lercker, G., & Decker, E. A. (2007). Phytosterol oxidation in oil-in-water emulsions and bulk oil. Food Chemistry, 102(1), 161–167. https://doi.org/10.1016/j.foodchem.2006.05.010 Choe, E., & Min, D. B. (2006). Mechanisms and Factors for Edible Oil Oxidation. Comprehensive Reviews in Food Science and Food Safety, 5(4), 169–186. https://doi.org/10.1111/j.1541-4337.2006.00009.x Conchillo, A., Cercaci, L., Ansorena, D., Rodriguez-Estrada, M. T., Lercker, G., & Astiasarán, I. (2005). Levels of Phytosterol Oxides in Enriched and Nonenriched Spreads: Application of a Thin-Layer Chromatography−Gas Chromatography Methodology. Journal of Agricultural and Food Chemistry, 53(20), 7844–7850. https://doi.org/10.1021/jf050539m da Silva, T. L., de Oliveira, V. S., do Nascimento, T. dos R., Chávez, D. W. H., Cabral Neto, O., Castro, R. N., de Carvalho, M. G., Sawaya, A. C. H. F., da Silva Ferreira, M., & Saldanha, T. (2025). Pink pepper (Schinus terebinthifolius Raddi) as a bio-based additive in pork salami: Lipid oxidative stability, cholesterol oxides formation, physicochemical characteristics, and sensory acceptance. European Food Research and Technology. https://doi.org/10.1007/s00217-025- 04765-3 Esazadeh, K., Ezzati Nazhad Dolatabadi, J., Andishmand, H., Mohammadzadeh-Aghdash, H., Mahmoudpour, M., Naemi Kermanshahi, M., & Roosta, Y. (2024). Cytotoxic and genotoxic effects of tert-butylhydroquinone, butylated hydroxyanisole and propyl gallate as synthetic food antioxidants. Food Science & Nutrition, 12(10), 7004–7016. https://doi.org/10.1002/fsn3.4373 Feng, S., Wang, L., Shao, P., Sun, P., & Yang, C. S. (2022). A review on chemical and physical modifications of phytosterols and their influence on bioavailability and safety. Critical Reviews in Food Science and Nutrition, 62(20), 5638–5657. https://doi.org/10.1080/10408398.2021.1888692 Feriani, A., Tir, M., Mufti, A., Caravaca, A. M. G., Contreras, M. del M., Taamalli, A., Carretero, A. S., Aldawood, N., Nahdi, S., Alwasel, S., Harrath, A. H., & Tlili, N. (2021). HPLC–ESI– 124 QTOF–MS/MS profiling and therapeutic effects of Schinus terebinthifolius and Schinus molle fruits: Investigation of their antioxidant, antidiabetic, anti-inflammatory and antinociceptive properties. Inflammopharmacology, 29(2), 467–481. https://doi.org/10.1007/s10787-021-00791- 1 Furse, S., Martel, C., Yusuf, A., Shearman, G. C., Koch, H., & Stevenson, P. C. (2023). Sterol composition in plants is specific to pollen, leaf, pollination and pollinator. Phytochemistry, 214, 113800. https://doi.org/10.1016/j.phytochem.2023.113800 Gachumi, G., Poudel, A., Wasan, K. M., & El-Aneed, A. (2021). Analytical Strategies to Analyze the Oxidation Products of Phytosterols, and Formulation-Based Approaches to Reduce Their Generation. Pharmaceutics, 13(2), Artigo 2. https://doi.org/10.3390/pharmaceutics13020268 Gomes, R. B. de A., de Souza, E. S., Gerhardt Barraqui, N. S., Tosta, C. L., Nunes, A. P. F., Schuenck, R. P., Ruas, F. G., Ventura, J. A., Filgueiras, P. R., & Kuster, R. M. (2020). Residues from the Brazilian pepper tree (Schinus terebinthifolia Raddi) processing industry: Chemical profile and antimicrobial activity of extracts against hospital bacteria. Industrial Crops and Products, 143, 111430. https://doi.org/10.1016/j.indcrop.2019.05.079 Grootveld, M., Percival, B. C., Leenders, J., & Wilson, P. B. (2020). Potential Adverse Public Health Effects Afforded by the Ingestion of Dietary Lipid Oxidation Product Toxins: Significance of Fried Food Sources. Nutrients, 12(4), Artigo 4. https://doi.org/10.3390/nu12040974 Grün, C. H., & Besseau, S. (2016). Normal-phase liquid chromatography–atmospheric-pressure photoionization–mass spectrometry analysis of cholesterol and phytosterol oxidation products. Journal of Chromatography A, 1439, 74–81. https://doi.org/10.1016/j.chroma.2015.12.043 Gylling, H., Plat, J., Turley, S., Ginsberg, H. N., Ellegård, L., Jessup, W., Jones, P. J., Lütjohann, D., Maerz, W., Masana, L., Silbernagel, G., Staels, B., Borén, J., Catapano, A. L., De Backer, G., Deanfield, J., Descamps, O. S., Kovanen, P. T., Riccardi, G., Chapman, M. J. (2014). Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis, 232(2), 346–360. https://doi.org/10.1016/j.atherosclerosis.2013.11.043 Ham, J., Lim, W., Park, S., Bae, H., You, S., & Song, G. (2019). Synthetic phenolic antioxidant propyl gallate induces male infertility through disruption of calcium homeostasis and 125 mitochondrial function. Environmental Pollution, 248, 845–856. https://doi.org/10.1016/j.envpol.2019.02.087 Jorge, N., Pietro, T. A., Luzia, D. M. M., & Veronezi, C. M. (2018). Caracterização fitoquímica do óleo de soja adicionado de extrato de Portulaca oleracea L. Revista Ceres, 65(1), 1–6. https://doi.org/10.1590/0034-737x201865010001 Khan, Z., Nath, N., Rauf, A., Emran, T. B., Mitra, S., Islam, F., Chandran, D., Barua, J., Khandaker, M. U., Idris, A. M., Wilairatana, P., & Thiruvengadam, M. (2022). Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications. Chemico-Biological Interactions, 365, 110117. https://doi.org/10.1016/j.cbi.2022.110117 Kmiecik, D., Fedko, M., Rudzińska, M., Siger, A., Gramza-Michałowska, A., & Kobus- Cisowska, J. (2021). Thermo-Oxidation of Phytosterol Molecules in Rapeseed Oil during Heating: The Impact of Unsaturation Level of the Oil. Foods, 10(1), Artigo 1. https://doi.org/10.3390/foods10010050 Kmiecik, D., Korczak, J., Rudzińska, M., Michałowska, A. G., & Hęś, M. (2009). Stabilization of phytosterols in rapeseed oil by natural antioxidants during heating. European Journal of Lipid Science and Technology, 111(11), 1124–1132. https://doi.org/10.1002/ejlt.200800304 Kumar, S., & Pandey, A. K. (2013). Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal, 2013(1), 162750. https://doi.org/10.1155/2013/162750 Laparra, J. M., Alfonso-García, A., Alegría, A., Barberá, R., & Cilla, A. (2015). 7keto- stigmasterol and 7keto-cholesterol induce differential proteome changes to intestinal epitelial (Caco-2) cells. Food and Chemical Toxicology, 84, 29–36. https://doi.org/10.1016/j.fct.2015.06.021 Li, C., Cui, X., Chen, Y., Liao, C., & Ma, L. Q. (2019). Synthetic phenolic antioxidants and their major metabolites in human fingernail. Environmental Research, 169, 308–314. https://doi.org/10.1016/j.envres.2018.11.020 Liu, R., & Mabury, S. A. (2020). Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. Environmental Science & Technology, 54(19), 11706–11719. https://doi.org/10.1021/acs.est.0c05077 126 Martini, S., Cattivelli, A., Conte, A., & Tagliazucchi, D. (2021). Black, green, and pink pepper affect differently lipid oxidation during cooking and in vitro digestion of meat. Food Chemistry, 350, 129246. https://doi.org/10.1016/j.foodchem.2021.129246 Menegali, B. S., Selani, M. M., Saldaña, E., Patinho, I., Diniz, J. P., Melo, P. S., Pimentel Filho, N. D. J., & Contreras-Castillo, C. J. (2020). Pink pepper extract as a natural antioxidant in chicken burger: Effects on oxidative stability and dynamic sensory profile using Temporal Dominance of Sensations. LWT, 121, 108986. https://doi.org/10.1016/j.lwt.2019.108986 Menéndez-Carreño, M., Knol, D., & Janssen, H.-G. (2016). Development and validation of methodologies for the quantification of phytosterols and phytosterol oxidation products in cooked and baked food products. Journal of Chromatography A, 1428, 316–325. https://doi.org/10.1016/j.chroma.2015.09.073 Min, D. B., & Boff, J. M. (2002). Chemistry and Reaction of Singlet Oxygen in Foods. Comprehensive Reviews in Food Science and Food Safety, 1(2), 58–72. https://doi.org/10.1111/j.1541-4337.2002.tb00007.x Nazir, S., Chaudhary, W. A., Mobashar, A., Anjum, I., Hameed, S., & Azhar, S. (2023). Campesterol: A Natural Phytochemical with Anti Inflammatory Properties as Potential Therapeutic Agent for Rheumatoid Arthritis: A Systematic Review: Campesterol: A Natural Phytochemical. Pakistan Journal of Health Sciences. https://doi.org/10.54393/pjhs.v4i05.792 Oliveira, V. S. de, Augusta, I. M., Braz, M. V. D. C., Riger, C. J., Prudêncio, E. R., Sawaya, A. C. H. F., Sampaio, G. R., Torres, E. A. F. D. S., & Saldanha, T. (2020). Aroeira fruit (Schinus terebinthifolius Raddi) as a natural antioxidant: Chemical constituents, bioactive compounds and in vitro and in vivo antioxidant capacity. Food Chemistry, 315, 126274. https://doi.org/10.1016/j.foodchem.2020.126274 Oliveira, V. S. de, Cháves, D. W. H., Gamallo, O. D., Sawaya, A. C. H. F., Sampaio, G. R., Castro, R. N., Torres, E. A. F. D. S., & Saldanha, T. (2020). Effect of aroeira (Schinus terebinthifolius Raddi) fruit against polyunsaturated fatty acids and cholesterol thermo-oxidation in model systems containing sardine oil (Sardinella brasiliensis). Food Research International, 132, 109091. https://doi.org/10.1016/j.foodres.2020.109091 Poudel, A., Gachumi, G., Purves, R., Badea, I., & El-Aneed, A. (2022). Determination of 127 phytosterol oxidation products in pharmaceutical liposomal formulations and plant vegetable oil extracts using novel fast liquid chromatography—Tandem mass spectrometric methods. Analytica Chimica Acta, 1194, 339404. https://doi.org/10.1016/j.aca.2021.339404 Saldanha, T., Sawaya, A. C. H. F., Eberlin, M. N., & Bragagnolo, N. (2006). HPLC Separation and Determination of 12 Cholesterol Oxidation Products in Fish: Comparative Study of RI, UV, and APCI-MS Detectors. Journal of Agricultural and Food Chemistry, 54(12), 4107–4113. https://doi.org/10.1021/jf0532009 Scholz, B., Guth, S., Engel, K.-H., & Steinberg, P. (2015). Phytosterol oxidation products in enriched foods: Occurrence, exposure, and biological effects. Molecular Nutrition & Food Research, 59(7), 1339–1352. https://doi.org/10.1002/mnfr.201400922 Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6), 669–675. https://doi.org/10.1016/j.jfca.2006.01.003 Tinello, F., & Lante, A. (2020). Accelerated storage conditions effect on ginger- and turmeric- enriched soybean oils with comparing a synthetic antioxidant BHT. LWT, 131, 109797. https://doi.org/10.1016/j.lwt.2020.109797 Umeda, W. M., & Jorge, N. (2021). Oxidative stability of soybean oil added of purple onion (Allium cepa L.) peel extract during accelerated storage conditions. Food Control, 127, 108130. https://doi.org/10.1016/j.foodcont.2021.108130 USDA. (2025). Oilseeds: World Markets and Trade. United States Department of Agriculture. https://apps.fas.usda.gov/psdonline/app/index.html#/app/home Verleyen, T., Sosinska, U., Ioannidou, S., Verhe, R., Dewettinck, K., Huyghebaert, A., & De Greyt, W. (2002). Influence of the vegetable oil refining process on free and esterified sterols. Journal of the American Oil Chemists’ Society, 79(10), 947–953. https://doi.org/10.1007/s11746-002-0585-4 Vieira, J. de S., de Oliveira, V. S., Carneiro, M. J., da Silva, T. L., Augusta, I. M., de Carvalho, M. G., Sawaya, A. C. H. F., & Saldanha, T. (2023). Phenolic composition and insights into the use of pink pepper (Schinus terebentifolius Raddi) fruit against lipid oxidation in food systems. 128 Food Bioscience, 53, 102556. https://doi.org/10.1016/j.fbio.2023.102556 Vlahakis, C., & Hazebroek, J. (2000). Phytosterol accumulation in canola, sunflower, and soybean oils: Effects of genetics, planting location, and temperature. Journal of the American Oil Chemists’ Society, 77(1), 49–53. https://doi.org/10.1007/s11746-000-0008-6 Wang, L., Feng, L., Prabahar, K., Hernández-Wolters, B., & Wang, Z. (2024). The effect of phytosterol supplementation on lipid profile: A critical umbrella review of interventional meta- analyses. Phytotherapy Research, 38(2), 507–519. https://doi.org/10.1002/ptr.8052 Wang, M., Liu, Y., Zhao, T., Xiao, F., Yang, X., & Lu, B. (2021). Dietary Sterols and Sterol Oxidation Products on Atherosclerosis: An Insight Provided by Liver Proteomic and Lipidomic. Molecular Nutrition & Food Research, 65(20), 2100516. https://doi.org/10.1002/mnfr.202100516 Wang, W., Asimakopoulos, A. G., Abualnaja, K. O., Covaci, A., Gevao, B., Johnson-Restrepo, B., Kumosani, T. A., Malarvannan, G., Minh, T. B., Moon, H.-B., Nakata, H., Sinha, R. K., & Kannan, K. (2016). Synthetic Phenolic Antioxidants and Their Metabolites in Indoor Dust from Homes and Microenvironments. Environmental Science & Technology, 50(1), 428–434. https://doi.org/10.1021/acs.est.5b04826 Xu, X., Liu, A., Hu, S., Ares, I., Martínez-Larrañaga, M.-R., Wang, X., Martínez, M., Anadón, A., & Martínez, M.-A. (2021). Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry, 353, 129488. https://doi.org/10.1016/j.foodchem.2021.129488 Yan, J., & Cao, H. (2024). P1231 7-ketositosterol in high-temperature heating oils aggravates colitis by gut microbiota dysbiosis induced-PDLIM3 activation. Journal of Crohn’s and Colitis, 18(Supplement_1), i2180. https://doi.org/10.1093/ecco-jcc/jjad212.1361 Yang, B., Lu, B., Zhao, Y., Luo, J., & Hong, X. (2020). Formation of phytosterol photooxidation products: A chemical reaction mechanism for light-induced oxidation. Food Chemistry, 333, 127430. https://doi.org/10.1016/j.foodchem.2020.127430 Zeb, A. (2021). Phenolic Antioxidants in Foods: Chemistry, Biochemistry and Analysis. Springer International Publishing. https://doi.org/10.1007/978-3-030-74768-8 Zhang, X., Julien-David, D., Miesch, M., Raul, F., Geoffroy, P., Aoude-Werner, D., Ennahar, S., 129 & Marchioni, E. (2006). Quantitative Analysis of β-Sitosterol Oxides Induced in Vegetable Oils by Natural Sunlight, Artificially Generated Light, and Irradiation. Journal of Agricultural and Food Chemistry, 54(15), 5410–5415. https://doi.org/10.1021/jf053224f Zhao, G.-H., Hu, Y.-Y., Liu, Z.-Y., Xie, H., Zhang, M., Zheng, R., Qin, L., Yin, F.-W., & Zhou, D.-Y. (2021). Simultaneous quantification of 24 aldehydes and ketones in oysters (Crassostrea gigas) with different thermal processing procedures by HPLC-electrospray tandem mass spectrometry. Food Research International, 147, 110559. https://doi.org/10.1016/j.foodres.2021.110559 Zhao, Y., Yang, B., Xu, T., Wang, M., & Lu, B. (2019). Photooxidation of phytosterols in oil matrix: Effects of the light, photosensitizers and unsaturation degree of the lipids. Food Chemistry, 288, 162–169. https://doi.org/10.1016/j.foodchem.2019.02.105pt_BR
dc.subject.cnpqCiência e Tecnologia de Alimentospt_BR
Appears in Collections:Mestrado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
LAURA MONTEIRO KELLER.pdf4.47 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.