Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/23646
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrito, Alexander Ferreira-
dc.date.accessioned2025-10-31T15:45:46Z-
dc.date.available2025-10-31T15:45:46Z-
dc.date.issued2025-08-14-
dc.identifier.citationBRITO, Alexander Ferreira. Impacto da moagem e da aeroclassificação nas propriedades tecnofuncionais de milheto pérola integral, brunido e germinado. 2025. 93 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/23646-
dc.description.abstractNo presente trabalho, grãos de milheto pérola (Pennisetum glaucum (L.) R. Br.) integrais e submetidos a dois pré-tratamentos - brunimento e germinação - foram processados por moagem e suas farinhas foram fracionadas por aeroclassificação. Os produtos de cada etapa foram caracterizados quanto à morfologia e propriedades tecnofuncionais, de modo a avaliar as modificações causadas na matéria-prima e seu impacto em potenciais aplicações na formulação de alimentos. A aeroclassificação gerou frações com distribuição de partícula mais uniforme, melhorando as capacidades de absorção de água e óleo (até 2.37 ± 0,00 e 2.07 ± 0.04 g/g, respectivamente) e de formação de gel (mínima concentração de 8%). A fração grosseira exibiu maior viscosidade de pasta, enquanto a fração fina apresentou maior solubilidade em água. O brunimento resultou em uma moagem mais eficiente, com menor tamanho de partícula, maior teor proteico e viscosidade de pasta e menor teor lipídico comparado aos demais pré-tratamentos. Contudo, levou também à redução da solubilidade em água e da capacidade de formação de gel nas frações aeroclassificadas. A germinação causou a perda da cristalinidade dos grânulos de amido, resultando em maior solubilidade em água e atividade emulsificante nas farinhas e frações grosseiras, mas com menor viscosidade de pasta comparada aos demais pré-tratamentos. Os pré-tratamentos resultaram em produtos com melhor capacidade de compactação comparados ao material integral. A capacidade antioxidante atingiu 17.50 ± 0.29 μmol Trolox/g para a farinha integral, com o brunimento e a germinação levando a menores valores. A aeroclassificação reduziu a atividade antioxidante para os grãos integrais, aumentou para os grãos brunidos e não teve efeito (p < 0,05) sobre os grãos germinados. Os resultados evidenciaram que as propriedades tecnofuncionais do milheto pérola puderam ser moduladas pelas técnicas propostas.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectaeroclassificaçãopt_BR
dc.subjectgerminaçãopt_BR
dc.subjectbrunimentopt_BR
dc.subjectpropriedades tecnofuncionaispt_BR
dc.subjectair-classificationpt_BR
dc.subjectgerminationpt_BR
dc.titleImpacto da moagem e da aeroclassificação nas propriedades tecnofuncionais de milheto pérola integral, brunido e germinadopt_BR
dc.typeDissertaçãopt_BR
dc.description.abstractOtherIn the present work, whole pearl millet (Pennisetum glaucum (L.) R. Br.) grains, subjected to two pretreatments – debranning and germination – were processed by milling, and their flours were air-classified. The products from each stage were characterized for their morphology and technofunctional properties to evaluate the modifications caused to the raw material and their impact on potential applications in food formulation. Air-classification generated fractions with a more uniform particle size distribution, improving water and oil absorption capacities (up to 2.37 ± 0,00 and 2.07 ± 0.04 g/g, respectively) and gelling ability (least gelling concentration of 8%). The coarse fraction exhibited higher paste viscosity, while the fine fraction showed greater water solubility. Debranning resulted in more efficient milling, with a smaller particle size, higher protein content, increased paste viscosity, and lower lipid content compared to other pretreatments. However, it led to a decrease in water solubility and gelling ability in the air-classified fractions. Germination caused the loss of starch granule crystallinity, resulting in increased water solubility and emulsifying activity in flours and coarse fractions, but with lower paste viscosity compared to other pretreatments. Both pretreatments resulted in products with better compactability compared to the whole material. Antioxidant activity reached up to 17.50 ± 0.29 μmol Trolox/g for whole grain milled flour with debranning and germination leading to lower values. Air-classification reduced the antioxidant activity for whole grains, increased for debranned grains and had no difference (p < 0,05) for germinated grains. Results evidenced techno-functional properties of Pearl millet could be modulated by the proposed techniques.en
dc.contributor.advisor1Ascheri, Jose Luis Ramírez-
dc.contributor.advisor1IDhttps://orcid.org/0000-0001-7449-8815pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1891994321882753pt_BR
dc.contributor.advisor-co1Carvalho, Carlos Wanderlei Piler de-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0002-7602-264Xpt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/3532473530387852pt_BR
dc.contributor.referee1Ascheri, Jose-
dc.contributor.referee1IDhttps://orcid.org/0000-0001-7449-8815pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1891994321882753pt_BR
dc.contributor.referee2Silva, Otniel Freitas-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-7658-8010pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/4067206563384738pt_BR
dc.contributor.referee3Rabanal, Raúl Comettant-
dc.contributor.referee3IDhttps://orcid.org/0000-0001-5485-1271pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8018330851532289pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9689568795485579pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Tecnologiapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospt_BR
dc.relation.referencesAACC. American Association of Cereal Chemists. Approved Methods of the American Association of Cereal Chemists. 9. ed. Saint Paul, v. 1-2, 1995. AACC. American Association of Cereal Chemists. Approved Methods of the American Association of Cereal Chemists. 10. ed. Saint Paul, v. 2, 2000. ADEBIYI, J. A. et al. Effect of fermentation and malting on the microstructure and selected physicochemical properties of pearl millet ( Pennisetum glaucum ) flour and biscuit. Journal of Cereal Science, [s. l.], v. 70, p. 132-139, jul. 2016. AKDOGAN, H. High moisture food extrusion. International Journal of Food Science & Technology, [s. l.], v. 34, n. 3, p. 195–207, jun. 1999. ALAM, M. S. et al. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. Critical Reviews in Food Science and Nutrition, [s. l.], v. 56, n. 3, p. 445–473, 9 jan. 2015. ALEXANDER, C. Preparation of weaning foods with high nutrient density using flour of germinating cereals. Food and Nutrition Bulletin, [s. l.], v. 5, n. 2, p. 10-14, 1983. ANDERSON, R. A.; CONWAY, H. F.; PEPLINSKI, A. J. Gelatinization of Corn Grits by Roll Cooking, Extrusion Cooking and Steaming. Starch - Stärke, v. 22, n. 4, p. 130–135, 1970. ANGELIS, D. D. et al. Rheological properties of dry-fractionated mung bean protein and structural, textural, and rheological evaluation of meat analogues produced by high-moisture extrusion cooking. Current Research in Food Science, [s. l.], v. 7, p. 100552–100552, 1 jan. 2023. ANNOR, G. A. et al. Why do millets have slower starch and protein digestibility than other cereals? Trends in Food Science & Technology, [s. l.], v. 66, p. 73-83, ago. 2017. 74 AOAC. Association of Official Analytical Chemists. Official Methods of Analysis of Association of Official Analytical Chemists. 18. ed. Washington, DC., 2010. ASCHERI, José Luis Ramirez. Perguntas e respostas sobre extrusão termoplástica de alimentos - Uma abordagem simplificada. Ponta Grossa - PR: Atena, 2022. ASSATORY, A. et al. Dry fractionation methods for plant protein, starch and fiber enrichment: A review. Trends in Food Science & Technology, [s. l.], v. 86, p. 340–351, 1 abr. 2019. BACIC, A.; STONE, B. Chemistry and Organization of Aleurone Cell Wall Components From Wheat and Barley. Functional Plant Biology, [s. l.], v. 8, n. 5, p. 475, 1981. BENINCASA, P. et al. Sprouted Grains: A Comprehensive Review. Nutrients, [s. l.], v. 11, n. 2, 17 fev. 2019. BERNARDO, C. O. et al. Ultrasound Assisted Extraction of Yam (Dioscorea bulbífera ) Starch: Effect on Morphology and Functional Properties. Starch - Stärke, [s. l.], v. 70, n. 5- 6, p. 1700185, 23 mar. 2018. BHATTARAI, R. R. et al. Intact cellular structure in cereal endosperm limits starch digestion in vitro. Food Hydrocolloids, [s. l.], v. 81, p. 139-148, ago. 2018. BHAVADHARANI, P. V.; GURUMOORTHI, P. Impact of germination on nutritional components, antinutritional, and functional properties of proso and barnyard millets. Food Chemistry Advances, v. 6, p. 100896, mar. 2025. BOUVIER, J.-M.; CAMPANELLA, O. H. Extrusion Processing Technology. Chichester, UK: John Wiley & Sons, Ltd, 2014. BOYE, J.; ZARE, F.; PLETCH, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International, [s. l.], v. 43, n. 2, p. 414–431, 1 mar. 2010. CAMIRE, M. E. Protein functionality modification by extrusion cooking. Journal of the American Oil Chemists’ Society, [s. l.], v. 68, n. 3, p. 200–205, mar. 1991. CARVALHO, C. W. P. et al. Relative effect of particle size on the physical properties of corn meal extrudates: Effect of particle size on the extrusion of corn meal. Journal of Food Engineering, [s. l.], v. 98, n. 1, p. 103-109, maio 2010. CHAIYAKUL, S. et al. Effect of protein content and extrusion process on sensory and physical properties of extruded high-protein, glutinous rice-based snack. [S. l.], p. 81–90, 1 jan. 2008. CHEFTEL, J. C.; KITAGAWA, M.; QUÉGUINER, C. New protein texturization processes by extrusion cooking at high moisture levels. Food Reviews International, [s. l.], v. 8, n. 2, p. 235–275, jan. 1992. 75 CHEN, F. et al. System parameters and product properties response of soybean protein extruded at wide moisture range. [S. l.], v. 96, n. 2, p. 208–213, 1 jan. 2010. CHEN, F. L.; WEI, Y. M.; ZHANG, B. Chemical cross-linking and molecular aggregation of soybean protein during extrusion cooking at low and high moisture content. LWT - Food Science and Technology, [s. l.], v. 44, n. 4, p. 957–962, maio 2011. CHEN, Q. et al. Rheological properties of pea protein isolate-amylose/amylopectin mixtures and the application in the high-moisture extruded meat substitutes. Food Hydrocolloids, [s. l.], v. 117, p. 106732, ago. 2021. CHIANG, J. H. et al. Effects of soy protein to wheat gluten ratio on the physicochemical properties of extruded meat analogues. Food Structure, [s. l.], v. 19, p. 100102, jan. 2019. COFFMANN, C. W.; GARCIAJ, V. V. Functional properties and amino acid content of a protein isolate from mung bean flour*. International Journal of Food Science & Technology, v. 12, n. 5, p. 473–484, jan. 1977. DE ANGELIS, Davide et al. Antinutritional factors, mineral composition and functional properties of dry fractionated flours as influenced by the type of pulse. Heliyon, [S. l.], v. 7, n. 2, p. e06177, 1 fev. 2021. DE ANGELIS, Davide et al. Techno-functional properties of dry-fractionated plant-based proteins and application in food product development: a review. Journal of the Science of Food and Agriculture, Chichester, v. 104, n. 4, p. 1884-1896, 9 dez. 2023. DE ANGELIS, D. et al. Techno-functional, rheological, and chemical properties of plant- based protein ingredients obtained with dry fractionation and wet extraction. Current Research in Food Science, Amsterdam, v. 9, p. 100906, 2024. DAVIES, J.; LIGHTOWLER, H. Plant‐based alternatives to meat. Nutrition & Food Science, [s. l.], v. 98, n. 2, p. 90–94, abr. 1998. DAY, L. Proteins from land plants – Potential resources for human nutrition and food security. Trends in Food Science & Technology, [s. l.], v. 32, n. 1, p. 25–42, jul. 2013. DE ASSIS, R. L.; DE FREITAS, R. S.; MASON, S. C. Pearl millet production practices in Brazil: a review. Experimental Agriculture, Cambridge, v. 54, n. 5, p. 699-718, 2018. Disponível em: AGRIS (FAO). Acesso em: 24 jul. 2025. DIEDERICKS, C. F. et al. Physicochemical properties and gelling behaviour of Bambara groundnut protein isolates and protein-enriched fractions. Food Research International, [s. l.], v. 138, p. 109773, 2020. DIJKINK, B. H. et al. Air dispersion of starch–protein mixtures: A predictive tool for air classification performance. Powder Technology, [s. l.], v. 172, n. 2, p. 113-119, mar. 2007. DU, S. K. et al. Physicochemical and functional properties of whole legume flour. LWT, [s. l.], v. 55, n. 1, p. 308-313, 2014. DOI: 10.1016/j.lwt.2013.06.001. 76 DZIKI, D.; LASKOWSKI, J. Study to analyze the influence of sprouting of the wheat grain on the grinding process. Journal of Food Engineering, [s. l.], v. 96, n. 4, p. 562-567, 2010. ELKHALIFA, A. E. O.; BERNHARDT, R. Influence of grain germination on functional properties of sorghum flour. Food Chemistry, [s. l.], v. 121, n. 2, p. 387-392, 2010. DOI: 10.1016/j.foodchem.2009.12.041. FAOSTAT. Agriculture Organization of the United Nations Statistics Division.Data– Crops-Yield. (2023). Disponível em: http://www.fao.org/faostat/en/#data/QC. Acesso em: 24 jul. 2025. FANG, Y.; ZHANG, B.; WEI, Y. Effects of the specific mechanical energy on the physicochemical properties of texturized soy protein during high-moisture extrusion cooking. Journal of Food Engineering, [s. l.], v. 121, p. 32–38, jan. 2014. FERNANDO, S. Production of protein-rich pulse ingredients through dry fractionation: A review. LWT, [s. l.], v. 141, p. 110961, abr. 2021. GHRIBI, A. M. et al. Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates. Journal of Food Engineering, [s. l.], v. 165, p. 179-188, nov. 2015. GRIFFITH, L. D.; CASTELL-PEREZ, M. E. Effects of Roasting and Malting on Physicochemical Properties of Select Cereals and Legumes. Cereal Chemistry Journal, [s. l.], v. 75, n. 6, p. 780-784, nov. 1998. GUAN, E. et al. Ultrafine grinding of wheat flour: Effect of flour/starch granule profiles and particle size distribution on falling number and pasting properties. Food Science and Nutrition, v. 8, n. 6, p. 2581–2587, 1 maio 2020. GUERRERO, P. et al. Extrusion of soy protein with gelatin and sugars at low moisture content. Journal of Food Engineering, [s. l.], v. 110, n. 1, p. 53–59, maio 2012. GULDIKEN, B. et al. Effect of extrusion conditions on the physical properties of desi chickpea‐barley extrudates and quality attributes of their resulting flours. [S. l.], v. 51, n. 2, p. 300–307, 1 abr. 2020. GUNATHUNGA, C. et al. Germination effects on nutritional quality: A comprehensive review of selected cereals and pulses changes. Journal of Food Composition and Analysis, v. 128, p. 106024, 1 abr. 2024. GUNDOGAN, R.; KARACA, A. C. Physicochemical and functional properties of proteins isolated from local beans of Turkey. LWT, [s. l.], v. 130, p. 109609, ago. 2020. GUYONY, V.; FAYOLLE, F.; JURY, V. High moisture extrusion of vegetable proteins for making fibrous meat analogs: A review. Food Reviews International, [s. l.], p. 1–26, 10 jan. 2022. 77 HAMA, F. et al. Changes in micro-and macronutrient composition of pearl millet and white sorghum during in field versus laboratory decortication. Journal of Cereal Science, [S. l.], v. 54, p. 425-433, 2011. HELLEMANS, T. et al. Variation in amylose concentration to enhance wheat flour extrudability. Journal of Cereal Science, [s. l.], v. 95, p. 102992–102992, 1 set. 2020. HEMMLER, D. et al. Insights into the Chemistry of Non-Enzymatic Browning Reactions in Different Ribose-Amino Acid Model Systems. Scientific Reports, [s. l.], v. 8, n. 1, 15 nov. 2018. HENSHAW, F. O. et al. Pasting properties of cowpea flour: Effects of soaking and decortication method. Journal of Agricultural and Food Chemistry, [s. l.], v. 44, n. 7, p. 1864-1870, 1996. DOI: 10.1021/jf950698d. HOOVER, R. et al. Composition, molecular structure, properties, and modification of pulse starches: A review. Food Research International, [s. l.], v. 43, n. 2, p. 399-413, mar. 2010. HOSOKAWAMICRON. Basics of Classification Technology from Hosokawa. [S. l.]: Hosokawa Micron, [2024]. Disponível em: https://www.youtube.com/watchv=wCalN9pAgDw&list=WL&index=13. Acesso em: 28 jan. 2024. HUANG, X. et al. Superfine grinding affects physicochemical, thermal and structural properties of Moringa Oleifera leaf powders. Industrial Crops and Products, v. 151, p. 112472, set. 2020. HÜTTNER, E. K.; ARENDT, E. K. Recent advances in gluten-free baking and the current status of oats. Trends in Food Science & Technology, [s. l.], v. 21, n. 6, p. 303–312, jun. 2010. IDELFONSO, Mateus Leal. Moagem ultrafina de gipsita em moinhos a jato e planetário: um estudo comparativo. 2023. 40 f. Trabalho de Conclusão de Curso (Graduação) – Curso de Engenharia de Minas, Departamento de Engenharia de Minas, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, 2023. Disponível em: https://repositorio.ufpe.br/handle/123456789/53150. Acesso em: 22 jul. 2025. ILO, S.; SCHOENLECHNER, R.; BERGHOFE, E. Role of lipids in the extrusion cooking processes. Grasas y Aceites, [s. l.], v. 51, n. 1-2, p. 97–110, 30 abr. 2000. KENDLER, C. et al. Effect of Oil Content and Oil Addition Point on the Extrusion Processing of Wheat Gluten-Based Meat Analogues. Foods, [s. l.], v. 10, n. 4, p. 697, 25 mar. 2021. KIM, T. et al. The effect of cooling and rehydration methods in high moisture meat analogs with pulse proteins‐peas, lentils, and faba beans. Journal of Food Science, [s. l.], v. 86, n. 4, p. 1322–1334, 24 mar. 2021. 78 KRISHNA KUMARI, S.; THAYUMANAVAN, B. Plant Foods for Human Nutrition, [s. l.], v. 53, n. 1, p. 47-56, 1998. KUMAR, P. et al. Meat analogues: Health promising sustainable meat substitutes. Critical reviews in food science and nutrition, [s. l.], v. 57, n. 5, p. 923–932, 2017. KYRIAKOPOULOU, K.; KEPPLER, J. K.; VAN DER GOOT, A. J. Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods, [s. l.], v. 10, n. 3, p. 600, 12 mar. 2021. LI, C. et al. Effect of germination on the structures and physicochemical properties of starches from brown rice, oat, sorghum, and millet. [S. l.], v. 105, p. 931-939, 1 dez. 2017. LI, K. et al. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion. v. 98, p. 105275–105275, 1 jan. 2020. LIN, M. J. Y.; HUMBERT, E. S.; SOSULSKI, F. W. CERTAIN FUNCTIONAL PROPERTIES OF SUNFLOWER MEAL PRODUCTS. Journal of Food Science, v. 39, n. 2, p. 368–370, mar. 1974. LIN, S.; HUFF, H. E.; HSIEH, F. Extrusion Process Parameters, Sensory Characteristics, and Structural Properties of a High Moisture Soy Protein Meat Analog. Journal of Food Science, [s. l.], v. 67, n. 3, p. 1066–1072, abr. 2002. LIN, S.; HUFF, H. E.; HSIEH, F. Texture and Chemical Characteristics of Soy Protein Meat Analog Extruded at High Moisture. Journal of Food Science, [s. l.], v. 65, n. 2, p. 264–269, mar. 2000. LIU, K.; HSIEH, F.-H. Protein–Protein Interactions during High-Moisture Extrusion for Fibrous Meat Analogues and Comparison of Protein Solubility Methods Using Different Solvent Systems. Journal of Agricultural and Food Chemistry, [s. l.], v. 56, n. 8, p. 2681– 2687, abr. 2008. LIU, K.; ZHU, H.; ZHANG, Y. Effect of Mechanical Grinding on the Physicochemical, Structural, and Functional Properties of Foxtail Millet (Setaria italica (L.) P. Beauv) Bran Powder. Foods, [s. l.], v. 11, n. 17, p. 2688–2688, 3 set. 2022. LUCAS et al. Physical and techno-functional properties of a common bean protein concentrate compared to commercial legume ingredients for the plant-based market. [S. l.], v. 137, p. 108351–108351, 1 abr. 2023. MALAV, O. P. et al. Meat Analog: A Review. Critical Reviews in Food Science and Nutrition, [s. l.], v. 55, n. 9, p. 1241–1245, 11 out. 2013. MALLESHI, N.; DAODU, M.; CHANDRASEKHAR, A. Development of weaning food formulations based on malting and roller drying of sorghum and cowpea. International Journal of Food Science and Technology, [s. l.], v. 24, n. 5, p. 511-519, 1989. 79 PULIVARTHI, Manoj Kumar et al. Dry fractionation process operations in the production of protein concentrates: A review. Comprehensive Reviews in Food Science and Food Safety, Hoboken, v. 22, n. 6, p. 4670-4697, 1 out. 2023. MASKAN, M.; ALTAN, A. Advances in food extrusion technology. Boca Raton, FL: CRC Press, 2012. MOSHA, A. C.; SVANBERG, U. The Acceptance and Intake of Bulk-Reduced Weaning Foods: The Luganga Village Study. Food and Nutrition Bulletin, [s. l.], v. 12, n. 1, p. 1-6, mar. 1990. NASROLLAHZADEH, F. et al. Effect of microwave and conventional heating on structural, functional and antioxidant properties of bovine serum albumin-maltodextrin conjugates through Maillard reaction. Food Research International, [s. l.], v. 100, p. 289-297, out. 2017. NISHINARI, K. et al. Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocolloids, [s. l.], v. 39, p. 301–318, ago. 2014. OSEN, R. et al. Effect of high moisture extrusion cooking on protein-protein interactions of pea (Pisum sativumL.) protein isolates. International Journal of Food Science & Technology, [s. l.], v. 50, n. 6, p. 1390–1396, 9 mar. 2015. OSEN, R. et al. High moisture extrusion cooking of pea protein isolates: Raw material characteristics, extruder responses, and texture properties. Journal of Food Engineering, [s. l.], v. 127, p. 67–74, abr. 2014. PASCALLE J. M. PELGROM; MAARTEN A. I. SCHUTYSER; BOOM, R. M. Thermomechanical Morphology of Peas and Its Relation to Fracture Behaviour. Food and Bioprocess Technology, [s. l.], v. 6, n. 12, p. 3317–3325, 30 dez. 2012. PASHA, I.; ANJUM, F. M.; MORRIS, C. F. Grain hardness: a major determinant of wheat quality. Food Science and Technology International = Ciencia Y Tecnologia De Los Alimentos Internacional, v. 16, n. 6, p. 511–522, 1 dez. 2010. PELGROM, P. J. M. et al. Dry fractionation for production of functional pea protein concentrates. Food Research International, [s. l.], v. 53, n. 1, p. 232–239, ago. 2013. PELGROM, P. J. M. et al. Pre- and post-treatment enhance the protein enrichment from milling and air classification of legumes. Journal of Food Engineering, [s. l.], v. 155, p. 53– 61, jun. 2015. PELGROM, P. J. M. et al. Preparation of functional lupine protein fractions by dry separation. LWT - Food Science and Technology, [s. l.], v. 59, n. 2, Part 1, p. 680–688, 1 dez. 2014. PELGROM, P. J. M.; BOOM, R. M.; SCHUTYSER, M. A. I. Functional analysis of mildly refined fractions from yellow pea. Food Hydrocolloids, [s. l.], v. 44, p. 12–22, fev. 2015. 80 PELGROM, P. J. M.; BOOM, R. M.; SCHUTYSER, M. A. I. Method Development to Increase Protein Enrichment During Dry Fractionation of Starch-Rich Legumes. Food and Bioprocess Technology, [s. l.], v. 8, n. 7, p. 1495–1502, 8 abr. 2015. PIETSCH, V. L. et al. High moisture extrusion of soy protein concentrate: Influence of thermomechanical treatment on protein-protein interactions and rheological properties. Journal of Food Engineering, [s. l.], v. 251, p. 11–18, jun. 2019. PIETSCH, V. L. et al. High moisture extrusion of wheat gluten: Relationship between process parameters, protein polymerization, and final product characteristics. Journal of Food Engineering, [s. l.], v. 259, p. 3–11, out. 2019. PIETSCH, V. L.; EMIN, M. A.; SCHUCHMANN, H. P. Process conditions influencing wheat gluten polymerization during high moisture extrusion of meat analog products. Journal of Food Engineering, [s. l.], v. 198, p. 28–35, abr. 2017. POST, M. J. Cultured meat from stem cells: Challenges and prospects. Meat Science, [s. l.], v. 92, n. 3, p. 297–301, nov. 2012. PUNIA, S. et al. Pearl millet grain as an emerging source of starch: A review on its structure, physicochemical properties, functionalization, and industrial applications. Carbohydrate Polymers, v. 260, p. 117776, maio 2021. RATNAYAKE, W. S.; NAGULESWARAN, S. Utilizing side streams of pulse protein processing: A review. Legume Science, [s. l.], 20 ago. 2021. REN, W.; LIU, J.; YU, Y. Design of a rotor cage with non-radial arc blades for turbo air classifiers. Powder Technology, [s. l.], v. 292, p. 46-53, 1 maio 2016. RIAZ, M. N. Extruders in Food Applications. [S. l.]: CRC Press, 2000. RIAZ, M. N. Soy Applications in Food. [S. l.]: Informa, 2005. RIAZ, M. N. Stability of Vitamins during Extrusion. Critical Reviews in Food Science and Nutrition, [s. l.], v. 49, n. 4, p. 361–368, 24 fev. 2009. RIAZ, M. N. Texturized soy protein as an ingredient. In: Proteins in Food Processing. [S. l.: s. n.], 2004. p. 517–558. ROONEY, L. W.; MILLER, F. R.; MERTIN, J. V. Variation in the structure and kernel characteristics of sorghum. In: INTERNATIONAL SYMPOSIUM ON SORGHUM GRAIN QUALITY, 28., 1981. Proceedings [...]. [S. l.]: [s. n.], 1981. p. 143–162. SADLER, L. Y. III; STANLEY, D. A.; BROOKS, D. R. Attrition mill operating characteristics. Powder Technology, [s. l.], v. 12, n. 1, p. 19-28, 1975. SALDANHA DO CARMO, C. et al. Meat analogues from a faba bean concentrate can be generated by high moisture extrusion. Future Foods, [s. l.], v. 3, p. 100014, 2021. 81 SANDOVAL MURILLO, J. L. et al. Towards understanding the mechanism of fibrous texture formation during high-moisture extrusion of meat substitutes. Journal of Food Engineering, [s. l.], v. 242, p. 8–20, fev. 2019. SANTOS, et al. Exploring starches from varied sorghum genotypes compared to commercial maize starch. Journal of Food Process Engineering, [s. l.], v. 46, n. 10, 26 dez. 2022. SCANLON, M. G. et al. The critical role of milling in pulse ingredient functionality. Cereal Foods World, [s. l.], v. 63, p. 201-206, 2018. SCHLANGEN, M. et al. Dry fractionation to produce functional fractions from mung bean, yellow pea and cowpea flour. Innovative Food Science & Emerging Technologies, [s. l.], v. 78, p. 103018, jun. 2022. SCHUTYSER, M. A. I. et al. Dry fractionation for sustainable production of functional legume protein concentrates. Trends in Food Science & Technology, [s. l.], v. 45, n. 2, p. 327–335, out. 2015. SCHUTYSER, M. A. I.; VAN DER GOOT, A. J. The potential of dry fractionation processes for sustainable plant protein production. Trends in Food Science & Technology, [s. l.], v. 22, n. 4, p. 154–164, abr. 2011. SHI, Z. H.; UTRACKI, L. A. Development of polymer blend morphology during compounding in a twin-screw extruder. Part I: Droplet dispersion and coalescence—A review. Polymer Engineering and Science, [s. l.], v. 32, n. 24, p. 1824–1835, dez. 1992. SIBAKOV, J. et al. Lipid removal enhances separation of oat grain cell wall material from starch and protein. Journal of Cereal Science, [S. l.], v. 54, n. 1, p. 104-109, 1 jul. 2011. SILVENTOINEN, P. et al. Use of air classification technology to produce protein-enriched barley ingredients. Journal of Food Engineering, [s. l.], v. 222, p. 169-177, abr. 2018. SILVENTOINEN, P. et al. Biochemical and Techno-Functional Properties of Protein- and Fibre-Rich Hybrid Ingredients Produced by Dry Fractionation from Rice Bran. Food and Bioprocess Technology, New York, v. 12, n. 9, p. 1487-1499, 3 jul. 2019. SINGH, S.; GAMLATH, S.; WAKELING, L. Nutritional aspects of food extrusion: a review. International Journal of Food Science & Technology, [s. l.], v. 42, n. 8, p. 916– 929, ago. 2007. SKYLAS, D. J. et al. Characterisation of Protein Isolates Prepared from Processed Mungbean (Vigna radiata) Flours. Journal of Agricultural Science, [s. l.], v. 9, n. 12, p. 1, 15 nov. 2017. SKYLAS, D. J. et al. Optimised dry processing of protein concentrates from Australian pulses: A comparative study of faba bean, yellow pea and red lentil seed material. Legume Science, [s. l.], v. 5, n. 1, 13 out. 2022. 82 SOLAESA, Á. G. et al. Protein and lipid enrichment of quinoa (cv.Titicaca) by dry fractionation. Techno-functional, thermal and rheological properties of milling fractions. Food Hydrocolloids, [s. l.], v. 105, p. 105770–105770, 1 ago. 2020. SOLMAZ TABTABAEI et al. Development and optimization of a triboelectrification bioseparation process for dry fractionation of legume flours. [S. l.], v. 163, p. 48-58, 11 maio 2016. SRICHUWONG, S. et al. Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents. Food Chemistry, [s. l.], v. 233, p. 1-10, out. 2017. Sruthi, N.U., RAO, P.S., RAO, B.D. Decortication induced changes in the physico-chemical, anti-nutrient, and functional properties of sorghum. Journal of Food Composition and Analysis, v. 102, p. 104031, set. 2021. SUMNER, A. K. et al. Composition and properties of pearled and fines fractions from hulled and hull-les barley. Cereal Chemistry, [s. l.], v. 62, p. 112-116, 1985. SUN, P. L. et al. The Experimental Study about the Influence of Extrusion System Parameters on Textured Degree of High Moisture Content Fibriform Imitated Meat. Advanced Materials Research, [s. l.], v. 188, p. 250–253, mar. 2011. TABTABAEI, S. et al. Functional properties of navy bean (Phaseolus vulgaris) protein concentrates obtained by pneumatic tribo-electrostatic separation. Food Chemistry, [s. l.], v. 283, p. 101–110, jun. 2019. TANG, H.; WATANABE, K.; MITSUNAGA, T. Structure and functionality of large, medium and small granule starches in normal and waxy barley endosperms. Carbohydrate Polymers, v. 49, n. 2, p. 217–224, ago. 2002. THADAVATHI, Y. L. N.; WASSÉN, S.; KÁDÁR, R. In-line rheological and microstroctural characterization of high moisture content protein vegetable mixtures in single screw extrusion. Journal of Food Engineering, [s. l.], v. 245, p. 112–123, mar. 2019. TAYLOR, J. R. N. Millet Pearl: Overview. Encyclopedia of Food Grains, p. 190–198, 2016. TOLSTOGUZOV, V. B. Thermoplastic extrusion-the mechanism of the formation of extrudate structure and properties. Journal of the American Oil Chemists’ Society, [s. l.], v. 70, n. 4, p. 417–424, 1 abr. 1993. TOLSTOGUZOV, V. Texturising by phase separation. Biotechnology Advances, [s. l.], v. 24, n. 6, p. 626–628, nov. 2006. TYLER, R. T. Impact Milling Quality of Grain Legumes. Journal of Food Science, [s. l.], v. 49, n. 3, p. 925–930, maio 1984. 83 U.S. DEPARTMENT OF AGRICULTURE. FoodData Central. [S. l.]: U.S. Department of Agriculture, [2024?]. Disponível em: https://fdc.nal.usda.gov/. Acesso em: 28 jan. 2024. VERBEEK, C. J. R.; VAN DEN BERG, L. E. Extrusion Processing and Properties of Protein-Based Thermoplastics. Macromolecular Materials and Engineering, [s. l.], v. 295, n. 1, p. 10–21, 18 jan. 2010. VOGELSANG-O’DWYER, M. et al. Comparison of Faba Bean Protein Ingredients Produced Using Dry Fractionation and Isoelectric Precipitation: Techno-Functional, Nutritional and Environmental Performance. Foods (Basel, Switzerland), [s. l.], v. 9, n. 3, 11 mar. 2020. WANG, J. et al. Dietary fibre enrichment from defatted rice bran by dry fractionation. Journal of Food Engineering, [s. l.], v. 186, p. 50-57, out. 2016. WANG, N.; MAXIMIUK, L. Effect of air classification processing variables on yield, composition, and certain antinutrients of air‐classified fractions from field peas by response surface methodology. Journal of Food Processing and Preservation, [s. l.], v. 43, n. 7, 14 maio 2019. WANI, I. A. et al. Physico-chemical and functional properties of native and hydrolyzed kidney bean (Phaseolus vulgaris L.) protein isolates. Food Research International, [s. l.], v. 76, p. 11-18, out. 2015. WELLENKAMP, Franz-Josef. Moagens fina e ultrafina de minerais industriais: uma revisão. Rio de Janeiro: CETEM, 1999. (Série Tecnologia Mineral, 75). Disponível em: http://mineralis.cetem.gov.br/handle/cetem/124. Acesso em: 22 jul. 2025. WEY Y., ZHAO D., KANG L., ZHANG B. Effects of Process Parameters on Products Characteristics of Textural Soy Protein. Chin. J. Grain Oil, [s. l.], n. 24, p. 20–25, 2009. WILD, F. The evolution of a plant-based alternative to meat: From niche markets to widely accepted meat alternatives. Agro Food Industry Hi-Tech, [s. l.], v. 25, n. 1, p. 45–49, fev. WITTEK, P.; KARBSTEIN, H. P.; EMIN, M. A. Blending Proteins in High Moisture Extrusion to Design Meat Analogues: Rheological Properties, Morphology Development and Product Properties. Foods, [s. l.], v. 10, n. 7, p. 1509, 30 jun. 2021. WOLZ, M.; KASTENHUBER, S.; KULOZIK, U. High moisture extrusion for microparticulation of whey proteins –Influence of process parameters. Journal of Food Engineering, [s. l.], v. 185, p. 56–61, set. 2016. WU, M. et al. Dynamic mechanical properties and fractal analysis of texturized soybean protein/wheat gluten composite produced by high moisture extrusion. International Journal of Food Science & Technology, [s. l.], v. 54, n. 2, p. 499–508, 24 set. 2019. 84 WU, S. Formation of dispersed phase in incompatible polymer blends: Interfacial and rheological effects. Polymer Engineering and Science, [s. l.], v. 27, n. 5, p. 335–343, 1 mar. 1987. YASIR, S. et al. The impact of Maillard cross-linking on soy proteins and tofu texture. Food Chemistry, [s. l.], v. 104, n. 4, p. 1502–1508, 2007. YILMAZ, E.; EMIR, D. D. Extraction and Functional Properties of Proteins from Pre-roasted and Enzyme Treated Poppyseed (Papaver somniferum L.) Press Cakes. Journal of Oleo Science, [s. l.], v. 65, n. 4, p. 319-329, 2016. ZHANG, B. et al. The effects of screw configuration on the screw fill degree and special mechanical energy in twin-screw extruder for high-moisture texturised defatted soybean meal. Journal of Food Engineering, [s. l.], v. 157, p. 77–83, jul. 2015. ZHANG, J. et al. Changes in conformation and quality of vegetable protein during texturization process by extrusion. Critical Reviews in Food Science and Nutrition, [s. l.], v. 59, n. 20, p. 3267–3280, 12 jul. 2018. ZHANG, J. et al. High-moisture extrusion of peanut protein-/carrageenan/sodium alginate/wheat starch mixtures: Effect of different exogenous polysaccharides on the process forming a fibrous structure. Food Hydrocolloids, [s. l.], v. 99, p. 105311, fev. 2020. ZHANG, W. et al. Relationships between the gelatinization of starches and the textural properties of extruded texturized soybean protein-starch systems. Journal of Food Engineering, [s. l.], v. 174, p. 29–36, abr. 2016. ZHANG, Z. et al. High-moisture Extrusion Technology Application in the Processing of Textured Plant Protein Meat Analogues: A Review. Food Reviews International, [s. l.], p. 1–36, 7 fev. 2022. ZHENG, H.-G. et al. Preparation of soluble soybean protein aggregates (SSPA) from insoluble soybean protein concentrates (SPC) and its functional properties. Food Research International, [s. l.], v. 41, n. 2, p. 154–164, jan. 2008. ZHU, H.-G. et al. Optimization of the powder state to enhance the enrichment of functional mung bean protein concentrates obtained by dry separation. Powder Technology, [s. l.], v. 373, p. 681–688, 1 ago. 2020.pt_BR
dc.subject.cnpqCiência e Tecnologia de Alimentospt_BR
Appears in Collections:Mestrado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
ALEXANDER FERREIRA BRITO.pdf1.56 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.