Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/11062
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPereira, Cristina Barbosa
dc.date.accessioned2023-12-22T01:46:12Z-
dc.date.available2023-12-22T01:46:12Z-
dc.date.issued2021-02-09
dc.identifier.citationPEREIRA, Cristina Barbosa. Bioconservação por Lacticaseibacillus casei de suco de maçã prensado a frio. 2021. 65 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11062-
dc.description.abstractA produção de sucos prensados a frio tem crescido continuamente. Para manter a qualidade, o processamento do suco não inclui o uso do calor ou aditivos químicos como método de conservação, resultando em um produto com melhores características nutricionais e sensoriais. No entanto, apresentam vida útil curta. Nesse sentido, a bioconservação por se tratar de um método natural, sem perdas nutricionais e de fácil implementação, surge como uma alternativa aos métodos de conservação. Embora a bioconservação tenha se mostrado uma estratégia viável, sabe-se que o processo pode afetar as características sensoriais do produto ao longo de toda a cadeia produtiva. Assim, o presente trabalho objetivou utilizar Lacticaseibacillus casei como agente bioconservador, para estender a vida útil do produto, além de avaliar a influência da temperatura de armazenamento (4 °C, 8 °C, 10 °C) do suco de maçã prensado a frio bioconservado sob diferentes aspectos sensoriais. Dessa forma, através do processo de bioconservação associado ao armazenamento refrigerado foi possível garantir a segurança microbiológica do produto durante toda a vida útil do suco garantindo um prazo três vezes mais longo do que a atualmente oferecido pela maioria das empresas, passando de 5 dias para 15 dias. Durante às 6 h de exposição do suco de maçã prensado a frio ao Lacticaseibacillus casei a 37 °C foi possível identificar através das análises físicas, químicas e microbiológicas que não houve mudanças significativas no produto. Porém, durante o armazenamento a frio, o aumento dos níveis de pH e redução de acidez, indicam a ocorrência da fermentação malolática. O armazenamento a 10 °C se mostrou a melhor condição em relação à viabilidade do Lacticaseibacillus casei , propiciando aumento das células viáveis em 1 ciclo logarítmico, após 7 dias de armazenamento. Esse resultado está relacionado aos maiores índices de pH e menores de acidez, influenciando negativamente a aceitação do consumidor. A aceitação de oito amostras do suco de maçã prensado a frio bioconservado, armazenado por 15 dias sob diferentes as temperaturas (4 °C, 8 °C, 10 °C) foi avaliada por 55 consumidores. A maioria das amostras alcançou médias adequadas, evidenciando boa aceitabilidade, desde que ajustado o tempo e a temperatura de armazenamento do produto. A vida útil sensorial foi estimada e todas as amostras, mesmo as com menores médias de aceitação, apresentaram vida útil estendida de acordo com a distribuição Weibull. Através do Napping® associado ao perfil ultra-flash, foi possível identificar que os consumidores perceberam diferenças entre as amostras, oriundas do tempo e da temperatura de armazenamento, demonstrando que quando não ajustados corretamente podem influenciar negativamente o produto. O armazenamento à 8 °C mostrou-se uma alternativa viável para a comercialização do produto, pois apresentou vida útil sensorial estendida, atendendo a dificuldade da indústria na manutenção a cadeia de frios (4 °C), além de garantir a estabilidade microbiológica do produto. Quanto à aplicação do suco de maçã bioconservado como base para blends de frutas e vegetais, embora nem todos os blends tenham obtido boa aceitação, a estratégia pode ser viável pois garantiu a vida útil do produto por 15 dias armazenado a 8 °C.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectsuco de maçã prensado a friopor
dc.subjectbioconservaçãopor
dc.subjectLacticaseibacillus caseipor
dc.subjectvida útil sensorialpor
dc.subjectNappingpor
dc.subjectcold-pressed apple juiceeng
dc.subjectbiopreservationeng
dc.subjectsensory shelf-lifepor
dc.titleBioconservação por Lacticaseibacillus casei de suco de maçã prensado a friopor
dc.title.alternativeBiopreservation by Lacticaseibacillus casei of the cold pressed apple juiceeng
dc.typeDissertaçãopor
dc.description.abstractOtherThe production of cold-pressed juices has grown continuously. To maintain quality, the processing of the cold-pressed juice does not include the use of heat and additives chemical as preservation method, resulting in a product with better nutritional and sensory characteristics. However, have short shelf life. In this sense, biopreservation it is a natural method, without nutritional losses and easy implementation, emerges as an alternative to thermal and chemical preservation methods in food. Although biopreservation has proved to be a viable strategy, it is known that the process can affect the sensory characteristics of the product throughout the production chain. The present work aimed to use Lacticaseibacillus casei as a biopreservative agent, extending the shelf life of the product, besides evaluating the influence of storage temperature of bioconserved cold-pressed apple juice, under different sensory aspects. Thus, through the bioconservation process associated with refrigerated storage it was possible to guarantee the microbiological safety of the product during the shelf life of the juice ensuring a period three times longer (15 days) than currently offered by most companies (3- 5 days). During the 6 h of exposure of cold pressed apple juice to Lacticaseibacillus casei at 37 °C it was possible to identify through physical, chemical, and microbiological analyses that there were no significant changes in the product. However, during cold storage, increased pH levels and reduced acidity indicate the occurrence of malolactic fermentation. The storage at 10 °C proved to be the best condition according to the viability of Lacticaseibacillus casei, providing an increase in viable cells in 1 logarithmic cycle after 7 days of storage. This result is related to higher pH and lower acidity, negatively influencing consumer acceptance. The acceptance the 8 samples of biopreserved cold-pressed apple juice, stored 15 for days under different temperatures (4°C, 8°C, 10°C), was evaluated by 55 consumers. Most of the samples achieved positive means, evidencing good acceptability, provided that the time and storage temperature of the product were adjusted. The sensory shelf-life life was estimated and all samples, even those with smaller acceptance means, presented shelf-life above that offered by most industries in the category according to a Weibull distribution. Through Napping® associated with the ultra-flash profile, it was possible to identify that consumers noticed differences between samples, arising from storage time and temperature. storage at 8 °C proved to be a viable alternative for the sale of the product, because it presented extended sensory service life, meets the difficulty of the industry in maintaining the cold chain (4 °C), besides ensuring the microbiological stability of the product. About the application of biopreserved apple juice as a basis for fruit and vegetable blends, although not all blends have obtained good acceptance, the strategy may be feasible the strategy may be feasible as it has ensured the shelf-life of the product for 15 days stored at 8 °C.eng
dc.contributor.advisor1Ferreira, Elisa Helena da Rocha
dc.contributor.advisor1ID075.506.337-62por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9247021829603724por
dc.contributor.referee1Ferreira, Elisa Helena da Rocha
dc.contributor.referee2Deliza, Rosires
dc.contributor.referee3Guerra, André Fioravante
dc.creator.ID125.492.997-52por
dc.creator.Latteshttp://lattes.cnpq.br/0544736145519617por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.referencesABDUL KARIM SHAH, N. et al. Fruit Juice Production Using Ultraviolet Pasteurization: A Review. Beverages, v. 2, n. 3, p. 22, 2016. ALBERDA, C.; MARCUSHAMER, S.; HEWER, T.; JOURNAULT, N.; KUTSOGIANNIS, D. Feasibility of a Lacticaseibacillus casei Drink in the Intensive Care Unit for Prevention of Antibiotic Associated Diarrhea and Clostridium difficile. Nutrients, v. 10, p. 1-13, 2018. ALVAREZ-SIEIRO, P. et al. Bacteriocins of lactic acid bacteria : extending the family. App. Microbiol Biotechnol, v.100, p. 2939–2951, 2016. AMERICAN PUBLIC HEALTH ASSOCIATION – APHA. Compendium of methods for the microbiological examination of foods, 4. ed. Washington, p. 676, 2001. AMORIM, C. J.; PICCOLI H. R.; DUARTE F. W. Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages. Food. Research. International, v. 107, p. 518-527, 2018 ANDRÉS, V.; TENÓRIO, M. D.; VILLANUEVA, J. Sensory profile, soluble sugars, organic acids, and mineral content in milk- and soy-juice based beverages. Food Chemistry, v.173, p.1100-1106, 2015. ANDREWS, W. H.; JACOBSON, A.; HAMMACK, T. S. Salmonella. In: UNITED STATES FOOD DRUG ADMINISTRATION – FDA (Ed.). Bacteriological analytical manual online. 8th ed. Rockville: FDA, 2014. chap. 5. Disponível em: <http://www.cfsan.fda.gov/ ebam/bam-5.html>. Acesso em: 10 abril de 2019. ANEJA, K. R. et al. Emerging preservation techniques for controlling spoilage and pathogenic microorganisms in fruit juices. International Journal of Microbiology, v. 2014, 2014. AOAC. Official Methods of Analysis (18 th ed.). Washington, DC., USA: Association of Official Analytical Chemists. Gaithersburg: 2006. ASCHEMANN-WITZEL, J.; VARELA, P.; PESCHEL, A. O. Consumers categorization of food ingredients: Do consumers perceive them as ‘clean label’ producers expect? An exploration with projective mapping. Food Quality and Pref., v. 71, p. 117- 128, 2019. AKOGLU, B. et al. Probiotic Lacticaseibacillus casei Shirota improves kidney function, inflammation and bowel movements in hospitalized patients with acute gastroenteritis – A prospective study. Journal of Functional Foods, v. 19, p. 305-313, 2015. BALCIUNAS, E. M. et al. Novel biotechnological applications of bacteriocins: A review. Food Control, v. 32, n. 1, p. 134–142, 2013. BARBOSA, A. A. T.; MANTOVANI, H. C.; JAIN, S. Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Critical Reviews in Biotechnology, v. 37, n. 7, p. 852–864, 2017. BEVILACQUA, A. et al. Nonthermal Technologies for Fruit and Vegetable Juices and Beverages: Overview and Advances. Comprehensive Reviews in Food Science and Food Safety, v. 17, n. 1, p. 2–62, 2018. BIANCANIELLO, M. et al. Feasibility of a Novel Industrial-Scale Treatment of Green Cold- Pressed Juices by UV-C Light Exposure. Beverages, v. 4, n. 2, p. 29, 2018. BINTSIS, T. Lactic acid bacteria: their applications in foods. J. Bacteriol Mycology, v. 6, n. 2, p.89–94. 2018. BOZA-MÉNDES, E.; LÓPES-CALVO, R.; CORTÉS-MUÑOZ, M. Innovative Dairy Products Developmente Usin Probiotics: Challenges and Limitations. In: Intech. [s.l: s.n.]. p. 13. BRASIL, A. N. DE V. S. RDC 02 janeiro de 2001. Disponível em: <https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2001/res0012_02_01_2001.html>. Acesso em: 20 mar. 2019. BRASIL, A. N. DE V. S. Agência Nacional de Vigilância Sanitária. Portal Anvisa - Probióticos: Construção da lista de linhagens probióticas (2017). Construção da Lista de Linhagens Probióticas (2017). Dispõe sobre a lista de linhagens de probióticos a serem autorizadas para o uso em suplementos alimentares. Disponível em: <http://antigo.anvisa.gov.br/documents/3845226/0/An%C3%A1lise+das+Linhagens+de+Pro bi%C3%B3ticos__23042018.pdf/6e37da13-2151-4330-85b0-0f449dbb0e95>. Acesso em: 20 de abril de 2019 BROADBENT, J. R. et al. Physiological and transcriptional response of Lacticaseibacillus casei ATCC 334 to acid stress. Journal of Bacteriology, v. 192, n. 9, p. 2445–2458, 2010. CAMARGO, A. C. et al. Lactic Acid Bacteria (LAB) and Their Bacteriocins as Alternative Biotechnological Tools to Control Listeria monocytogenes Biofilms in Food Processing Facilities. Molecular Biotechnology, v. 60, n. 9, p. 712–726, 2018. CASTRO, R. et al. Lactic acid microbiota identification in water, raw milk, endogenous starter culture, and fresh Minas artisanal cheese from the Campo das Vertentes region of Brazil during the dry and rainy seasons. J. Dairy Science, v. 99 , p. 6086-6096, 2016. CHAVES, A. H.; DA SILVA, J. F. C.; DE CAMPOS, O. F.; PINHEIRO, A. J. R.; VALADARES, S. D. Effect of one strain of Lactobacillus acidophilus (LT 29 516) as probiotic for calves. Brazilian Journal of Animal Science, v. 28, n.5, p. 1075-1085, 1999. CHEN, C. et al. Influence of 4 lactic acid bacteria on the flavor profile of fermented apple juiceInfluence of 4 lactic acid bacteria. Food Bioscience, v. 27, n. October 2018, p. 30–36, 2019. CHEONG, E. Y. L. Isolation of lactic acid bacteria with antifungal activity against the common cheese spoilage mould Penicillium commune and their potential as biopreservatives in cheese. Food Control, v. 46, p 91- 97, 2014. CHOLAKOV, R. et al. Antimicrobial activity of Leuconostoc Lactis strain bt17, isolated from a spontaneously fermented cereal beverage (Boza). J. Microbiol. Biotech. Food Sci., v. 7, p. 47- 49, 2017. COSTA, M. G. M. et al. Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chemistry, v. 139, n. 1–4, p. 261–266, 2013. CORTÉS-ZAVALETA, O. et al. Antifungal activity of lactobacilli and its relationship with 3- phenyllactic acid production. International J. of Food Microbiology, v. 173, p. 30-35, 2014 CRUZ, A. G. et al. Survival analysis methodology to predict the shelf-life of probiotic flavored yogurt. Food Research International, v. 43, n. 5, p. 1444–1448, 2010. DE GODOY ALVES FILHO, E. et al. Chemometric evaluation of the volatile profile of probiotic melon and probiotic cashew juice. Food Research International, v. 99, n. March, p. 461–468, 2017. DE SOUZA, L. J. Soluções para redução de açúcar. Brasil - 2018 Opiniões Sobre Sucos, p. 55, 2019. DHUNDALE, V. et al. Evaluation and Exploration of Lactic Acid Bacteria for Preservation and Extending the Shelf Life of Fruit. International Journal of Fruit Science, v. 18, n. 4, p. 355–368, 2018. DI CAGNO, R.; FILANNINO, P.; GOBBETTI, M. Lactic acid fermentation drives the optimal volatile flavor-aroma profile of pomegranate juice. International Journal of Food Microbiology, v. 248, p. 56–62, 2017. DIAS, J. F. et al. Acid Lactic Bacteria as a Bio-Preservant for Grape Pomace Beverage. Frontiers in Sustainable Food Systems, v. 2, n. September, p. 1–8, 2018. DIETRICH, C. G, KOTTMANN, T., ALAVI, M. Commercially available probiotic drinks containing Lacticaseibacillus casei DN-114001 reduce antibiotic-associated diarrhea; World J Gastroenterology, v.20, n.42, p. 15837-15844, 2014. DIMITRELLOU, D. et al. Survival of spray dried microencapsulated Lacticaseibacillus casei ATCC 393 in simulated gastrointestinal conditions and fermented milk. LWT - Food Science and Technology, v. 71, p. 169–174, 2016. DIMITROVSKI, D. et al. Apple juice as a medium for fermentation by the probiotic Lactobacillus plantarum PCS 26 strain. Annals of Microbiology, v. 65, n. 4, p. 2161–2170, 2015. DRAKE, M. A. Invited review: Sensory analysis of dairy foods. Journal of Dairy Science, v. 90, n. 11, p. 4925–4937, 2007. DOOLEY, L. LEE, Y-S., MEULLENET J-F. The application of check-all-that-apply (CATA) consumer profiling to preference mapping of vanilla ice cream and its comparison to classical external preference mapping. Food Quality and Preference, v. 21, n. 4, p. 394–401, 2010. EFSA. Panel on Biological Hazards (BIOHAZ). Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 7: suitability of taxonomic units notified to EFSA until September 2017.EFSA Journal, v. 16, n. 1, 2018. ESPIRITO-SANTO, A. P.; CARLIN, F.; RENARD, C. M. G. C. Apple, grape or orange juice: Which one offers the best substrate for lactobacilli growth? - A screening study on bacteria viability, superoxide dismutase activity, folates production and hedonic characteristics. Food Research International, v. 78, p. 352–360, 2015. EVIVIE, E. S. et al. Some current applications, limitations and future perspectives of lactic acid bacteria as probiotics. Food Nutr Research, v.61, p. 1-16, 2017. FAO/WHO. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS, WORLD HEALTH ORGANIZATION. Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. London, Ontario, Canada, 2002. FASHANDI, H. M.; ABBASI, R.; KHANEGHAH, A. M. The detoxification of aflatoxin M1 by Lactobacillus acidophilus and Bifidobacterium spp.: A review. J. Food Process Preservation, v.42, p.1-10, 2018. FERNANDEZ-DUARTE, K. P. et al. Bifidobacterium adolescentis (DSM 20083) and Lacticaseibacillus casei (Lafti L26-DSL): Probiotics Able to Block the In Vitro Adherence of Rotavirus in MA104 Cells. Probiotics and Antimicrobial proteins, v. 10, p. 56–63, 2018. FIELD, D.; ROSS, R. P.; HILL, C. Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Current Opinion in Food Science, v. 20, p.1- 6, 2018. FONSECA, S. C.; OLIVEIRA, F. A. R.; BRECHT, J. K. Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: A review. Journal of Food Engineering, v. 52, n. 2, p. 99–119, 2002. FONTELES, T. V. et al. Optimization of the Fermentation of Cantaloupe Juice by Lacticaseibacillus casei NRRL B-442. Food and Bioprocess Technology, v. 5, n. 7, p. 2819–2826, 2012. FORSYTHE, S. J. Microbiologia da segurança dos alimentos. 2 ed. Porto Alegre : Artmed, p.176, 2013. FREIRE, A. L. et al. Nondairy beverage produced by controlled fermentation with potential probiotic starter cultures of lactic acid bacteria and yeast. International Journal of Food Microbiology, v. 248, p. 39–46, 2017. FUNDO, J. F. et al. UV-C light processing of Cantaloupe melon juice: Evaluation of the impact on microbiological, and some quality characteristics, during refrigerated storage. Lwt, v. 103, n. May 2018, p. 247–252, 2019. GÄNZLE, M. G. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, v. 2, n. Figure 2, p. 106–117, 2015. GIMÉNEZ, A.; ARES, F.; ARES, G. Sensory shelf-life estimation: A review of current methodological approaches. Food Research International, v. 49, n. 1, p. 311–325, 2012. GIMENEZ, A.; ARES, G.; ADRIANA, G. Using Acceptability Scores. Journal of Sensory Studies, v. 23, n. 2008, p. 571–582, 2007. GOMAND, F. et al. Food Matrix Design for Effective Lactic Acid Bacteria Delivery. Annual Review of Food Science and Technology, v. 10, n. 1, p. 285–310, 2019. GÓMEZ-SALA, B. et al. Strategies to increase the hygienic and economic value of fresh fish: Biopreservation using lactic acid bacteria of marine origin. International Journal of Food Microbiology, v. 223, p. 41–49, 2016. GRANATO, D. et al. Functional foods and nondairy probiotic food development: Trends, concepts, and products. Comprehensive Reviews in Food Science and Food Safety, v. 9, n. 3, p. 292–302, 2010. GRATIA, A. Sur un remarquable exemple d'antagonisme entre deux souches de coilbacille. Compt. Rend. Soc. Biologie, v. 93, p. 1040-1041, 1925 GUIMARÃES, A. et al. Anti-aflatoxigenic effect of organic acids produced by Lactobacillus plantarum. International J. of Food Microbiology, v. 264, p. 31-38, 2018. GUO, C. F.; LI, J. Y. Hypocholesterolaemic action of Lacticaseibacillus casei F0822 in rats fed a cholesterol-enriched diet. International Dairy Journal, v. 32, p. 144-149, 2013. HASHEMI, S. M. B. et al. Fermented sweet lemon juice (Citrus limetta) using Lactobacillus plantarum LS5: Chemical composition, antioxidant and antibacterial activities. Journal of Functional Foods, v. 38, p. 409–414, 2017. HATAB, S. et al. Survival and Reduction of Shiga Toxin-Producing Escherichia coli in a Fresh Cold-Pressed Juice Treated with Antimicrobial Plant Extracts. Journal of Food Science, v. 81, n. 8, p. M1987–M1995, 2016. HAWAR, S. et al. Biotransformation of patulin to hydroascladiol by Lactobacillus Plantarum. Food Control,v. 34, p. 502-508, 2013 HILL, C. et al. Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol., v. 11, p. 506-514, 2014. HOUGH, G. Sensory shelf life estimation of food products. [s.l: s.n.]. HLADÍKOVÁ, Z. et al. Antimicrobial activity of selected lactic acid cocci and production of organic acids. Acta Chimica Slovaca, v.5, p. 80- 85, 2012. HUANG, H. W. et al. Current status and future trends of high-pressure processing in food industry. Food Control, v. 72, n. 12, p. 1–8, 2017. IFIC, 2018. 13 th Food and Health Survey. Disponível em: <https://foodinsight.org/2018- food-and-health-survey/> Acesso em: 22 de abril de 2019. Diário Oficial da República Federativa do Brasil, DF, 10 de janeiro de 2001. INSTITUTO ADOLFO LUTZ. Métodos e físico-químicos para análise de alimentos. 4.ed. São Paulo, 2008. Disponível em: <http://www.ial.sp.gov.br >. Acesso em: 03 abr. 2019 JERMANN, C. et al. Mapping trends in novel and emerging food processing technologies around the world. Innovative Food Science and Emerging Technologies, v. 31, p. 14–27, 2015. JIMÉNEZ-SÁNCHEZ, C. et al. Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications. Critical Reviews in Food Science and Nutrition, v. 57, n. 3, p. 501–523, 2017. JUAREZ-ENRIQUEZ, E. et al. Shelf life studies on apple juice pasteurised by ultrahigh hydrostatic pressure. LWT - Food Science and Technology, v. 62, n. 1, p. 915–919, 2015. JUTURU, V.; WU, J. C. Microbial production of bacteriocins: Latest research development and applications. Biotechnology Advances, v. 36, p. 2187-2200, 2018. KANDYLIS, P. et al. Dairy and non-dairy probiotic beverages. Curr. Opin. Food Science, v. 7, p. 58 – 63, 2016. KAPRASOB, R. et al. Fermentation-based biotransformation of bioactive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria. Process Biochemistry, v. 59, n. April, p. 141–149, 2017. KARIMI, R.; MORTAZAVIAN, A. M.; DA CRUZ, A. G. Viability of probiotic microorganisms in cheese during production and storage: A review. Dairy Science and Technology, v. 91, n. 3, p. 283–308, 2011. KARPÍSKI, T. M.; SZKARADKIEWICZ, A. K. Bacteriocins. Encyclopedia of Food and Health, p. 312–319, 2015. KIM, J. G. et al. Effects of a Lacticaseibacillus casei 393 fermented milk product on bone metabolism in ovariectomised rats. International Dairy Journal, v. 19, p. 690-695, 2009. KIM, M. R.; KIM, K. P.; CHUNG, S. J. Utilizing hedonic frame for projective mapping: A case study with Korean fermented soybean paste soup. Food Quality and Preference, v. 71, n. July 2018, p. 279–285, 2019. KSCHONSEK, J. et al. Polyphenolic compounds analysis of old and new apple cultivars and contribution of polyphenolic profile to the In vitro antioxidant capacity. Antioxidants, v.7, p. 2-14, 2018. KOUTCHMA, T. et al. Effects of Ultraviolet Light and High-Pressure Processing on Quality and Health-Related Constituents of Fresh Juice Products. Comprehensive Reviews in Food Science and Food Safety, v. 15, n. 5, p. 844–867, 2016. KUMARIYA, R. et al. Microbial Pathogenesis Bacteriocins : Classi fi cation , synthesis , mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pthogenesis, v. 128, n. January, p. 171–177, 2019. LAFARGA, T. et al. Effect of microalgae incorporation on the physicochemical, nutritional, and sensorial properties of an innovative broccoli soup. Lwt, v. 111, n. May, p. 167–174, 2019. LANDETE, J. M. et al. Requirement of the Lacticaseibacillus casei maeKR two-component system for L-malic acid utilization via a malic enzyme pathway. Applied and Environmental Microbiology, v. 76, n. 1, p. 84–95, 2009. LANDETE, J. M. et al. Malic enzyme and malolactic enzyme pathways are functionally linked but independently regulated in Lacticaseibacillus casei BL23. Applied and Environmental Microbiology, v. 79, n. 18, p. 5509–5518, 2013. LAU, A. S. Y.; LIONG, M. T. Lactic acid bacteria and bifidobacteria-inhibited Staphylococcus epidermidis. Wounds, v. 26, p. 121-131, 2014. LEMME, A.; SZTAJER, H.; WAGNER-DÖBLER, I. Characterization of mleR, a positive regulator of malolactic fermentation and part of the acid tolerance response in Streptococcus mutans. BMC Microbiology, v. 10, 2010. LEYVA SALAS, M. et al. Antifungal Microbial Agents for Food Biopreservation—A Review. Microorganisms, v. 5, n. 3, p. 37, 2017. LI, H. et al. Potential use of Lacticaseibacillus casei AST18 as a bioprotective culture in yogurt. Food Control, v. 34, n. 2, p. 675–680, 2013. LINH, N. T. H.; SAKAI, K.; TAOKA, Y. Screening of lactic acid bacteria isolated from fermented food as potential probiotics for aquacultured carp and amberjack. Fisheries Science, v.84, p. 101-111, 2018. LI, Z. et al. Enhanced antioxidant activity for apple juice fermented with Lactobacillus plantarum ATCC14917. Molecules, v. 24, n.1, p. 2-12, 2019. LIU, F. et al. Purification and structural analysis of membrane-bound polyphenol oxidase from Fuji apple. Food Chemistry, v. 183, p. 72–77, 2015. LIU, L. et al. Effect of microencapsulation with Maillard reaction products of whey proteins and isomaltooligosaccharide on the survival of Lactobacillus rhamnosus. Food Control, v. 79, p. 44–49, 2017. LUCKOW, T. et al. Exposure, health information and flavour-masking strategies for improving the sensory quality of probiotic juice. Appetite, v. 47, n. 3, p. 315–323, 2006. MA, L. et al. Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science and Technology, v. 64, p. 23–38, 2017. MALDONADO, R. R. et al. Potential application of four types of tropical fruits in lactic fermentation. LWT - Food Science and Technology, v. 86, p. 254–260, 2017. MANOUKIAN E. B.Mathematical nonparametric statistics. Gordon & Breach, New York, 1986 MARTINS, I. B. A. et al. Brazilian consumer’s perception of food processing technologies: A case study with fruit juice. Food Research International, v. 125, n. July, p. 108555, 2019. MATTICK, A. T. R.; HIRSCH, A. Further observations on an inhibitory substance (nisin) from lactic streptococci.The Lancet, v.250, p.5- 8, 1947. MEILGAARD, M. C.; CIVILLE, G. V.; CARR, B. T. Sensory Evaluation Techniques, Fifth Edition. [s.l: s.n.]. MENA, P. et al. Combinatory Effect of Thermal Treatment and Blending on the Quality of Pomegranate Juices. Food and Bioprocess Technology, v. 6, n. 11, p. 3186–3199, 2013. MICROMARKET BRASIL. Mercado global de sucos prensados a frio deve crescer em um CAGR de 8% até 2021. 2017. Disponível em: <https://www.micromarketbrasil.com.br> Acesso em: 08/04/2019. MISHRA, V, PRASAD, D. N. Aplication of in vitro methods for selection of Lacticaseibacillus casei strains as potential probiotics. International Journal of Food Microbiology, v. 103, n. 1, p. 109-115, 2005. MOLINA, V. et al. Soybean-based functional food with vitamin B12-producing lactic acid bactéria. J. funct. Foods, v. 4, p. 831- 836, 2012. NAGATA, S. et al. The effects of the Lacticaseibacillus casei strain on obesity in children: a pilot study. Beneficial Microbes, v. 8, n. 4, p. 535-543, 2017. NEMATOLLAHI, A. et al. Viability of probiotic bacteria and some chemical and sensory characteristics in cornelian cherry juice during cold storage. Electronic Journal of Biotechnology, v. 21, p. 49–53, 2016. NURAIDA, L. A review: Health promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Science and Human Wellness, v. 4, n. 2, p. 47–55, 2015. O’CONNOR, P. M. et al. Antimicrobial antagonists against food pathogens: A bacteriocin perspective. Current Opinion in Food Science, v. 2, p. 51–57, 2015. ÖZCELIK, S.; KULEY, E.; ÖZOGUL, F. Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. LWT- Food Sci. and Technology, v. 73, p. 536–542, 2016. PAGÈS, J. Collection and analysis of perceived product inter-distances using multiple factor analysis: Application to the study of 10 white wines from the Loire Valley. Food Quality and Preference, v. 16, n. 7, p. 642–649, 2005. PANIAGUA-MARTÍNEZ, I. et al. Non-thermal Technologies as Alternative Methods for Saccharomyces cerevisiae Inactivation in Liquid Media: a Review. Food and Bioprocess Technology, v. 11, n. 3, p. 487–510, 2018. PLAZA-DIAZ, J. et al. Mechanisms of Action of Probiotics. Adv. Nutrition, v. 10, p. 49- 66, 2019. PEREIRA, A. L. F.; MACIEL, T. C.; RODRIGUES, S. Probiotic beverage from cashew apple juice fermented with Lacticaseibacillus casei . Food Research International, v. 44, n. 5, p. 1276–1283, 2011. PERCZAK, A. et al. The efficiency of lactic acid bacteria against pathogenic fungi and mycotoxins. Arh Hig Rada Toksikol, v. 69, p. 32-45, 2018. PEREZ, R. H.; ZENDO, T.; SONOMOTO, K. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microbial Cell Factories, v.13, 2014. PERRIN, L.; PAGÈS, J. Construction of a product space from the ultra-flash profiling method: Application to 10 red wines from the loire valley. Journal of Sensory Studies, v. 24, n. 3, p. 372–395, 2009. PIMENTEL, T. C. et al. Probiotic viability, physicochemical characteristics and acceptability during refrigerated storage of clarified apple juice supplemented with Lactobacillus paracasei ssp. paracasei and oligofructose in different package type. LWT - Food Science and Technology, v. 63, n. 1, p. 415–422, 2015. R CORE TEAM. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2017. RADAIC, A.; DE JESUS, M. B.; KAPILA, Y. L. Bacterial anti-microbial peptides and nanosized drug delivery systems: The state of the art toward improved bacteriocins. Journal of Controlled Release, v. 321, n. February, p. 100–118, 2020. REIS, J. A. et al. Lactic Acid Bacteria Antimicrobial Compounds: Characteristics and Applications. Food Engineering Reviews, v. 4, n. 2, p. 124–140, 2012. REUSS, R. M. et al. Malolactic fermentation as a technique for the deacidification of hard apple cider. Journal of Food Science, v. 75, n. 1, 2010. RICCI, A. et al. Volatile profile of elderberry juice: Effect of lactic acid fermentation using L. plantarum, L. rhamnosus and L. casei strains. Food Research International, v. 105, n. November 2017, p. 412–422, 2018. ROBERTS, D. et al. Viability of Lactobacillus plantarum NCIMB 8826 in fermented apple juice under simulated gastric and intestinal conditions. Lwt, v. 97, n. April, p. 144–150, 2018. ROMANO, K. R. et al. Willingness to pay more for value-added pomegranate juice (Punica granatum L.): Na open-ended contingente valuation. Food Research International, v. 89, p. 359-364, 2016. RUSSO, P. et al. Lactobacillus plantarum strains for multifunctional oat-based foods. LWT - Food Sc. and Technology, v. 68, p. 288- 294, 2016. SACCO SYSTEM SUPPORTING FOOD CULTURE & LIFE - SACCO. Culturas Probióticas para Leites fermentados e Queijos. Disponível em: http://saccobrasil.com.br/culturas-lacteas. Acesso em : 10 de outubro de 2020. SADIQ, F. A. et al. Lactic Acid Bacteria as Antifungal and Anti-Mycotoxigenic Agents: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, v. 18, n. 5, p. 1403–1436, 2019. SAUER, M. et al. The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production. Trends in Biotechnology, v.35, p. 756-769, 2017. SARI, N. P.; SARI, R.; UNTARI, E. K. Antibacterial activity test of bacteriocin from Lactobacillus brevis, Lacticaseibacillus casei and Lactobacillus plantarum against gram positive pathogenic bactéria. J. Trop. Biodiv. Biotechnology, vol. 3, p. 85-91, 2018. SCHÜTZ, M.; RADLER, F. Das Vorkommen von Malatenzym und Malo-Lactat-Enzym bei verschiedenen Milchsäurebakterien. Archives of Microbiology, v. 96, n. 1, p. 329–339, 1974. SHARMA, D.; SINGH SAHARAN, B. Simultaneous production of biosurfactants and bacteriocins by probiotic Lacticaseibacillus casei MRTL3. International Journal of Microbiology, v. 2014, 2014. SHORI, A. B. Influence of food matrix on the viability of probiotic bacteria: A review based on dairy and non-dairy beverages. Food Bioscience, v. 13, p. 1–8, 2016. SIDIRA, M. et al. Evaluation of Lacticaseibacillus casei ATCC 393 protective effect against spoilage of probiotic dry-fermented sausages. Food Control, v. 42, p. 315–320, 2014. SINGH, V. P. Recent approaches in food bio-preservation-A review. Open Veterinary Journal, v. 8, n. 1, p. 104–111, 2018. SILVA, F.J. M. et al. Stability of Lactobacillus acidophilus and Lactobacillus rhamnosus in minimally processed cabbage. International Journal of Postharvest Technology and Innovation, v. 3, p. 140–150, 2013. SLOAN, E. A. Top 10 Food Trends: A dramatic turnaround for frozen foods, an explosion in healthy beverages, and an uptick in center stor e sales are driving food and beverage revenues. Institute of Food Technologists, v.73, p.31-47, 2019. SPAGNOL, W. A. et al. Monitoramento da cadeia do frio: Novas tecnologias e recentes avanços. Brazilian Journal of Food Technology, v. 21, p. 2–8, 2018. SUTULA, J. et al. The effect of a commercial probiotic drink containing Lacticaseibacillus casei strain Shirota on oral health in healthy dentate people. Microbial Ecology in Health & Disease, v. 24, p. 1-12, 2013 TENEA, G. N.; YEPEZ, L. Bioactive compounds of lactic acid bacteria. Case study: Evaluation of antimicrobial activity of bacteriocin-producing lactobacilli isolated from native ecological niches of Ecuador. In Venketeshwer, R. (Ed.) Prebiotics and probiotics in human nutrition and health, InTech, p. 147-169, 2016. TEREFE, N. S.; BUCKOW, R.; VERSTEEG, C. Quality-Related Enzymes in Plant-Based Products: Effects of Novel Food-Processing Technologies Part 3: Ultrasonic Processing. Critical Rev. in Food Science and Nutrition, v.55, p.147-158, 2014. THAKUR, A.; JOSHI, V. K. Preparation of Probiotic Apple Juice by Lactic Acid Fermentation. Intl. J. Food. Ferment. Technology, v. 7, p. 67-85, 2017 TRIPATHI, M. K.; GIRI, S. K. Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, v. 9, n. 1, p. 225–241, 2014. TIPTIRI-KOURPETI, A. et al. Lacticaseibacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS ONE, v.11, n.2, p.1-20, 2016. TSAI, J. C.; HUANG, G. J.; CHIU, T. H.; HUANG, S. S.; HUANG, S. C.; HUANG, T. H.; LAI, S. C.; LEE, C. Y. Antioxidant activities of phenolic components from various plants of Desmodium species. African Journal of Pharmacy and Pharmacology, v. 5, p. 468-476, 2011. ULLAH, N. et al. Purification and primary characterization of a novel bacteriocin, LiN333, from Lacticaseibacillus casei , an isolate from a Chinese fermented food. LWT - Food Science and Technology, v. 84, p. 867-875, 2017. USAGA, J.; WOROBO, R. W. Microbial safety and quality evaluation of UV-treated, coldpressed colored and turbid juices and beverages. Journal of Food Protection, v. 81, n. 9, p. 1549–1556, 2018. VALERIO, F. et al. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid. International J. of Food Microbiology, v. 222, p.1-7, 2016. VERVOORT, L. et al. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice: Part II: Impact on specific chemical and biochemical quality parameters. Innovative Food Science and Emerging Technologies, v. 12, n. 4, p. 466–477, 2011. VERAIN, M. C. D.; SIJTSEMA, S. J.; ANTONIDES, G. Consumer segmentation based on food-category attribute importance: The relation with healthiness and sustainability perceptions. Food Quality and Preference, v. 48, p. 99–106, 2016. VERMA, A. K. et al. Bacteriocins: Potential in Food Preservation. In: Batt, C.A., Tortorello, M.L. (Eds.), Encyclopedia of Food Microbiology, vol 1. Elsevier Ltd, Academic Press, p. 180–186. 2014. VIDAL, L. et al. Stability of sample configurations from projective mapping: How many consumers are necessary? Food Quality and Preference, v. 34, p. 79–87, 2014. VUCHNICH, A. 2015. Cold-pressed juice: convenient and superior nutrition or a fad? Global News. Disponível em: http://globalnews.ca/news/2071480/cold-pressed-juiceconvenient- and-superior-nutrition-or-a-fad/. Acessado em 20 de abril de 2019. WEDAJO, B. Lactic Acid Bacteria: Benefits, Selection Criteria and Probiotic Potential in Fermented Food. Journal of Probiotics & Health, v. 3, p. 2-9, 2015. WEISS, J.; LOEFFLER, M.; TERJUNG, N. The antimicrobial paradox: Why preservatives loose activity in foods. Current Opinion in Food Science, v. 4, n. May, p. 69–75, 2015. WGO. World Gastroenterology Organisation Global Guidelines. 2017. Disponivel em: <http://www.worldgastroenterology.org/guidelines/global-guidelines/probiotics-andprebiotics/ probiotics-and-prebiotics-english.> Acesso em: 30/10/2018. WHITEHEAD, H. R. A substance inhibiting bacterial growth, produced by certain strains of lactic streptococci. Biochem. Journal, v. 27, p. 1793-1800, 1933. WIBOWO, S. et al. Comparing the impact of high pressure , pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses. Innovative Food Science and Emerging Technologies, v. 54, p. 64–77, 2019. WILLIAMS, E. J. Experimental Designs Balanced for the Estimation of Residual Effects of Treatments. Australian Journal of Chemistry, v. 2, n. 2, p. 149–168, 1949. WŁODARSKA, K. et al. Perception of Apple Juice: A Comparison of Physicochemical Measurements, Descriptive Analysis and Consumer Responses. Journal of Food Quality, v. 39, n. 4, p. 351–361, 2016. YADAV, H.; JAIN, S.; SINHA, P. R. Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lacticaseibacillus casei in high fructose fed rats. Nutrition, v. 23, p. 62-68, 2007. YI, J. et al. Quality change during high pressure processing and thermal processing of cloudy apple juice. LWT - Food Science and Technology, v. 75, p. 85–92, 2017. ZENDEBOODI, F. et al. Probiotic: conceptualization from a new approach. Current Opinion in Food Science, v. 32, p. 103–123, 2020. ZHENG, J. et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, v. 70, p. 2782-2858, 2020.por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/73835/2021%20-%20Cristina%20Barbosa%20Pereira.Pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6728
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-07-11T17:04:53Z No. of bitstreams: 1 2021 - Cristina Barbosa Pereira.Pdf: 1880865 bytes, checksum: d619cf4c6c01e4dd2548e2a57174643a (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-07-11T17:04:53Z (GMT). No. of bitstreams: 1 2021 - Cristina Barbosa Pereira.Pdf: 1880865 bytes, checksum: d619cf4c6c01e4dd2548e2a57174643a (MD5) Previous issue date: 2021-02-09eng
Appears in Collections:Mestrado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Cristina Barbosa Pereira.Pdf1.84 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.